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This presentation reflects new ideas about a topic which has been discussed at previous ACA
conferences. Orthogonal matrices Q are defined by QQ* = dI where Q! is the transpose,
and [ is the identity matrix with d # 0. Orthonormal matrices denote the special case d = 1.
In addition to the important role they play in applications, such as the Q R decomposition,
orthogonal matrices are also useful to instructors in Linear Algebra and multivariable calcu-
lus. For example, if an instructor wants to create a problem in which lines intersect at a given
angle, then one way to do this is to create the problem in a simple configuration and then use
an orthogonal matrix to transform the problem to a more complicated one. Thus, the lines
L; =r(1,0,0), Ly = s(1,1,0), Ly = (2,0,0) + (0, 1,0) form a simple triangle, but after
multiplying by @, they still form a triangle with the same angles, but are now shifted and
rotated in space.

For pedagogical reasons, it is very helpful to students if () matrices have rational elements.
In this talk, we shall discuss various ways in which orthogonal and orthonormal matrices
with purely rational entries can be computed. Our aim is to create a repository of rational
orthogonal matrices for instructors to use when creating examples and exercises. Access will
be free and open.

The first approach utilises an exhaustive search. Since the columns of any rational orthonor-
mal matrix must form a Pythagorean n-tuple, we start by generating the list of all primitive
Pythagorean n-tuples where the entries are below a certain size. We then combine the tuples
until we have found an orthonormal matrix. (Note that we only need to find n — 1 columns in
this way; the n-th column is then uniquely determined and can be computed by other means.)
The benefit of this method is that we gain tight control over the sizes of the matrix entries,
which is helpful for generating and ordering our open database of orthogonal matrices. A
repository is more useful if the entries are not randomly presented.

A second method is based on a result by Cayley [1]: If A is a skew-symmetric rational matrix,
then (I — A)~1(I + A) will be orthogonal; and all rational orthogonal matrices which do not
have 1 as an eigenvalue can be obtained in this way. In [2], Liebeck and Osborne have shown
that every orthogonal matrix can be transformed into an orthogonal matrix for which 1 is not
an eigenvalue through multiplication of its rows by +1. Hence, Cayley’s formula can be used
to obtain all orthogonal matrices. We analyse some interesting patterns which arise from the
use of this method.



Finally, rational orthonormal matrices of higher dimension can be generated by composing
smaller orthonormal matrices. For example, it is well known (see, e. g., [3]) that the Kro-
necker product of orthonormal matrices is itself orthonormal. Also, block diagonal matrices
where the blocks are orthonormal will themselves be orthonormal. If we multiply these block
diagonal matrices by random permutations, it becomes easy to generate orthonormal matrices
with a predefined degree of sparseness.
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