The Kähler Geometry of Bott Manifolds

Charles Boyer

University of New Mexico

August 25, 2017
Gauge Theories, Monopoles, Moduli Spaces and Integrable Systems
A Conference honouring Jacques Hurtubise on his 60th birthday
Montreal, Quebec, Canada

BON ANNIVERSAIRE JACQUES
My talk is based on joint work with David Calderbank and Christina Tønnesen-Friedman.
1 My talk is based on joint work with David Calderbank and Christina Tønnesen-Friedman.

2 Bott Manifolds which are related to Bott-Samelson manifolds were anticipated by Raoul Bott and first studied in detail in Grossberg’s thesis and later used in representation theory by Grossberg and Karshon.
1. My talk is based on joint work with David Calderbank and Christina Tønnesen-Friedman.

2. Bott Manifolds which are related to Bott-Samelson manifolds were anticipated by Raoul Bott and first studied in detail in Grossberg's thesis and later used in representation theory by Grossberg and Karshon.

3. The topology of Bott manifolds was then studied by Choi, Masuda, Panov, Suh and others.
My talk is based on joint work with David Calderbank and Christina Tønnesen-Friedman.

Bott Manifolds which are related to Bott-Samelson manifolds were anticipated by Raoul Bott and first studied in detail in Grossberg's thesis and later used in representation theory by Grossberg and Karshon.

The topology of Bott manifolds was then studied by Choi, Masuda, Panov, Suh and others.

Bott Manifolds are smooth projective toric varieties; hence, they are integrable systems.
1 My talk is based on joint work with David Calderbank and Christina Tønnesen-Friedman.

2 Bott Manifolds which are related to Bott-Samelson manifolds were anticipated by Raoul Bott and first studied in detail in Grossberg’s thesis and later used in representation theory by Grossberg and Karshon.

3 The topology of Bott manifolds was then studied by Choi, Masuda, Panov, Suh and others.

4 Bott Manifolds are smooth projective toric varieties; hence, they are integrable systems

5 They are best approached through the notion of a Bott Tower which we now describe.
Consider **Closed Complex Manifolds** M_k for $k = 0, 1, \ldots, n$ with $M_0 = \{pt\}$ and M_k the total space of the $\mathbb{C}P^1$-bundle $\pi_k : \mathbb{P}(1 \oplus L_k) \to M_{k-1}$ giving the sequence

$$M_n \xrightarrow{\pi_n} M_{n-1} \xrightarrow{\pi_{n-1}} \cdots M_2 \xrightarrow{\pi_2} M_1 = \mathbb{C}P^1 \to \{pt\}$$

where L_k is a holomorphic line bundle on M_{k-1}.
Consider **Closed Complex Manifolds** M_k for $k = 0, 1, \ldots, n$ with $M_0 = \{pt\}$ and M_k the total space of the $\mathbb{C}P^1$-bundle $\pi_k : P(\mathbb{1} \oplus \mathcal{L}_k) \to M_{k-1}$ giving the sequence

$$M_n \xrightarrow{\pi_n} M_{n-1} \xrightarrow{\pi_{n-1}} \cdots M_2 \xrightarrow{\pi_2} M_1 = \mathbb{C}P^1 \xrightarrow{\pi_1} \{pt\}$$

where \mathcal{L}_k is a holomorphic line bundle on M_{k-1}.

M_k is called the stage k **Bott manifold** of the **Bott tower** of height n.

1. Consider **Closed Complex Manifolds** M_k for $k = 0, 1, \ldots, n$ with $M_0 = \{pt\}$ and M_k the total space of the $\mathbb{C}P^1$-bundle $\pi_k : P(\mathbb{1} \oplus \mathcal{L}_k) \to M_{k-1}$ giving the sequence

$$M_n \xrightarrow{\pi_n} M_{n-1} \xrightarrow{\pi_{n-1}} \cdots M_2 \xrightarrow{\pi_2} M_1 = \mathbb{C}P^1 \xrightarrow{\pi_1} \{pt\}$$

where \mathcal{L}_k is a holomorphic line bundle on M_{k-1}.

2. M_k is called the stage k **Bott manifold** of the **Bott tower** of height n.

3. Stage 2 Bott manifolds are nothing but **Hirzebruch surfaces**.

4. A **Bott tower** is a collection $(M_k, \pi_k, \sigma_0^k, \sigma_\infty^k)_{k=1}^n$ where σ_0^k and σ_∞^k are the zero and infinity sections of \mathcal{L}_k, respectively.

5. The **Quotient Construction**: Any Bott tower is obtained from the complex torus action $(t_i)_{n_i=1}^n \in (\mathbb{C}^*)^n$ on $(z_j, w_j)_{n_j=1}^n \in (\mathbb{C}^2 \{0\})^n$ by

$$(t^i)_{n_i=1}^n : (z_j, w_j)_{n_j=1}^n \mapsto (t^j z_j, (\prod_{i=1}^n t^A_{ij}) w_j)_{n_j=1}^n$$

where A_{ij} are the entries of a lower triangular unipotent integer-valued matrix A.

6. The **Cohomology Ring**: $H^\ast(M_n, \mathbb{Z}) = \mathbb{Z}[x_1, x_2, \ldots, x_n] / I$ where I is generated by $x_k y_k$ with $y_k = \sum_{n_j=1}^{n} A_{jk} x_j$.

