For now it suffices to think of T(M) and $T^*(M)$ as topological spaces in the following way: concentrating on T(M) only we notice a projection map $\pi:T(M)\longrightarrow M$ defined by $\pi(V)=p$ where $V \in T_p(M)$, $p \in M$. The topology on T(M) should make π continuous, i.e. if $U \subseteq M$ is open then $\pi^{-1}(U) \subseteq T(M)$ is open. Notice that for all $V \in T_p(M)$ $\pi(V)=p$, so $\pi^{-1}(p)=T_p(M)$, $\pi^{-1}(p)$ is called the <u>fibre</u> at p, and here we see that each fibre has the structure of a vector space. We will see that T(M) is an example of a <u>vector bundle</u>. Notice that the topology on T(M) has not been defined uniquely yet.

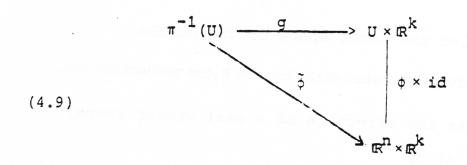
Definition 4.2: A real C^{∞} vector bundle ξ over a C^{∞} manifold M is a triple ξ = (M, E, π) where:

- 1) E is a C^{∞} manifold called the total space of the bundle.
- 2) $\pi:E$ ---> M is a C^{∞} surjective submersion with dom π = E,the projection map.
- 3) For each pEM, $\pi^{-1}(p)$ has the structure of a real vector space. It is called the fibre at p.
- 4) For each pEM there exist a nbd, $U \subseteq M$, an integer $k \ge 0$, and a diffeomorphism $h: U \times \mathbb{R}^k \longrightarrow \pi^{-1}(U)$ such that for each fixed pEM the map $h_p: \mathbb{R}^k \longrightarrow \pi^{-1}(p)$ defined by $h_p(v) = h(p,v)$, $v \in \mathbb{R}^k$, is a vector space isomorphism.

Remarks. Of course, this definition can be stated in the C^r category, in particular r=0. Condition 4) is known as <u>local trivial</u>ity and if it is possible to choose U=M then the bundle ξ is called <u>trivial</u>. We will use interchangibly the notation ξ for a vector bundle (usually not writing $\xi=(E,M,\pi)$) and the notation

Two vector bundles $\xi_1 = (E_1, M_1, \pi_1)$ and $\xi_2 = (E_2, M_2, \pi_2)$ are said to be <u>isomorphic</u> if there is a diffeomorphism $F:E_1 \longrightarrow E_2$ of the total spaces which maps each vector space $\pi_1^{-1}(p)$ isomorphically onto $\pi_2^{-1}(F(p))$. Thus a vector bundle E(M) is trivial if and only if is isomorphic to the product bundle $M \times \mathbb{R}^k$. Thus a vector bundle is a generalization of the direct product of a manifold with \mathbb{R}^k .

Now let us see what coordinates look like on a vector bundle E(M). Let (U,ϕ) be a coordinate chart on M, then $\pi^{-1}(U)$ is an open set of E since π is continuous. Moreover, condition 4) says that there is a diffeomorphism $g=h^{-1}:\pi^{-1}(U)\longrightarrow U\times \mathbb{R}^k$. Thus we define the standard coordinate chart $(\pi^{-1}(U),\tilde{\phi})$ of E by the commutative diagram



Clearly, $\tilde{\phi}$ is a homeomorphism and thus defines a coordinate chart of E. We will usually write $(\tilde{U},\tilde{\phi})$ instead of $(\pi^{-1}(\tilde{U}),\tilde{\phi})$.

Let us define coordinates on T(M). Although we do not yet know that T(M) is a vector bundle we will define the standard coordinate chart on T(M) as in (4.9). Let (U, ϕ) be a coordinate chart of M with $\phi = (x^1, \ldots, x^N)$ and let psU. Now on T(M) we have a projection map $\pi: T(M) \longrightarrow M$ defined by $\pi(v_p) = p$, $v_p \in T_p(M)$.

