Proof: Let $p \in dom \ \phi$ and $m = dim \ , \ n = dim \ N.$ By theorem 3.4 there are charts (U, ϕ) and (V, ψ) of p and F(p) respectively with $F(U) \subset V$ and $\phi(p) = (0, \ldots, 0)$, $\psi(F(p)) = (0, \ldots, 0)$ and

$$\hat{F} = \psi \circ F \circ \phi^{-1}(x^1, ..., x^m) = (x^1, ..., x^n, 0, ..., 0)$$

(in U $\phi = (x^1, \ldots, x^m)$). Let $f:\mathbb{R}^n \longrightarrow \mathbb{R}^m$ be defined by $f(x^1, \ldots, x^n) = (x^1, \ldots, x^n, 0, \ldots, 0) \text{ which is clearly } C^\infty. \text{ Put}$ $\sigma = \phi^{-1} \circ f \circ \psi. \text{ Then by definition } \sigma:\mathbb{N} \longrightarrow \mathbb{M} \text{ is } C^\infty. \text{ Moreover,}$ $F \circ \sigma = \text{id}_{\mathbb{V}}.$

Proposition 3.2: A submersion F is an open map.

<u>Proof:</u> Let $F: M \to N$ be a submersion and $U \subset M$ be open. Suppose $x \in F(U)$, then by lemma 3.5 there are a neighborhood V of X and a C^{∞} section $\sigma: V \to M$ such that $F \circ \sigma = \mathrm{id}_{V}$. Since σ is continuous $\sigma^{-1}(U)$ is an open set containing X. We show that $\sigma^{-1}(U) \subset F(U)$ which implies F(U) is open since X is arbitrary. Let $Y \in \sigma^{-1}(U)$. Then $\sigma(Y) \in U$, so $Y = F \circ \sigma(Y) \in F(U)$. QED.

Let ~ be an equivalence relation on a C^{∞} manifold M, and let $\rho:M\longrightarrow M/\sim$ denote the quotient projection, M/\sim is called a quotient manifold (not necessarily Hausdorff) if it is given a differentiable structure which makes ρ a submersion. Notice that since ρ is a submersion it is open by prop.3.2. and thus M/\sim with the quotient topology has a countable basis by lemma 2.1. But a priori we do not know that the topology induced by the differential structure is the same as the quotient topology. In fact they are the same and this follows since ρ is both open and continuous. We emphasize again

that a quotient manifold is not necessarily Hausdorff. We will however, be mainly concerned with those which are Hausdorff.

We have seen how a quotient manifold structure makes the projection a submersion. Conversely, if $F:M \longrightarrow N$ is a submersion, then we can define on M an equivalence relation \sim by $p\sim q$ if F(p) = F(q). This clearly defines an equivalence relation; moreover, F can be considered as the projection map. Thus N has the differential structure of a quotient manifold, and every submersion gives rise naturally to a quotient manifold.

3.7 Discontinuous Tranformation Groups

Here we will introduce some ideas about transformation groups acting on a manifold, in particular discrete transformation groups. The reason for introducing these here is that they provide a rich supply of differentiable manifolds. We will study more general Lie transformation groups in a later chapter.

A group G is said to <u>act</u> on M(or be a <u>transformation</u> group on M if

- i) there is a global function $\phi: G \times M \longrightarrow M$ such that the function $\phi_g: M \longrightarrow M$ for fixed geG defined by $\phi_g(p) = \phi(g,p)$, peM, is a diffeomorphism.
- ii) if g,heG , then $\phi_g \circ \phi_h = \phi_{gh}$

The function ϕ is called the <u>action</u>. Notice that if esG is the identity then ϕ_e is the identity diffeomorphism

on M since putting $p' = p_e^{-1}(p)$, pEM, we get

$$\phi_{e}(p) = \phi_{e}(\phi_{e}(p')) = \phi_{e} \phi_{e}(p') = \phi_{ee}(p') = \phi_{e}(p') = p.$$