7. **Problem**: When does the cohomology ring determine the diffeomorphism type? (Choi, Masuda, Panov, Suh)
Consider **Closed Complex Manifolds** M_k for $k = 0, 1, \ldots, n$ with $M_0 = \{pt\}$ and M_k the total space of the $\mathbb{C}P^1$-bundle $\pi_k: \mathbb{P}(\mathbb{1} \oplus \mathcal{L}_k) \rightarrow M_{k-1}$ giving the sequence

$$M_n \xrightarrow{\pi_n} M_{n-1} \xrightarrow{\pi_{n-1}} \cdots M_2 \xrightarrow{\pi_2} M_1 = \mathbb{C}P^1 \xrightarrow{\pi_1} \{pt\}$$

where \mathcal{L}_k is a holomorphic line bundle on M_{k-1}.

M_k is called the stage k **Bott manifold** of the **Bott tower** of height n.

Stage 2 Bott manifolds are nothing but **Hirzebruch surfaces**.
Consider **Closed Complex Manifolds** M_k for $k = 0, 1, \ldots, n$ with $M_0 = \{pt\}$ and M_k the total space of the \mathbb{CP}^1-bundle $\pi_k: \mathbb{P}(1 \oplus L_k) \to M_{k-1}$ giving the sequence

$$M_n \xrightarrow{\pi_n} M_{n-1} \xrightarrow{\pi_{n-1}} \cdots M_2 \xrightarrow{\pi_2} M_1 = \mathbb{CP}^1 \to \{pt\}$$

where L_k is a holomorphic line bundle on M_{k-1}.

M_k is called the stage k **Bott manifold** of the **Bott tower** of height n.

Stage 2 Bott manifolds are nothing but **Hirzebruch surfaces**.

A **Bott tower** is a collection $(M_k, \pi_k, \sigma_k^0, \sigma_k^\infty)_{k=1}^n$ where σ_k^0 and σ_k^∞ are the zero and infinity sections of L_k, respectively.
Consider **Closed Complex Manifolds** M_k for $k = 0, 1, \ldots, n$ with $M_0 = \{pt\}$ and M_k the total space of the \mathbb{CP}^1-bundle $\pi_k: \mathbb{P}(\mathcal{L} \oplus L_k) \rightarrow M_{k-1}$ giving the sequence

$$M_n \xrightarrow{\pi_n} M_{n-1} \xrightarrow{\pi_{n-1}} \cdots M_2 \xrightarrow{\pi_2} M_1 = \mathbb{CP}^1 \rightarrow \{pt\}$$

where \mathcal{L}_k is a holomorphic line bundle on M_{k-1}.

M_k is called the stage k **Bott manifold** of the **Bott tower** of height n.

Stage 2 Bott manifolds are nothing but **Hirzebruch surfaces**.

A **Bott tower** is a collection $(M_k, \pi_k, \sigma_0^k, \sigma_\infty^k)_{k=1}^n$ where σ_0^k and σ_∞^k are the zero and infinity sections of \mathcal{L}_k, respectively.

The **Quotient Construction**: Any Bott tower is obtained from the **complex torus action** $(t_i)_{i=1}^n \in (\mathbb{C}^*)^n$ on $(z_j, w_j)_{j=1}^n \in (\mathbb{C}^2 \setminus \{0\})^n$ by

$$(t_i)_{i=1}^n : (z_j, w_j)_{j=1}^n \mapsto (t_jz_j, \left(\prod_{i=1}^n t_i^{A_j^i}\right)w_j)_{j=1}^n$$

where A_j^i are the entries of a **lower triangular unipotent integer-valued matrix** A.
Consider **Closed Complex Manifolds** M_k for $k = 0, 1, \ldots, n$ with $M_0 = \{pt\}$ and M_k the total space of the \mathbb{CP}^1-bundle $\pi_k : \mathbb{P}(L \oplus L_k) \to M_{k-1}$ giving the sequence

$$M_n \xrightarrow{\pi_n} M_{n-1} \xrightarrow{\pi_{n-1}} \cdots M_2 \xrightarrow{\pi_2} M_1 = \mathbb{CP}^1 \to \{pt\}$$

where L_k is a holomorphic line bundle on M_{k-1}.

1. M_k is called the stage k **Bott manifold** of the **Bott tower** of height n.
2. Stage 2 Bott manifolds are nothing but **Hirzebruch surfaces**.
3. A **Bott tower** is a collection $(M_k, \pi_k, \sigma^0_k, \sigma^\infty_k)_{k=1}^n$ where σ^0_k and σ^∞_k are the zero and infinity sections of L_k, respectively.
4. The **Quotient Construction**: Any Bott tower is obtained from the complex torus action $(t_i)_{i=1}^n \in (\mathbb{C}^*)^n$ on $(z_j, w_j)_{j=1}^n \in (\mathbb{C}^2 \setminus \{0\})^n$ by

$$\left(t_i \right)_{i=1}^n : (z_j, w_j)_{j=1}^n \mapsto \left(t_j z_j, \left(\prod_{i=1}^n t_i^{A^i_j} \right) w_j \right)_{j=1}^n$$

where A^i_j are the entries of a lower triangular unipotent integer-valued matrix A.
5. The **Cohomology Ring**: $H^*(M_n, \mathbb{Z}) = \mathbb{Z}[x_1, x_2, \ldots, x_n]/J$ where J is generated by $x_k y_k$ with $y_k = \sum_{j=1}^n A^i_j x_j$.
Consider **Closed Complex Manifolds** M_k for $k = 0, 1, \ldots, n$ with $M_0 = \{pt\}$ and M_k the total space of the \mathbb{CP}^1-bundle $\pi_k: \mathbb{P}(\mathbb{L} \oplus \mathcal{L}_k) \to M_{k-1}$ giving the sequence

$$M_n \xrightarrow{\pi_n} M_{n-1} \xrightarrow{\pi_{n-1}} \cdots M_2 \xrightarrow{\pi_2} M_1 = \mathbb{CP}^1 \to \{pt\}$$

where \mathcal{L}_k is a holomorphic line bundle on M_{k-1}.