Moreover, for every psU we can write by theorem 4.1

$$v_p = \sum_{i=1}^n v^i \left(\frac{\partial}{\partial x^i}\right)_p$$

where $v^i \in \mathbb{R}$. The set $\pi^{-1}(U)$ is clearly just $\bigcup_{p \in U} T_p(M) \subset T(M)$ and we can define a topology on T(M) as follows: Define a map $g:\pi^{-1}(U) \longrightarrow U \times \mathbb{R}^n$ by $g(v) = (p,v^i)$. It is easy to check that g is bijective. We choose the topology on T(M) to be that which makes g a homeomorphism. Clearly π is continuous in this topology. Moreover, $\tilde{\phi}:\pi^{-1}(U) \longrightarrow \mathbb{R}^n \times \mathbb{R}^n$ as defined by (4.9) is a homeomorphism and $(\pi^{-1}(U),\tilde{\phi})$ defines a standard chart for T(M). In local coordinates we have

(4.10)
$$\tilde{\phi} = (\phi \times id) \circ g = (x^1, ..., x^n, v^1, ..., v^n)$$

Thus T(M) is locally Euclidean and we are ready for

Theorem 4.4: T(M) is a C^{∞} vector bundle over M.

Proof: We need to show that T(M) is a C^∞ manifold, π is a C^∞ map and that the condition of local triviality is satisfied.

- i) T(M) is Hausdorff: Let $v_1, v_2 \in T(M)$ be distinct. If $\pi(v_1) \neq \pi(v_2)$, they admit disjoint nbds U_1, U_2 and $\pi^{-1}(U_1)$ and $\pi^{-1}(U_2)$ are disjoint since π is continuous and the continuous image of a connected space is connected. If $\pi(v_1) = \pi(v_2)$, then $g(v_1) = (\pi(v_1), v_1^i)$ and $g(v_2) = (\pi(v_2), v_2^i)$ and since v_1^i v_2^i are distinct vectors of \mathbb{R}^n they admit disjoint nbds and thus so do v_1 and v_2 since g is continuous.
- ii) T(M) has a countable basis: Let $\{U_i\}$ be a countable basis

for M then T(M) = $\bigcup \pi^{-1}(U_i)$. Moreover, if $v \in T(M)$ with $\pi(v) = p \in U_i \cap U_j$ then there is a $U_k \cap U_j \cap U_j$ with $p \in U_k$. Thus $v \in \pi^{-1}(U_i \cap U_j) = \pi^{-1}(U_i) \cap \pi^{-1}(U_j)$ and $\pi^{-1}(U_k) \cap \pi^{-1}(U_j) \cap \pi^{-1}(U_j)$ with $v \in \pi^{-1}(U_k)$ since $\pi(v) \in U_k$.

iii) T(M) is a C^{∞} manifold. Let $(\pi^{-1}(U),\tilde{\phi})$ and $(\pi^{-1}(V),\tilde{\psi})$ be two standard charts on T(M) with $\pi^{-1}(U)\cap\pi^{-1}(V)\neq\emptyset$, we must show that $\tilde{\psi}\circ\tilde{\phi}^{-1}$ is a diffeomorphism. Let $\phi=(x^1,\ldots,x^n)$ and $\psi=(y^1,\ldots,y^n)$ then $\psi\circ\phi^{-1}$ is a diffeomorphism. Moreover, if $v\in\pi^{-1}(U)\cap\pi^{-1}(V)$ then for every $p\in U\cap V$ if we write

 $v = \sum_{i} v^{i} \left(\frac{\partial}{\partial x^{i}} \right)_{p} = \sum_{i} v^{i} \left(\frac{\partial}{\partial y^{i}} \right)_{p}$ then we saw that

$$v^{'j} = \sum_{i} v^{i} \left(\frac{\partial y^{j}}{\partial x^{i}} \right) \phi(p)$$

and this is a C^{∞} diffeomorphism. So $\tilde{\psi} \circ \tilde{\phi}^{-1}(x^1, \dots, x^n)$,

 v^1, \ldots, v^n) = $(y^1, \ldots, y^n, v^1, \ldots, v^n)$ is a C^{∞} diffeomorphism.