The group G is said to act effectively on M if e is the only element of G which satisfies $\phi_{q}(p) = p$ for all pEM. It is said to act freely on M if e is the only element of G which satisfies $\phi_q(p) = p$ for $p_{\epsilon M}$. Note that if $\phi_q(p) = p$ for all gEG then p is a fixed point under the action of G. Thus, a free action means that there are no fixed points under G or any subgroup of G save the identity. The orbit $\mathcal{O}_{_{\mathrm{D}}}$ of pEM is the set $0_p = \{p' = \phi_q(p) : \text{ for all geG}\}$. If for any p,qEM there is a gEG such that $q = \phi_{\alpha}(p)$ then G is said to act transitively on M. In this case for any peM $\theta_{\rm p}$ = M, there is just one orbit. Notice that the orbits can be used to define equivalence relation on M , i.e p~q if there is $q \in G$ such that $q = \phi_q(p)$. It is easy to check that ~ is equivalence relation (check it!). In fact the equivalence classes are just the orbits. The set of equivalence classes M/G is called the orbit space. The quotient projection $\mu:M$ ----> M/G sends peM to its orbit $\mathcal{O}_{\mathbf{p}}$. The topology on M/G is the quotient topology. However, M/G may not have a manifold structure, i.e. it may not be a quotient manifold since μ is not necessarily a submersion. Notice that if M is a group, the orbit space is just the space of cosets (left or right).

Example 3.30: $GL(n, \mathbb{R})$ acts on \mathbb{R}^n as matrices acting on column vectors.

$$\dot{x}^{i} = \sum_{j=1}^{n} a^{i}_{j} x^{j}$$

Given any $x=(x^1,\ldots,x^n) \neq 0$ we can obtain an arbitrary x by varying a_j^i . But if x=0 then x=0 so the origin $(0,\ldots,0)$ is a fixed point of $GL(n,\mathbb{R})$. Thus there are two orbits $\{0\}=(0,\ldots,0)$ and $\mathbb{R}^n-\{0\}$. The later has dimension n while the former has dimension 0. Thus $\mu:\mathbb{R}^n\longrightarrow\mathbb{R}^n/GL(n,\mathbb{R})$ does not have constant rank; it is not a submersion. On $\mathbb{R}^n-\{0\}$ $GL(n,\mathbb{R})$ acts transitively. A more interesting example is found considering the subgroup $O(n)\subseteq GL(n,\mathbb{R})$. Here the norm $|x|=[\sum\limits_{i=1}^n (x^i)^2]^{1/2}$ is left invariant, so the orbits under O(n) are spheres of ra-

is left invariant, so the orbits under O(n) are spheres of radius |x|. The projection $\mu:\mathbb{R}^n\longrightarrow\mathbb{R}^n/O(n)$ again does not have constant rank since the orbit $\{0\}$ has dimension 0 whereas all other orbits have dimension n-1. However, restricting to $\mathbb{R}^n-\{0\}$, μ is a submersion and the orbit space $\mathbb{R}^n-\{0\}/O(n)$ is diffeomorphic to \mathbb{R}^1 .

We will now consider certain discrete transformation groups such that the orbit space will always be a C[®] manifold (Hausdorff). By a <u>discrete group</u> I we mean a group with at most a countable number of elements and whose topology is the discrete topology. Thus I is a C[®] manifold since it has a countable basis, and is Hausdorff (discrete topology is Hausdorff) and is locally diffeomorphic to a zero dimensional Euclidean space, i.e. to a point. Thus a discrete group is a zero dimensional Lie group.

Let G be a transformation group which acts freely on M, then G is said to act <u>discontinuously</u> on M if each point pEM has a neighborhood U such that $U \cap gU = \{\emptyset\}$ for all $g \in G$ $g \neq e$.

(Here and hereafter we write gU instead of $\phi_g(U)$ similarly gp instead of $\phi_g(p)$). This action is said to be properly discontinuous if in addition every pair of nonequivalent points p,qEM (i.e. p,q lie on different G-orbits) have neighborhoods U_p and U_q , respectively, such that $U_p \cap gU_q = \emptyset$ for all gEG.