M_k is called the stage k **Bott manifold** of the **Bott tower** of height n.

Stage 2 Bott manifolds are nothing but **Hirzebruch surfaces**.

A **Bott tower** is a collection $(M_k, \pi_k, \sigma^0_k, \sigma^\infty_k)_{k=1}^n$ where σ^0_k and σ^∞_k are the zero and infinity sections of \mathcal{L}_k, respectively.

The **Quotient Construction**: Any Bott tower is obtained from the **complex torus action**

$$(t_i)_{i=1}^n \in (\mathbb{C}^\times)^n \text{ on } (z_j, w_j)_{j=1}^n \in (\mathbb{C}^2 \setminus \{0\})^n$$

by

$$(t_i)_{i=1}^n: (z_j, w_j)_{j=1}^n \mapsto (t_j z_j, \left(\prod_{i=1}^n t_i^A_{ij}\right) w_j)_{j=1}^n$$

where A_{ij} are the entries of a **lower triangular unipotent integer-valued matrix** A.

The **Cohomology Ring**: $H^*(M_n, \mathbb{Z}) = \mathbb{Z}[x_1, x_2, \ldots, x_n]/J$ where J is generated by $x_k y_k$ with $y_k = \sum_{j=1}^n A_{kj} x_j$.

Problem: When does the cohomology ring determine the **diffeomorphism type**? (Choi, Masuda, Panov, Suh)
Bott towers form the objects g^0_{BT} of a groupoid g^{BT} (Bott tower groupoid) whose morphisms g^1_{BT} are T^n equivariant biholomorphisms.
Bott towers form the objects g^{BT}_0 of a groupoid g^{BT} (Bott tower groupoid) whose morphisms g^{BT}_1 are T^n equivariant biholomorphisms.

Elements of g^{BT}_1 give equivalences of Bott towers.
1. Bott towers form the objects G^B_0 of a groupoid G^B_T (Bott tower groupoid) whose morphisms G^B_1 are \mathbb{T}^n equivariant biholomorphisms.

2. Elements of G^B_1 give equivalences of Bott towers.

3. The set of n dimensional Bott towers G^B_0 can be identified with the set of $n \times n$ lower triangular unipotent matrices A over the integers \mathbb{Z}, hence with $\mathbb{Z}^{n(n-1)/2}$.
Bott towers form the objects $\mathcal{G}_{\text{BT}}^0$ of a groupoid \mathcal{G}_{BT} (Bott tower groupoid) whose morphisms $\mathcal{G}_{\text{BT}}^1$ are \mathbb{T}^n equivariant biholomorphisms.

Elements of $\mathcal{G}_{\text{BT}}^1$ give equivalences of Bott towers.

The set of n dimensional Bott towers $\mathcal{G}_{\text{BT}}^0$ can be identified with the set of $n \times n$ lower triangular unipotent matrices A over the integers \mathbb{Z}, hence with $\mathbb{Z}^{n(n-1)/2}$.

The isotropy subgroup $\text{Iso}(M_n(A)) \subset \mathcal{G}_{\text{BT}}^1$ at $M_n(A) \in \mathcal{G}_{\text{BT}}^0$ is $\text{Aut}(M_n(A))$.

Charles Boyer (University of New Mexico)

The Kähler Geometry of Bott Manifolds

August 25, 2014: Gauge Theories, Monopoles, Moduli Spaces and Integrable Systems

Montreal, Quebec, Canada
Bott towers form the objects \mathcal{G}_0^{BT} of a groupoid \mathcal{G}^{BT} (Bott tower groupoid) whose morphisms \mathcal{G}_1^{BT} are \mathbb{T}^n equivariant biholomorphisms.

Elements of \mathcal{G}_1^{BT} give equivalences of Bott towers.

The set of n dimensional Bott towers \mathcal{G}_0^{BT} can be identified with the set of $n \times n$ lower triangular unipotent matrices A over the integers \mathbb{Z}, hence with $\mathbb{Z}^{\frac{n(n-1)}{2}}$.

The isotropy subgroup $\text{Iso}(M_n(A)) \subset \mathcal{G}_1^{BT}$ at $M_n(A) \in \mathcal{G}_0^{BT}$ is $\text{Aut}(M_n(A))$.

The quotient stack $\mathcal{G}_0^{BT} / \mathcal{G}_1^{BT}$ is the set of Bott manifolds.
1 Bott towers form the objects \mathcal{G}_0^{BT} of a groupoid \mathcal{G}^{BT} (Bott tower groupoid) whose morphisms \mathcal{G}_1^{BT} are \mathbb{T}^n equivariant biholomorphisms.

2 Elements of \mathcal{G}_1^{BT} give equivalences of Bott towers.

3 The set of n dimensional Bott towers \mathcal{G}_0^{BT} can be identified with the set of $n \times n$ lower triangular unipotent matrices A over the integers \mathbb{Z}, hence with $\mathbb{Z}^{n(n-1)/2}$.

4 The isotropy subgroup $\text{Iso}(M_n(A)) \subset \mathcal{G}_1^{BT}$ at $M_n(A) \in \mathcal{G}_0^{BT}$ is $\text{Aut}(M_n(A))$.

5 The quotient stack $\mathcal{G}_0^{BT} / \mathcal{G}_1^{BT}$ is the set of Bott manifolds.

6 A Bott manifold is a smooth projective toric variety whose polytope P is combinatorially equivalent to an n-cube.
Bott towers form the objects \mathcal{G}^{BT}_0 of a groupoid \mathcal{G}^{BT} (Bott tower groupoid) whose morphisms \mathcal{G}^{BT}_1 are \mathbb{T}^n equivariant biholomorphisms.