iv) π is C^{∞} . Its coordinate representative is $\hat{\pi}(x^1,\dots,x^n$, $v^1,\dots,v^n)$ = (x^1,\dots,x^n) .

v) local triviality g is a diffeomorphism since its coordinate representative \hat{g} is the identity map. It remains to show that g is a vector space isomorphism. This is easy. Let v,us $T_p(M)$ then for fixed $p,g \mid_{\pi^{-1}(p)} : T_p(M) \longrightarrow \mathbb{R}^n$ is bijective. Moreover, $g(\alpha v + \beta u) = (p,\alpha v^i + \beta u^i) = (p,\alpha v^i) + (p,\beta u^i)$. Q.E.D.

A similar contruction can be made for $T^*(M)$. As with T(M) we have a C^∞ map $\pi:T^*(M)$ ——> M. An arbitrary (covector) 1-form at qsM has the form

$$\phi_{\mathbf{q}} = \sum_{i=1}^{n} p_{i} dx^{i}$$

where $p_i \in \mathbb{R}$. Again we can consider a vector $(p_1, \ldots, p_n) \in \mathbb{R}^n$ and this holds for any $\phi \in T_p(M) \subset \pi^{-1}(U)$. So we have a C^{∞} map $g:\pi^{-1}(U)$ \longrightarrow $V\times \mathbb{R}^n$ defined by

$$g(\phi_q) = (q,p_i)$$

The standard chart on T*(M) then has the form

$$(4.11)$$
 $\tilde{\phi}(q,p_1) = (x^1,...,x^n, p_1,...,p_n)$

where ϕ is related to the chart $\phi = (x^1, \dots, x^n)$ on $U \subseteq M$. We use here p_i as coordinates on $T^*(M)$ since $T^*(M)$ is the generalization of phase space to arbitrary manifolds.

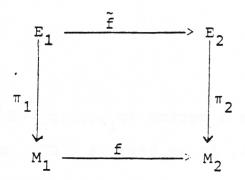
Theorem 4.5: $T^*(M)$ is a C^{∞} vector bundle over M.

Proof: Exercise (similar to theorem 4.4)

In section 4.2 we saw that a C^{∞} map F:M \longrightarrow N of manifolds induces a map $F_*: T_p(M)$ \longrightarrow $T_{F(p)}(N)$ of tangent spaces. Now by varying pEM we can consider F_* as a map on tangent bundles, i.e. $F_*:T(M)$ \longrightarrow T(N), such that for each pEM F_* maps the fibre at p into the fibre at F(p) EN, and is a homomorphism of vector spaces. This leads to the following definition: Let

 $\xi_1 = (E_1, M_1, \pi_1)$ and $\xi_2 = (E_2, M_2, \pi_2)$ be C^{∞} vector bundles. A <u>bundle map</u> (\tilde{f}, f) is a pair of C^{∞} maps $\tilde{f}: E_1 \longrightarrow E_2$ and $f: M_1 \longrightarrow M_2$ such that

1) the diagram



commutes, and

2) for each fixed $p \in M_1$ $(\tilde{f})_p : \pi^{-1}(p) \longrightarrow \pi_2^{-1}(f(p))$ is a vector space homomorphism.

Proposition 4.6: Suppose $F:M \longrightarrow N$ is a C^{∞} map of C^{∞} manifolds. Then $F_{\star}:T(M) \longrightarrow T(N)$ is C^{∞} and (F_{\star},F) is a bundle map. If F is a global diffeomorphism so is F_{\star} ; hence T(M) and T(N) are isomorphic as vector bundles.