Theorem 3.11: Let G be a proper discontinuous transformation group acting freely on M. Then the quotient space M/G is a C^{∞} -manifold with n = dim M = dim M/G. Moreover, if μ is the quotient projection map, then rank μ = n, and M/G is a quotient manifold (Hausdorff).

 $U'' = U \cap g^{-1}U' \text{ is open in M and contains } p_1. \text{ But since } \mu(g^{-1}U') = \mu(U') \qquad , \ U'' \subset \nu(\cap \Omega). \text{ Now let psU''} \text{ be arbitrary.}$ Since $\mu(p) \in \Omega \cap \Omega \cup \Omega$. We have for the unique $p' \in U'$ such that $\mu(p') = \mu(p)$ that $\nu' \circ \nu^{-1}(p) = \nu' \circ \mu|_{U}(p) = \nu'([p]) = (\mu|_{U'})^{-1}$ ([p]) = p'. But then there is a geG such that p' = gp. Hence on $U'' \cup \nu' \circ \nu^{-1} = Lg$ which is a diffeomorphism. Thus M/G is a C^{∞} manifold. Moreover, the charts $(\Omega \cup \Omega), \psi$ locally come from (U, ϕ) so dim $M/G = \dim M$. Moreover on $\mu'(U) = \mu' \circ \mu \circ \phi^{-1}$ is a diffeomorphism, in fact it is the identity function so rank $\mu = \dim M/G$, μ is a submersion and M/G is a Hausdroff quotient manifold.

Remark: If we drop the condition that G acts properly, then M/G is a non Hausdorff quotient manifold.

We shall now prove a theorem which will provide us with groups acting properly discontinuously. First, we prove

Lemma 3.6: Let G be a Lie group and Γ subgroup of G having the property that there exists a neighborhood U of e (identity) ϵ G such that UOT = $\{e\}$. Then Γ is a countable closed subset of G and is discrete as a subspace of G. (Such a Γ is called a discrete subgroup).

Proof: Let U be a neighborhood of esG. Since the map (g_1,g_2) \longrightarrow g_1 g_2^{-1} is continuous and sends (e,e) \longrightarrow e, there is a neighborhood V of e such that $VV^{-1}\subset U$. Let $\{h_n\}$ $\in \Gamma$ be a sequence and g its limit point, then there is an integer N>0 such that for all n>N $h_n \in Vg$. Now let $v_n, v_m \in V$ be chosen by $h_n = v_n g$

 $\begin{array}{l} h_m = v_m g \ \text{for} \ n,m > N. \ \text{Then} \ h_n h_m^{-1} = v_n v_m^{-1} \ \epsilon \ U. \ \text{But} \quad U \cap \Gamma = \{e\} \ \text{so} \\ h_n h_m^{-1} = e \ \text{or} \ h_n = h_m \ \text{for all} \ n,m > N \ . \ \text{Thus} \ h_n = h_m = g \ \text{for all} \\ n,m > N \ , \ \text{so} \ g \epsilon \Gamma; \ \text{hence} \ \Gamma \ \text{is closed}. \ \text{Moreover, for} \ \text{h} \epsilon \Gamma \ \text{h} U \ \text{is a} \\ \text{neighorhood} \ \text{of} \ h \ \text{with} \ h U \cap \Gamma = \{h\} \ . \ \text{Thus,} \quad \Gamma \ \ \text{is discrete.} \ \text{To} \\ \text{see that} \ \Gamma \ \text{is countable} \ \text{we first notice that the family of sets} \\ \{hV \ , \ h \epsilon \Gamma\} \ \text{is indexed by} \ \Gamma \ . \ \text{Furthermore, if} \ h_1 V \cap h_2 V \neq \emptyset \ \text{then} \\ \text{there are} \ v_1, v_2 \ \epsilon V \ \text{such that} \ h_1 v_1 = h_2 v_2 \ \text{which implies} \ h_2^{-1} h_1 = \\ v_2 v_1^{-1} \ \epsilon \ V V^{-1} \subset U \ \ \text{implying} \ h_1 = h_2 \ \text{since} \ U \cap \Gamma = \{e\}. \ \text{So} \ \text{the sets} \\ \{hV\}, h \epsilon \Gamma, \ \text{are disjoint open sets of G. But G has countable basis,} \\ \text{so the family} \ \{hV, \ h \epsilon \Gamma\} \ \text{must be countable; hence} \ \Gamma \ \text{is countable.} \\ \text{Q.E.D.} \end{array}$