Elements of \mathcal{G}^{BT}_1 give equivalences of Bott towers.

The set of n dimensional Bott towers \mathcal{G}^{BT}_0 can be identified with the set of $n \times n$ lower triangular unipotent matrices A over the integers \mathbb{Z}, hence with $\mathbb{Z}^{n(n-1)/2}$.

The isotropy subgroup $\text{Iso}(M_n(A)) \subset \mathcal{G}^{BT}_1$ at $M_n(A) \in \mathcal{G}^{BT}_0$ is $\text{Aut}(M_n(A))$.

The quotient stack $\mathcal{G}^{BT}_0 / \mathcal{G}^{BT}_1$ is the set of Bott manifolds.

A Bott manifold is a smooth projective toric variety whose polytope P is combinatorially equivalent to an n-cube.

A Bott manifold has a \mathbb{T}^n invariant compatible Kähler form ω. In fact its Kähler cone \mathcal{K} is n dimensional.
Bott towers form the objects G_{0}^{BT} of a groupoid G^{BT} (Bott tower groupoid) whose morphisms G_{1}^{BT} are \mathbb{T}^{n} equivariant biholomorphisms.

Elements of G_{1}^{BT} give equivalences of Bott towers.

The set of n dimensional Bott towers G_{0}^{BT} can be identified with the set of $n \times n$ lower triangular unipotent matrices A over the integers \mathbb{Z}, hence with $\mathbb{Z}^{\frac{n(n-1)}{2}}$.

The isotropy subgroup $Iso(M_{n}(A)) \subset G_{1}^{BT}$ at $M_{n}(A) \in G_{0}^{BT}$ is $Aut(M_{n}(A))$.

The quotient stack G_{0}^{BT}/G_{1}^{BT} is the set of Bott manifolds.

A Bott manifold is a smooth projective toric variety whose polytope P is combinatorially equivalent to an n-cube.

A Bott manifold has a \mathbb{T}^{n} invariant compatible Kähler form ω. In fact its Kähler cone \mathcal{K} is n dimensional.

\mathcal{K} is isomorphic to the ample cone \mathcal{A} of \mathbb{T}^{n} invariant ample divisors.
Given a **Bott tower** $M_n(A)$ choose a \mathbb{T}^n invariant compatible symplectic form ω. Then say that the symplectic manifold (M^{2n}, ω) is of **Bott type**.
Given a Bott tower $M_n(A)$ choose a \mathbb{T}^n invariant compatible symplectic form ω. Then say that the symplectic manifold (M^{2n}, ω) is of Bott type.

$N_B(M^{2n}, \omega)$ denotes the number of \mathbb{T}^n invariant complex structures that are compatible with (M^{2n}, ω) which is isomorphic to the number of compatible Bott manifolds.
Symplectic Structures

- Given a **Bott tower** $M_n(A)$ choose a \mathbb{T}^n invariant compatible symplectic form ω. Then say that the **symplectic manifold** (M^{2n}, ω) is of **Bott type**.
- $N_B(M^{2n}, \omega)$ denotes the number of \mathbb{T}^n invariant **complex structures** that are compatible with (M^{2n}, ω) which is isomorphic to the number of compatible **Bott manifolds**.
- The number $N_B(M^{2n}, \omega)$ is **finite** (McDuff).

Theorem (1)

Let (M^{2n}, ω) be a symplectic manifold of Bott type. Then the number of conjugacy classes of maximal tori of dimension n in the symplectomorphism group $\text{Symp}(M^{2n}, \omega)$ equals $N_B(M^{2n}, \omega)$.

INGREDIENTS OF PROOF

- To each Bott tower $M_n(A)$ compatible with (M^{2n}, ω) we can assign an n dimensional torus in $\text{Symp}(M^{2n}, \omega)$ and hence its conjugacy class.
- There is a bijection between the set of Bott manifolds compatible with (M^{2n}, ω) and the set of G_{BT1} orbits in G_{BT0} with an element compatible with ω.
- Elements of G_{BT0}/G_{BT1} have distinct complex structures.
- Then a cohomological rigidity result of Choi-Suh and Masuda-Panov gives a bijection between the set of Bott manifolds compatible with (M^{2n}, ω) and the set of \mathbb{T}^n invariant integrable complex structures J compatible with (M^{2n}, ω).
- Delzant’s Theorem \Rightarrow (M^{2n}, ω, J) is a smooth projective toric variety.
- The corresponding Delzant polytope P is combinatorially equivalent to n cube.
Symplectic Structures

- Given a **Bott tower** $M_n(A)$ choose a \mathbb{T}^n invariant compatible symplectic form ω. Then say that the **symplectic manifold** (M^{2n}, ω) is of **Bott type**.
- $N_B(M^{2n}, \omega)$ denotes the **number** of \mathbb{T}^n invariant **complex structures** that are compatible with (M^{2n}, ω) which is isomorphic to the **number** of compatible **Bott manifolds**.
- The number $N_B(M^{2n}, \omega)$ is **finite** (McDuff).

Theorem (1)

Let (M^{2n}, ω) be a symplectic manifold of Bott type. Then the **number** of conjugacy classes of **maximal tori** of dimension n in the **symplectomorphism group** $\text{Symp}(M^{2n}, \omega)$ equals $N_B(M^{2n}, \omega)$.
Symplectic Structures

- Given a Bott tower \(M_n(A) \) choose a \(\mathbb{T}^n \) invariant compatible symplectic form \(\omega \). Then say that the symplectic manifold \((M^{2n}, \omega)\) is of Bott type
- \(N_B(M^{2n}, \omega) \) denotes the number of \(\mathbb{T}^n \) invariant complex structures that are compatible with \((M^{2n}, \omega)\) which is isomorphic to the number of compatible Bott manifolds.
- The number \(N_B(M^{2n}, \omega) \) is finite (McDuff).

