NOTES

1. Covering Manifolds

Definition 1.1. Let \tilde{M} and M be connected smooth manifolds. A smooth surjection $\pi: \tilde{M} \longrightarrow M$ is called a **covering map** if each point $p \in M$ has a connected open neighborhood U such that $\pi^{-1}(U) = \sqcup_{\alpha} U_{\alpha}$ and $\pi|_{U_{\alpha}}: U_{\alpha} \longrightarrow U$ is a diffeomorphism for each α . The manifold \tilde{M} is called a **covering manifold** of M.

We also say that the open set U is evenly covered. Compare this definition with the 'topological definition'. Clearly a smooth covering map is in particular a topological covering map. In these notes by a covering map we always mean a smooth covering map. The U_{α} are precisely the connected components of $\pi^{-1}(U)$. Note that since \tilde{M} has a countable basis for its topology we can take the index set in Definition 1.1 to be countable.

Example 1: $\tilde{M} = \mathbb{R}$ and $M = S^1$. The map $\pi(t) = e^{2\pi i t}$ is a smooth covering map.

Example 2: The natural projection $\pi: S^n \longrightarrow \mathbb{RP}^n$ is a smooth covering map.

Exercise: Show that a smooth covering map is a submersion.

Definition 1.2. A diffeomorphism $h: \tilde{M} \longrightarrow \tilde{M}$ that satisfies $\pi \circ h = \pi$ is called a **deck transformation**.

Deck transformations are sometimes called *covering transformations*. It is easy to see that the set Γ of all deck transformations of \tilde{M} form a group (Show it).

Exercise: Show that h maps $\pi^{-1}(p)$ to itself, and that the either $hU_{\alpha} \cap U_{\beta} = \emptyset$ or $hU_{\alpha} = U_{\beta}$.

Lemma 1.3. The group of deck transformations Γ acts freely on \tilde{M} .

Proof. Consider the commutative diagram

$$\begin{array}{ccc}
& \tilde{M} \\
h \nearrow & & \downarrow^{\pi} \\
\tilde{M} \xrightarrow{\pi} & M
\end{array}$$

2 NOTES

which says that h is a lift of π . Another obvious lift of π is the identity map id : $\tilde{M} \longrightarrow \tilde{M}$. By a lemma from topology any two lifts that coincide at one point are identical. So hx = x for some $x \in \tilde{M}$ implies $h = \mathrm{id}$.

Now let $p \in M$ and fix an element $x_0 \in \pi^{-1}(p)$. Define a map ψ : $\Gamma \longrightarrow \pi^{-1}(p)$ by $\psi(h) = hx_0$. It follows from Lemma 1.3 that this map is injective. This implies that Γ is countable since $\pi^{-1}(p)$ is countable, so we give Γ the discrete topology.