Theorem 3.12: A discrete subgroup Γ of a Lie group G acts freely and properly discontinuously on G by left (or right) translations.

Proof: The action is clearly free since if gh = g for hel, geG, then we must have h = e. To see that the action is discontinuous we choose neighborhoods U,V of e as above with $VV^{-1}CU$ and $U\cap\Gamma$ = {e}. Suppose $v'\in V\cap hV$, $e\not=he\Gamma$, then there is a veV such that v' = hv. Thus h = $v'v^{-1}\in VV^{-1}CU$ implying h = e. Contradiction so $V\cap hV$ = {\$\phi\$}. By left translations the argument applies to any point geG with neighborhood Vg. To see that the action is proper we consider two distinct Γ -orbits in in G, Γ_X and Γ_Y . Then $x\not\in \Gamma_Y$ and since Γ is closed and left translation is a homeomorphism Γ_Y is closed. But since a manifold is regular by theorem 1.9 there are neighborhoods U of x and Γ_Y such that $U\cap \widetilde{U} = \emptyset$. But every nbd \widetilde{U} can be written as $\widetilde{U} = \Gamma V$

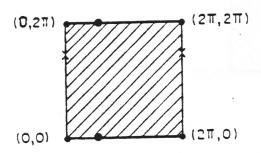
where V is a neighborhood of y. Thus $U \cap \Gamma V = \emptyset$. Q.E.D.

The following follows immediately from theorems 3.11 and 3.12:

Corollary: If Γ is a discrete subgroup of a Lie group G, then the space of right (or left) cosets G/Γ is a C^{∞} -manifold and the quotient map $\mu:G$ ——> G/Γ is a C^{∞} submersion.

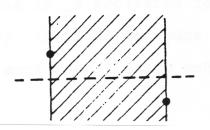
Example 3.31: According to example 3.18, \mathbb{R}^n is a Lie group. Let Γ be the subgroup of \mathbb{R}^n which acts on \mathbb{R}^n as \mathbf{x}^i ---> \mathbf{x}^i +2 π k, where k_{i} are integers and (x^{i}) is the Cartesian chart. Consider the neighborhood U of e = $(0, ..., 0) \in \mathbb{R}^n$ defined by U = $S(0,\epsilon)$, where $\epsilon<1$. Now $\Gamma \approx Z^n$ as a set $(Z^n=Zx...xZ$, n times, Z = integers). So Γ is the set of all points of the form $2\pi(k_1,\ldots,k_n)$ k \in Z. Clearly $U\cap f=\{e\}$, so f is discrete. It follows that R^n/Γ is a C^∞ manifold. Let us see what this is. If n=1 then $R/Z=S^1$. But $R^n=R^1\times \ldots \times R^1$ and is commutative as a group (Abelian), i.e. x+y = y+x. So $\mathbb{R}^n/\mathbb{Z}^n = \mathbb{R}^1/\mathbb{Z}x...x\mathbb{R}^1/\mathbb{Z}$ = $S^1 \times ... \times S^1$ i.e. $\mathbb{R}^n / \Gamma = T^n$ (n dimensional Torus) as sets. It remains to check that this holds as C^∞ manifolds. Consider the case $R^1/Z = S^1$. On R^1 take neighborhoods $U_k = (2\pi k, 2\pi (k+1))$, $k = 0, \pm 1, \ldots$ The projection $\mu: R \longrightarrow R/Z$ restricted to U_k is a bijection for each k. Moreover, $[U_k] = (U_k) = \mu(U_\ell)$ for all $k, \ell \in Z$, and $[U_k]$ is open since u is open and a representative is $(0,2\pi)$. Then the map $f:(0,2\pi)\longrightarrow s^{\frac{1}{2}}\longrightarrow (1,0)$ of example 3.5 provides a chart on R/Z. Now consider neighborhoods $\overset{!}{U_k}$ on R^1 of the form $(-\pi+2\pi k,\ \pi+2\pi k)$. Again on $U_{\mbox{$k$}}$ μ is a bijection