Theorem (1)

Let \((M^{2n}, \omega)\) be a symplectic manifold of Bott type. Then the number of conjugacy classes of maximal tori of dimension \(n\) in the symplectomorphism group \(\text{Symp}(M^{2n}, \omega)\) equals \(N_B(M^{2n}, \omega)\).

Ingredients of Proof:

- Delzant's Theorem \(\Rightarrow\) \((M^{2n}, \omega, J)\) is a smooth projective toric variety.
- The corresponding Delzant polytope \(P\) is combinatorially equivalent to \(n\) cube.
Symplectic Structures

- Given a **Bott tower** $M_n(A)$ choose a \mathbb{T}^n invariant compatible symplectic form ω. Then say that the **symplectic manifold** (M^{2n}, ω) is of **Bott type**
- $N_B(M^{2n}, \omega)$ denotes the **number** of \mathbb{T}^n invariant **complex structures** that are compatible with (M^{2n}, ω) which is isomorphic to the **number** of compatible **Bott manifolds**.
- The number $N_B(M^{2n}, \omega)$ is **finite** (McDuff).

Theorem (1)

Let (M^{2n}, ω) be a symplectic manifold of Bott type. Then the number of conjugacy classes of maximal tori of dimension n in the symplectomorphism group $\text{Symp}(M^{2n}, \omega)$ equals $N_B(M^{2n}, \omega)$.

INGREDIENTS OF PROOF:

- To each Bott tower $M_n(A)$ compatible with (M^{2n}, ω) we can assign an n dimensional **torus** in $\text{Symp}(M^{2n}, \omega)$ and hence its **conjugacy class**.
Symplectic Structures

- Given a **Bott tower** $M_n(A)$ choose a \mathbb{T}^n invariant compatible symplectic form ω. Then say that the **symplectic manifold** (M^{2n}, ω) is of **Bott type**.
- $N_B(M^{2n}, \omega)$ denotes the **number** of \mathbb{T}^n invariant **complex structures** that are compatible with (M^{2n}, ω) which is isomorphic to the **number** of compatible **Bott manifolds**.
- The number $N_B(M^{2n}, \omega)$ is **finite** (McDuff).

Theorem (1)

Let (M^{2n}, ω) be a symplectic manifold of Bott type. Then the number of conjugacy classes of maximal tori of dimension n in the symplectomorphism group $\text{Symp}(M^{2n}, \omega)$ equals $N_B(M^{2n}, \omega)$.

Ingredients of Proof:

- To each Bott tower $M_n(A)$ compatible with (M^{2n}, ω) we can assign an n dimensional **torus** in $\text{Symp}(M^{2n}, \omega)$ and hence its **conjugacy class**.
- There is a **bijection** between the set of **Bott manifolds** compatible with (M^{2n}, ω) and the set of G^B_T **orbits** in $G^{B_T}_0$ with an element compatible with ω.

Charles Boyer
(University of New Mexico)
The Kähler Geometry of Bott Manifolds
August 25, 2017
Gauge Theories, Monopoles, Moduli Spaces
A Conference honouring Jacques Hurtubise on his 60th birthday
Montreal, Quebec, Canada
Symplectic Structures

Given a **Bott tower** $M_n(A)$ choose a \mathbb{T}^n invariant compatible symplectic form ω. Then say that the **symplectic manifold** (M^{2n}, ω) is of **Bott type**

$N_B(M^{2n}, \omega)$ denotes the number of \mathbb{T}^n invariant complex structures that are compatible with (M^{2n}, ω) which is isomorphic to the number of compatible **Bott manifolds**.

The number $N_B(M^{2n}, \omega)$ is **finite** (McDuff).

Theorem (1)

Let (M^{2n}, ω) **be a symplectic manifold of Bott type.** Then the number of conjugacy classes of **maximal tori** of dimension n in the symplectomorphism group $\text{Symp}(M^{2n}, \omega)$ equals $N_B(M^{2n}, \omega)$.

INGREDIENTS OF PROOF:

- To each Bott tower $M_n(A)$ compatible with (M^{2n}, ω) we can assign an n dimensional **torus** in $\text{Symp}(M^{2n}, \omega)$ and hence its **conjugacy class**.
- There is a **bijection** between the set of **Bott manifolds** compatible with (M^{2n}, ω) and the set of g_{BT}^1 **orbits** in g_{BT}^0 with an element compatible with ω.
- Elements of g_{BT}^0 / g_{BT}^1 have **distinct complex structures**.
Symplectic Structures

Given a **Bott tower** $M_n(A)$ choose a \mathbb{T}^n invariant compatible symplectic form ω. Then say that the **symplectic manifold** (M^{2n}, ω) is of **Bott type**

$N_B(M^{2n}, \omega)$ denotes the **number** of \mathbb{T}^n invariant **complex structures** that are compatible with (M^{2n}, ω) which is isomorphic to the **number** of compatible **Bott manifolds**.

The number $N_B(M^{2n}, \omega)$ is **finite** (McDuff).

Theorem (1)

Let (M^{2n}, ω) be a symplectic manifold of **Bott type**. Then the **number** of conjugacy classes of **maximal tori** of dimension n in the **symplectomorphism group** $\text{Symp}(M^{2n}, \omega)$ equals $N_B(M^{2n}, \omega)$.

