

On the minimum distance and covering radius of irredundant orthogonal arrays

Maryam Bajalan

Bulgarian Academy of Sciences, Bulgaria

30th Applications of Computer Algebra - ACA 2025

Joint work with Peter Boyvalenkov

An orthogonal array (OA), denoted by $\text{OA}(M, n, q, t)$, is an $M \times n$ matrix over an alphabet of size q such that every selection of t columns contains each possible t -tuple exactly M/q^t times. An irredundant orthogonal array (IrOA) is an OA with the additional property that, in any selection of $n - t$ columns, all resulting rows are distinct. IrOAs were first introduced by Goyeneche and Życzkowski in 2014 to construct t -uniform quantum states without redundant information. Beyond their quantum applications, we focus on IrOAs as a combinatorial problem. Using a characterization of IrOAs via their minimum distance we prove that for any linear code, either the code itself or its Euclidean dual forms a linear IrOA. In the special case of self-dual codes, both the code and its dual yield IrOAs. Moreover, we construct new families of linear IrOAs based on self-dual, Maximum Distance Separable (MDS), and MDS-self-dual codes. Finally, we establish bounds on the minimum distance and covering radius of IrOAs.