

# Separated Variables on Plane Algebraic Curves

Manfred Buchacher

Johannes Kepler Universität Linz, Austria

30th Applications of Computer Algebra - ACA 2025

We consider equations of the form

$$r(x, y) + q(x, y)p(x, y) = f(x) - g(y),$$

for rational functions  $r(x, y)$ ,  $q(x, y)$ ,  $p(x, y)$ ,  $f(x)$  and  $g(y)$  in  $x$  and  $y$  over  $\mathbb{K}$ , and explain how they can be solved based on the ideas developed in [1] to [3]. The procedure we present reduces the non-linear problem to a linear one. However, the procedure is just a semi-algorithm. It terminates, whenever the equation has a non-trivial solution, but it may not, if there is none. Termination depends on a dynamical system on the curve associated with  $p$  and the location of the poles of  $r$  thereon. It is still an open question how the semi-algorithm could be turned into an algorithm.

The problem has a field theoretic interpretation. Let  $\mathbb{K}(x, y)$  be the field generated by elements  $x$  and  $y$  satisfying the (only) relation  $p(x, y) = 0$ , and let  $\mathbb{K}(x)$  and  $\mathbb{K}(y)$  be the subfields generated by  $x$  and  $y$ , respectively. Then the above equation has a (non-trivial) solution if and only if  $r(x, y)$  is an element of  $\mathbb{K}(x) + \mathbb{K}(y)$ . There are two particular cases that are interesting in themselves: the case  $r = 0$ , and the case  $g = 0$ . The former corresponds to the problem of computing the intersection of  $\mathbb{K}(x)$  and  $\mathbb{K}(y)$ , the latter to the problem of deciding whether  $r(x, y)$  is an element of  $\mathbb{K}(x)$  and finding all representations thereof in terms of  $x$ .

The problem arises in enumerative combinatorics, when solving discrete differential equations by reducing partial DDEs to systems of ordinary ODDEs [4]. It also arises in parameter-identification problems in ODE models [5], and in problems of image recognition [6].

## References

- [1] Manfred Buchacher, Manuel Kauers, and Gleb Pogudin. Separating Variables in Bivariate Polynomial Ideals. *Proceedings of the 45th International Symposium on Symbolic and Algebraic Computation*, pages 54–61, 2020.
- [2] Manfred Buchacher. Separating Variables in Bivariate Polynomial Ideals: the Local Case. *arXiv preprint*, arXiv:2404.10377, 2024.
- [3] Manfred Buchacher. Separated Variables on Plane Algebraic Curves. *arXiv preprint*, arXiv:2411.08584, 2024.
- [4] Olivier Bernardi, Mireille Bousquet-Mélou, and Kilian Raschel. Counting quadrant walks via Tutte’s invariant methods. *Discrete Mathematics & Theoretical Computer Science*, 2020.
- [5] Alexey Ovchinnikov, Anand Pillay, Gleb Pogudin, and Thomas Scanlon. Computing all identifiable functions of parameters for ODE models. *Systems & Control Letters*, 2021.
- [6] Anna Katherina Binder. Algorithms for Fields and an Application to a Problem in Computer Vision. *PhD Thesis*. Technische Universität München, 2009.