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Let C be an oval (by which we mean a simple closed convex plane curve of class C2 with
positive curvature) and α ∈ (0, π). The set of points at which two support lines of C intersect
at angle π − α is called an α-isoptic (or simply an isoptic) of C. Isoptics of plane curves are
most often considered in the parametric form proposed in [1] and this parametrization seems
to be the main tool in the study of isoptics and their generalizations, see for example [2], [5],
[6], [7], [8]. Isoptics can be considered also in the nonparametric form, however, implicit
equations are known only for a small class of curves, see for example [2],[3].

Our goal is to find orthogonal trajectories of isoptics, but not using the classical approach
to this task, which uses implicit equations. We construct parametrizations of orthogonal
trajectories to isoptics of ovals, using the solution of a specific Cauchy problem. To prove that
the defined function is continuous, we use some version of l’Hôpital’s rule for multivariable
functions [4]. To illustrate the problem, we analytically determine orthogonal trajectories for
a simple example of a circle isoptics, while for more complicated examples we provide and
draw numerical solutions, created using the Mathematica program.

In addition to discussing the subject of my research, I’ll also share some experiences regard-
ing teaching differential geometry at the University.
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