INGREDIENTS OF PROOF:

- To each Bott tower $M_n(A)$ compatible with (M^{2n}, ω) we can assign an n dimensional **torus** in $\text{Symp}(M^{2n}, \omega)$ and hence its **conjugacy class**.
- There is a **bijection** between the set of **Bott manifolds** compatible with (M^{2n}, ω) and the set of G_1^{BT} **orbits** in G_0^{BT} with an element compatible with ω.
- Elements of G_0^{BT} / G_1^{BT} have **distinct complex structures**.
- Then a **cohomological rigidity** result of Choi-Suh and Masuda-Panov gives a **bijection** between the set of **Bott manifolds compatible** with (M^{2n}, ω) and the set of T^n invariant integrable **complex structures** J compatible with (M^{2n}, ω).
Symplectic Structures

- Given a Bott tower $M_n(A)$ choose a \mathbb{T}^n invariant compatible symplectic form ω. Then say that the symplectic manifold (M^{2n}, ω) is of Bott type.
- $N_B(M^{2n}, \omega)$ denotes the number of \mathbb{T}^n invariant complex structures that are compatible with (M^{2n}, ω) which is isomorphic to the number of compatible Bott manifolds.
- The number $N_B(M^{2n}, \omega)$ is finite (McDuff).

Theorem (1)

Let (M^{2n}, ω) be a symplectic manifold of Bott type. Then the number of conjugacy classes of maximal tori of dimension n in the symplectomorphism group $\text{Symp}(M^{2n}, \omega)$ equals $N_B(M^{2n}, \omega)$.

INGREDIENTS OF PROOF:

- To each Bott tower $M_n(A)$ compatible with (M^{2n}, ω) we can assign an n dimensional torus in $\text{Symp}(M^{2n}, \omega)$ and hence its conjugacy class.
- There is a bijection between the set of Bott manifolds compatible with (M^{2n}, ω) and the set of g_1^{BT} orbits in g_0^{BT} with an element compatible with ω.
- Elements of g_0^{BT}/g_1^{BT} have distinct complex structures.
- Then a cohomological rigidity result of Choi-Suh and Masuda-Panov gives a bijection between the set of Bott manifolds compatible with (M^{2n}, ω) and the set of T^n invariant integrable complex structures J compatible with (M^{2n}, ω).
- Delzant’s Theorem $\Rightarrow (M^{2n}, \omega, J)$ is a smooth projective toric variety.
Symplectic Structures

Given a **Bott tower** $M_n(A)$ choose a \mathbb{T}^n invariant compatible symplectic form ω. Then say that the **symplectic manifold** (M^{2n}, ω) is of **Bott type**.

$N_B(M^{2n}, \omega)$ denotes the number of \mathbb{T}^n invariant complex structures that are compatible with (M^{2n}, ω) which is isomorphic to the number of compatible Bott manifolds.

The number $N_B(M^{2n}, \omega)$ is **finite** (McDuff).

Theorem (1)

Let (M^{2n}, ω) be a symplectic manifold of Bott type. Then the number of conjugacy classes of maximal tori of dimension n in the symplectomorphism group $\text{Symp}(M^{2n}, \omega)$ equals $N_B(M^{2n}, \omega)$.

INGREDIENTS OF PROOF:

- To each Bott tower $M_n(A)$ compatible with (M^{2n}, ω) we can assign an n dimensional torus in $\text{Symp}(M^{2n}, \omega)$ and hence its conjugacy class.
- There is a bijection between the set of Bott manifolds compatible with (M^{2n}, ω) and the set of G^{BT}_1 orbits in G^{BT}_0 with an element compatible with ω.
- Elements of G^{BT}_0/G^{BT}_1 have distinct complex structures.
- Then a cohomological rigidity result of Choi-Suh and Masuda-Panov gives a bijection between the set of Bott manifolds compatible with (M^{2n}, ω) and the set of T^n invariant integrable complex structures J compatible with (M^{2n}, ω).
- Delzant’s Theorem $\Rightarrow (M^{2n}, \omega, J)$ is a smooth projective toric variety.
- The corresponding Delzant polytope P is combinatorially equivalent to n cube.

The Kähler Geometry of Bott Manifolds

August 25, 2017Gauge Theories, Monopoles, Moduli SpacesA Conference honouring Jacques Hurtubise on his 60th birthdayMontreal, Quebec, Canada
Symplectic Structures

- Given a **Bott tower** $M_n(A)$ choose a \mathbb{T}^n invariant compatible symplectic form ω. Then say that the **symplectic manifold** (M^{2n}, ω) is of **Bott type**
- $N_B(M^{2n}, \omega)$ denotes the **number** of \mathbb{T}^n invariant complex structures that are compatible with (M^{2n}, ω) which is isomorphic to the **number** of compatible **Bott manifolds**.
- The number $N_B(M^{2n}, \omega)$ is **finite** (McDuff).

Theorem (1)

Let (M^{2n}, ω) be a symplectic manifold of Bott type. Then the **number** of conjugacy classes of maximal tori of dimension n in the symplectomorphism group $\text{Symp}(M^{2n}, \omega)$ equals $N_B(M^{2n}, \omega)$.

INGREDIENTS OF PROOF:

- To each Bott tower $M_n(A)$ compatible with (M^{2n}, ω) we can assign an n dimensional torus in $\text{Symp}(M^{2n}, \omega)$ and hence its **conjugacy class**.
- There is a **bijection** between the set of **Bott manifolds** compatible with (M^{2n}, ω) and the set of G_1^{BT} orbits in G_0^{BT} with an element compatible with ω.
- Elements of G_0^{BT} / G_1^{BT} have **distinct complex structures**.
- Then a **cohomological rigidity** result of Choi-Suh and Masuda-Panov gives a **bijection** between the set of Bott manifolds compatible with (M^{2n}, ω) and the set of T^n invariant integrable complex structures J compatible with (M^{2n}, ω).
- Delzant’s Theorem $\Rightarrow (M^{2n}, \omega, J)$ is a smooth projective toric variety.
- The corresponding Delzant polytope P is combinatorially equivalent to n cube.
- **smooth projective toric varieties** $\{M_\mathcal{F}\} \approx \{\mathcal{F}_M\}$ smooth normal fans \mathcal{F} over $\{P\}$.
An Example

Karshon proved the Theorem for Hirzebruch surface (stage 2 Bott manifolds) and gave a formula for $N_B(M^4, \omega)$.
Karshon proved the Theorem for Hirzebruch surface (stage 2 Bott manifolds) and gave a formula for $N_B(M^4, \omega)$.