with $\mu(\overset{!}{U}_{k})=\mu(\overset{!}{U}_{\ell})$. A representative is $(-\pi,\pi)$. The map $f':(-\pi,\pi)\longrightarrow S^1-(-1,0)$ provides another chart for S^1 . These are precisely the two charts of example 3.2. Moreover, $\mu(U_k\overset{!}{U}_k)=R/Z$. Doing the same thing for each dimension provides an identification $R^n/Z^n=T^n$ as C^∞ manifolds. Notice that what we have done above is just consider a certain subset F of R^n which contains just one point from each equivalence class. The closure F of such a subset is called a <u>fundamental domain</u>. Here we draw F in the case of R^2/Z^2 .



We identify all points denoted with . or x.

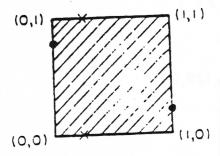
Example 3.32: Consider the discrete group $\Gamma = \mathbb{Z}$ acting on \mathbb{R}^2 by sending $(x,y) \longmapsto (x+k, (-1)^k y)$, $k \in \mathbb{Z}$. One can check that this action is free and properly discontinuous (left as an exercise). Thus \mathbb{R}^2/Γ is a \mathbb{C}^∞ manifold. In fact, since in $\{(x,y) \in \mathbb{R}^2 \mid 0 \le x \le 1\}$ the only non-trivial relations are $(0,y) \sim (1,-y)$, \mathbb{R}^2/Γ is the infinite Mobuis strip. The fundamental domain is given by



For the next example we need to recall the "twisted" or semidirect product $G \gg H$ of two groups G and H. Suppose there is a representation of the group G in the group of automorphisms of H, i.e. a group homomorphism $\rho \colon G \longmapsto Aut \ H$. Then we can define a group structure on the set $G \times H$ by

$$(g',h') \cdot (g,h) = (g'g, (\rho(g')h) \cdot h').$$

Example 3.33: The discrete group $\Gamma = \mathbb{Z} \gg \mathbb{Z}$ acts on \mathbb{R}^2 by sending $(x,y) \longmapsto (x+k, (-1)^k y + \ell)$. Again it is left as an exercise to check that this action is C^∞ , free, and properly discontinuous. Thus \mathbb{R}^2/Γ is a C^∞ manifold. The fundamental domain is



$$\times$$
: $t_{0,1} (x,y)^{-}(x,y+1)$
 $(0,y)^{-}(0,1+y)$

•:
$$t_{1,1} (x,y) - (x+1,-y+1)$$

 $(0,y) - (1,1-y)$

Here \mathbb{R}^2/Γ is known as the Klein bottle.

Exercise: Show that the Γ 's of examples 3.32 and 3.33 act freely and properly discontinuously.

Exercise: Consider the rotation group SO(3) and a regular m-polygon in the x-y plane with center at the origin in \mathbb{R}^3 . Show that the set of rotations Z_m of angle $2\pi/m$ about the z-axis is a discrete subgroup of SO(3). It is called the cyclic group of order m. Now draw a line L from one of the vertices of

the m-polygon through the origin until it meets an edge or vertex of the polygon. A rotation R about L of angle π is a symmetry of the polygon. Show that the set $\{Z_m, R\}$ is a discrete subgroup of SO(3). It is called the <u>dihedral group</u> of order 2m.

