Math 311, Fall 2016
 Assignment 7, due Wednesday, October 19

Hand in all of the following problems:

- 5.5: 18, 25, 32, 34, 38, 40
- 5.6: $22,28,32,33,34$
- Consider a 2 dimensional region D to be symmetric about the y-axis if (x, y) is in D whenever $(-x, y)$ is in D. In other words, reflection in the y-axis does not change the region D. In these two problems, assume that D is symmetric about the y-axis.
a. Suppose $f(x, y)$ is even in x in that $f(-x, y)=f(x, y)$ for any (x, y) in D. Let D_{+}denote the intersection of D with the half plane $x \geq 0$, in other words, $D_{+}=\{(x, y):(x, y) \in D$ and $x \geq 0\}$. Use the change of variables formula to explain why

$$
\iint_{D} f(x, y) d A=2 \iint_{D_{+}} f(x, y) d A
$$

b. Suppose $f(x, y)$ is odd in x in that $f(-x, y)=-f(x, y)$ for any (x, y) in D. Use the change of variables formula to explain why

$$
\iint_{D} f(x, y) d A=0
$$

Notes:

- For $32-34$ in $\S 5.6$, begin by computing $\operatorname{Vol}(W)$ and solve for δ using that $\delta=M / \operatorname{Vol}(W)$. Then derive the formula

$$
\iiint_{W} \frac{d V}{x^{2}+y^{2}+(z-r)^{2}}=2 \pi \int_{a}^{b}\left(\frac{\rho}{r}\right)(\rho+r-|\rho-r|) d \rho
$$

by converting the integral on the right to spherical coordinates.
Reading: Finish reading 5.5, 5.6, start Chapter 6.

Problems to do on your own:

- 5.5: $15,17,27,29,31,35,37,39$
- $5.6: 11,13,15,19,21,23,25,27,29,31$,

