Math 311, Fall 2016
 Assignment 6, due Wednesday, October 12

Hand in all of the following problems:

- 3.4: $17,19,20,23,24,26,28$
- 5.4: 16, 20, 22, 26
- 5.5: 8, 10
- In $\S 3.4 \# 28(\mathrm{a})$, you saw that the Laplacian operator could be interpreted as $\nabla \cdot \nabla f$, in other words, $\nabla^{2} f=\operatorname{div}(\nabla f)$. Use this and Theorems $4.5,4.6$ in $\S 3.4$ of the text to give a second derivation of the formulas for the Laplacian in cylindrical and spherical coordinates in \mathbb{R}^{3}, which you originally looked at in exercises $\# 32$ and $\# 33$ of $\S 2.5$:

$$
\begin{aligned}
& \nabla^{2} f=\frac{\partial^{2} f}{\partial r^{2}}+\frac{1}{r} \frac{\partial f}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} f}{\partial \theta^{2}}+\frac{\partial^{2} f}{\partial z^{2}} \\
& \nabla^{2} f=\frac{\partial^{2} f}{\partial \rho^{2}}+\frac{1}{\rho^{2}} \frac{\partial^{2} f}{\partial \varphi^{2}}+\frac{1}{\rho^{2} \sin ^{2} \varphi} \frac{\partial^{2} f}{\partial \theta^{2}}+\frac{2}{\rho} \frac{\partial f}{\partial \rho}+\frac{\cot \varphi}{\rho^{2}} \frac{\partial f}{\partial \varphi}
\end{aligned}
$$

Notes:

- For exercises $\# 17, \# 19$, and $\# 20$ in $\S 3.4$, solve the problems in two ways: by using the usual Cartesian coordinates and by switching to spherical coordinates, using that $r=\rho$ and $\mathbf{r}=\rho \mathbf{e}_{\rho}$. The computation in Cartesian coordinates in $\# 20$ may be easier if you use the formula in exercise $\# 24$.
- When proving formula (5) in Theorem 4.5 of $\S 3.4$, start by deriving the following formula (show it, don't take it for granted)

$$
\nabla \times \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\left(\cos \theta \frac{\partial}{\partial r}-\frac{\sin \theta}{r} \frac{\partial}{\partial \theta}\right) & \left(\sin \theta \frac{\partial}{\partial r}+\frac{\cos \theta}{r} \frac{\partial}{\partial \theta}\right) & \frac{\partial}{\partial z} \\
\left(F_{r} \cos \theta-F_{\theta} \sin \theta\right) & \left(F_{r} \sin \theta+F_{\theta} \cos \theta\right) & F_{z}
\end{array}\right|
$$

Reading: Review 5.1-5.4 as needed, 5.5, 5.6
Problems to do on your own:

- 3.4: 21, 22, 25, 27, 29
- Miscellaneous exercises in Chapter 3, p. 243: 43, 44
- 5.4: $11,13,15,17,19,25,27$
- 5.5: $1,3,5,9,11$
- Review exercises from 5.1-5.4 as needed