Example: **Stage 3 Bott manifolds** diffeomorphic to $(S^2)^3 = S^2 \times S^2 \times S^2$ with symplectic form ω_{k_1,k_2,k_3} with $k_i \in \mathbb{R}^+$ and ordered $0 < k_3 \leq k_2 \leq k_1$.
Karshon proved the Theorem for Hirzebruch surface (stage 2 Bott manifolds) and gave a formula for $N_B(M^4, \omega)$.

Example: Stage 3 Bott manifolds diffeomorphic to $(S^2)^3 = S^2 \times S^2 \times S^2$ with symplectic form ω_{k_1,k_2,k_3} with $k_i \in \mathbb{R}^+$ and ordered $0 < k_3 \leq k_2 \leq k_1$.

$((S^2)^3, \omega_{k_1,k_2,k_3})$ is Kähler with respect to the Bott manifold $M_3(2a, 2b, 2c)$ if and only if one of the following two cases hold:
Karshon proved the Theorem for Hirzebruch surface (stage 2 Bott manifolds) and gave a formula for \(N_B(M^4, \omega) \).

Example: **Stage 3 Bott manifolds** diffeomorphic to \((S^2)^3 = S^2 \times S^2 \times S^2\) with symplectic form \(\omega_{k_1, k_2, k_3}\) with \(k_i \in \mathbb{R}^+\) and ordered \(0 < k_3 \leq k_2 \leq k_1\).

\(((S^2)^3, \omega_{k_1, k_2, k_3})\) is Kähler with respect to the Bott manifold \(M_3(2a, 2b, 2c)\) if and only if one of the following two cases hold:

1. \(c = 0\) with \(k_1 - |a|k_2 - |b|k_3 > 0\), \(k_2 > 0\), \(k_3 > 0\).
Karshon proved the Theorem for Hirzebruch surface (stage 2 Bott manifolds) and gave a formula for \(N_B(M^4, \omega) \).

Example: **Stage 3 Bott manifolds** diffeomorphic to \((S^2)^3 = S^2 \times S^2 \times S^2\) with symplectic form \(\omega_{k_1,k_2,k_3} \) with \(k_i \in \mathbb{R}^+ \) and ordered \(0 < k_3 \leq k_2 \leq k_1 \).

\(((S^2)^3, \omega_{k_1,k_2,k_3})\) is Kähler with respect to the **Bott manifold** \(M_3(2a, 2b, 2c) \) if and only if one of the following two cases hold:

1. \(c = 0 \) with \(k_1 - |a|k_2 - |b|k_3 > 0, \ k_2 > 0, \ k_3 > 0 \).
2. \(c \neq 0 \) and \(b = ac \) with \(k_1 - |a|(k_2 - |c|k_3) > 0, \ k_2 - |c|k_3 > 0, \ k_3 > 0 \).
Karshon proved the Theorem for Hirzebruch surface (stage 2 Bott manifolds) and gave a formula for $N_B(M^4, \omega)$.

Example: **Stage 3 Bott manifolds** diffeomorphic to $(S^2)^3 = S^2 \times S^2 \times S^2$ with symplectic form ω_{k_1,k_2,k_3} with $k_i \in \mathbb{R}^+$ and ordered $0 < k_3 \leq k_2 \leq k_1$.

$((S^2)^3,\omega_{k_1,k_2,k_3})$ is Kähler with respect to the Bott manifold $M_3(2a,2b,2c)$ if and only if one of the following two cases hold:

1. $c = 0$ with $k_1 - |a|k_2 - |b|k_3 > 0$, $k_2 > 0$, $k_3 > 0$.
2. $c \neq 0$ and $b = ac$ with $k_1 - |a|(k_2 - |c|k_3) > 0$, $k_2 - |c|k_3 > 0$, $k_3 > 0$.

Then $N_B(M^6, \omega_{k_1,k_2,k_3}) = \sum_{j=0}^{b_{\text{max}}} \left\lfloor \frac{k_1-jk_3}{k_2} \right\rfloor + \sum_{j=1}^{c_{\text{max}}} \left\lfloor \frac{k_1}{k_2-jk_3} \right\rfloor$ where $\left\lfloor \frac{a}{b} \right\rfloor$ is least integer greater than or equal to $\frac{a}{b}$.
Calabi’s Extremal Kähler Metrics

- **Calabi Energy functional** \(E(g) = \int_M s_g^2 d\mu_g \), where \(s_g \) is the scalar curvature of a Kähler metric \(g \) with Kähler form \(\omega \) on a compact complex manifold \(M \).
Calabi’s Extremal Kähler Metrics

- Calabi **Energy functional** $E(g) = \int_M s_g^2 d\mu_g$, where s_g is the scalar curvature of a Kähler metric g with Kähler form ω on a compact complex manifold M.
- **Variation** $\omega \mapsto \omega + \partial \bar{\partial} \phi$ in the **space of Kähler metrics** with the same cohomology class $[\omega]$.
Calabi’s Extremal Kähler Metrics

- **Calabi Energy functional** $E(g) = \int_M s_g^2 d\mu_g$, where s_g is the scalar curvature of a Kähler metric g with Kähler form ω on a compact complex manifold M.