Proof: Let $(U,\tilde{\phi})$ and $(V,\tilde{\psi})$ be standard charts of T(M) and T(N) respectively with $F(U) \subset V$ and $\tilde{\phi} = (x^1, \dots, x^m, v^1, \dots, v^m)$ and $\tilde{\psi} = (y^1, \dots, y^n, u^1, \dots, u^n)$ $(m = \dim M, n = \dim N)$. Then by Eq. (4.2)

$$u^{i} = \sum_{j} v^{j} \left(\frac{\partial y^{i}}{\partial x^{j}} \right) \phi(p)$$

where $F_*v = u$. But $\left(\frac{\partial y^i}{\partial x^j}\right)_{\phi(p)}$ is just the Jacobian matrix of

 $y^i = [\phi \circ F \circ \phi^{-1}]^i (x^1, \dots, x^n)$ and this is C^∞ since F is. So F_* is C^∞ . Also by proposition 4.4 (F_*, F) is a bundle map. Now suppose F is a global diffeomorphism, then by theorem 4.2 each fibre $T_p(M)$ is mapped isomorphically onto $T_F(p)$ (N) and the correspondence $T_p(M) < \longrightarrow T_F(p)$ (N) is a bijection. Moreover,

the Jacobian matrix $JF_j^i = \left(\frac{\partial yi}{\partial x^j}\right)_{\phi}(p)$ is an invertible square

matrix whose inverse $(JF)^{-1} = (-1)^{i+j} cof(JF)^{i}j$ is C^{∞} . It det JF

follows that F_{\star} is a global diffeomorphism. (cof = cofactor).

Remark: Notice from the proof above that the coordinate representative of F_{\star} is just

$$(4.12)$$
 $\hat{F}_{\star} = (\hat{F}, J\hat{F})$

The converse of proposition 4.6 also holds. In fact this can be done more generally as the following exercise shows.

Exercise: Suppose the pair (\tilde{f},f) is a bundle map of vector bundles $\xi_1=(E_1,M_1,\pi_1)$ and $\xi_2=(E_2,M_2,\pi_2)$ but only suppose that \tilde{f} is C^{∞} . Show that f is in fact C^{∞} . Now suppose that \tilde{f} is a global diffeomorphism, show that f is also a global diffeomorphism.

For general vector bundles proposition 4.6 is not true, but we do have

Lemma 4.3: Let $E_1^{(M)}$ and $E_2^{(M)}$ be vector bundles over the same base space M and consider the bundle map (\tilde{f},id) where id is the identity map on M. Then if $(\tilde{f})_p$ is an isomorphism of fibres onto

fibres, then f is a diffeomorphism.

Proof: Let $(U,\tilde{\phi})$ and $(V,\tilde{\psi})$ be standard charts for E_1 and E_2 respectively with $U\cap V\neq\emptyset$. We must show that $\tilde{\psi}\circ\tilde{f}\circ\tilde{\phi}^{-1}$ is a diffeomorphism. Let $p\in U\cap V$ then by hypothesis $(\tilde{f})_p:\pi^{-1}(p)\longrightarrow\pi_2^{-1}(p)$ is an isomorphism of vector spaces and thus takes the form

$$u^{i} = \tilde{f}_{p}(v^{i}) = \sum_{j=1}^{n} f^{i}_{j}(p)v^{j}$$

for some invertible matrix $f_j^i(p)$ where u^i, v^i are the components of the vectors $u \in \pi_2^{-1}(p)$ and $v \in \pi_1^{-1}(p)$, respectively. But since \tilde{f} is a bundle map it is C^∞ as functions of p as well as v. But since $f_j^i(p)$ is invertible we see easily that the inverse matrix

$$(f^{-1})_{j}^{i} = (-1)^{i+j} (\cot f)_{j}^{i}$$

$$\det f$$

exists and is C^{∞} . Q.E.D.

Exercise: State and prove the analog of proposition 4.6 for cotangent bundles. Find the coordinate representative \hat{F}^* .

Exercise: Consider the product manifold $M_1 \times M_2$ with the natural projections $p_i \colon M_1 \times M_2 \longrightarrow M_i$, i = 1, 2. Show that $(p_i^*, p_2^*) \colon T(M_1 \times M_2 \longrightarrow T(M_1) \times T(M_2)$ defines a vector bundle isomorphism.