Exercise: Using methods of this section show that $P^{n}(\mathbb{R})$ is a C^{∞} manifold.

Exercise: Show that the infinite Möbius strip of example 3.32 and the Möbius strip of example 2.4 are diffeomorphic.

<u>Theorem 3.13</u>: Let Γ be a discrete group acting freely and properly discontinuously on a C^{∞} manifold M. Then M/ Γ is compact if and only if there is a compact subset K \subset M such that Γ K = M.

<u>Proof</u>: Suppose M/ Γ is compact and $\rho:M\to M/G$ is the quotient map. For each $\overline{x}\in M/\Gamma$ choose a point $x\in \rho^{-1}(\overline{x})$ M, and let K denote the set of such points. Then $\Gamma K=M$. Let $\{U_{\alpha}\}$ be an open cover of M. Then $\{\rho(U_{\alpha})\}$ is an open cover for M/ Γ . Let $\{\rho(U_{\alpha})\}$ be a finite subcover. Then $\{U_{\alpha}\}$ is a finite subcover for K.

Conversely, let K be a compact subset of M such that $\Gamma K = M$. Since ρ is continuous $\rho(K)$ is a compact subset of M/Γ . But if $\overline{x} \in M/\Gamma$ and $x \in M$, there are $\gamma \in \Gamma$ and $k \in K$ such that $x = \gamma k$. So $\overline{x} = \rho(x) = \rho(\gamma k) = \rho(k) \in \rho(K)$, i.e. $\rho(K) = M/\Gamma$. So M/Γ is compact.

It follows easily from this theorem that the torus and Klein bottle are compact.

Theorem 3.14: Any finite group I acting freely on a manifold M acts properly discontinuously.

Proof: Let $\Gamma = \{\gamma_0 = e, \gamma_1, \ldots, \gamma_n\}$. Since M is Hausdorff and Γ acts freely, if we choose any $x \in M$, there are neighborhoods U_j , j = 0, ... n of $\gamma_j x$ such that $U_0 \cap U_j = \emptyset$ for all $j = 1, \ldots, n$. Now define $U = \bigcap_{j=0}^{n} \gamma_j^{-1} U_j$, then $x \in U$ and $U \cap \gamma U = \emptyset$ for all $\gamma \neq e$. Moreover if x and y lie in distinct Γ -orbits there is a neighborhood U_y of γ such that $\gamma \cap U_j = \emptyset$ for all $\gamma \cap U_j = \emptyset$. Thus $\gamma \cap U_j = \emptyset$ since $\gamma_j \cap U \cap U_j = \emptyset$ for all $\gamma \cap U_j = \emptyset$.

Example 3.34: Lens spaces: Consider $s^3 = \{(z^1, z^2) \in \mathbb{C}^2 \mid |z^1|^2 + |z^2|^2 = 1\} \text{. Fix a prime p. The cyclic group } \mathbb{Z}_p \text{ of order p acts on } s^3 \text{ as follows: Fix any q relatively prime to p and consider the transformation}$

$$(z^1, z^2) \longmapsto (e^{\frac{2\pi i}{p}} z^1, e^{\frac{2\pi iq}{p}} z^2)$$

Call this transformation h. The cyclic group $\mathbb{Z}_p = \{e, h, h^2, \ldots, h^{p-1}\}$ acts freely on s^3 since if $(h^rz^1, h^{qr}z^2) = (z^1, z^2)$ for $r=0,\ldots,p-1$, then either $h^r=1$ or $h^{qr}=1$ implying r=0. Thus by theorem 3.14 \mathbb{Z}_p acts properly discontinuously on s^3 and by theorem 3.11 the quotient space L(q,p) (called a lens space) is a c^∞ manifold of dimension 3. Since s^3 is compact, so is L(q,p). Note that $L(1,2)=\mathbb{P}^3(\mathbb{R})$. This construction can be generalized to any odd dimensional sphere.