- **Variation** $\omega \mapsto \omega + \partial \bar{\partial} \phi$ in the space of Kähler metrics with the same cohomology class $[\omega]$.

- A Kähler metric g is a critical point of $E(g)$ if and only if the $(1, 0)$ gradient of s_g is holomorphic. Such a metric is called Extremal.
Calabi’s Extremal Kähler Metrics

- **Calabi Energy functional** $E(g) = \int_M s_g^2 d\mu_g$, where s_g is the scalar curvature of a Kähler metric g with Kähler form ω on a compact complex manifold M.

- **Variation** $\omega \mapsto \omega + \partial \bar{\partial} \phi$ in the **space of Kähler metrics** with the same cohomology class $[\omega]$.

- A Kähler metric g is a **critical point** of $E(g)$ if and only if the $(1,0)$ gradient of s_g is **holomorphic**. Such a metric is called **Extremal**.

- Clearly a Kähler metric of **constant scalar curvature** is extremal. In particular, **Kähler-Einstein** metrics are extremal.
Calabi’s Extremal Kähler Metrics

- **Calabi Energy functional** \(E(g) = \int_M s_g^2 \, d\mu_g \), where \(s_g \) is the scalar curvature of a Kähler metric \(g \) with Kähler form \(\omega \) on a compact complex manifold \(M \).

- **Variation** \(\omega \mapsto \omega + \partial \bar{\partial} \phi \) in the space of Kähler metrics with the same cohomology class \([\omega]\).

- A Kähler metric \(g \) is a critical point of \(E(g) \) if and only if the \((1,0)\) gradient of \(s_g \) is holomorphic. Such a metric is called Extremal.

- Clearly a Kähler metric of constant scalar curvature is extremal. In particular, Kähler-Einstein metrics are extremal.

- **Calabi**: Critical points have maximal symmetry.
Calabi’s Extremal Kähler Metrics

- **Calabi Energy functional** \(E(g) = \int_M s_g^2 d\mu_g \), where \(s_g \) is the scalar curvature of a Kähler metric \(g \) with Kähler form \(\omega \) on a compact complex manifold \(M \).
- **Variation** \(\omega \mapsto \omega + \partial \bar{\partial} \phi \) in the space of Kähler metrics with the same cohomology class \([\omega] \).
- A Kähler metric \(g \) is a critical point of \(E(g) \) if and only if the \((1,0)\) gradient of \(s_g \) is holomorphic. Such a metric is called Extremal.
- Clearly a Kähler metric of constant scalar curvature is extremal. In particular, Kähler-Einstein metrics are extremal.
- **Calabi**: Critical points have maximal symmetry.
- **Lichnerowicz-Matushima**: If a Kähler metric \(g \) has constant scalar curvature, then \(\text{Aut}(M)_0 \) is reductive.
Calabi’s Extremal Kähler Metrics

- **Calabi Energy functional** $E(g) = \int_M s_g^2 d\mu_g$, where s_g is the scalar curvature of a Kähler metric g with Kähler form ω on a compact complex manifold M.
- **Variation** $\omega \mapsto \omega + \partial \bar{\partial} \phi$ in the space of Kähler metrics with the same cohomology class $[\omega]$.
- A Kähler metric g is a critical point of $E(g)$ if and only if the $(1, 0)$ gradient of s_g is holomorphic. Such a metric is called Extremal.
- Clearly a Kähler metric of constant scalar curvature is extremal. In particular, Kähler-Einstein metrics are extremal.
- **Calabi**: Critical points have maximal symmetry.
- **Lichnerowicz-Matushima**: If a Kähler metric g has constant scalar curvature, then $\text{Aut}(M)_0$ is reductive.
- **Demazure**: For smooth toric varieties $M_\mathcal{F}$ with fan \mathcal{F} the connected component of the group of automorphisms $\text{Aut}(M_\mathcal{F})_0$ is generated as a group by the maximal torus T^c and the system of unipotent 1-parameter subgroups $\{\lambda_\sigma\}_{\sigma \in \mathcal{F}_1}$ dual to the family of roots $R(\mathcal{F})$.
Calabi’s Extremal Kähler Metrics

- **Calabi Energy functional** $E(g) = \int_M s_g^2 d\mu_g$, where s_g is the scalar curvature of a Kähler metric g with Kähler form ω on a compact complex manifold M.

- **Variation** $\omega \mapsto \omega + \partial \bar{\partial} \phi$ in the space of Kähler metrics with the same cohomology class $[\omega]$.

- A Kähler metric g is a critical point of $E(g)$ if and only if the $(1,0)$ gradient of s_g is holomorphic. Such a metric is called Extremal.

- Clearly a Kähler metric of constant scalar curvature is extremal. In particular, Kähler-Einstein metrics are extremal.

- **Calabi**: Critical points have maximal symmetry.

- **Lichnerowicz-Matushima**: If a Kähler metric g has constant scalar curvature, then $\text{Aut}(M)_0$ is reductive.

- **Demazure**: For smooth toric varieties M_F with fan \mathcal{F} the connected component of the group of automorphisms $\text{Aut}(M_F)_0$ is generated as a group by the maximal torus \mathbb{T}^c and the system of unipotent 1-parameter subgroups $\{\lambda_\sigma\}_{\sigma \in \mathcal{F}_1}$ dual to the family of roots $R(\mathcal{F})$.

- $\text{Aut}(X_F)_0$ is reductive if and only if and only if $R(\mathcal{F}) = -R(\mathcal{F})$.
The Generalized Calabi Construction

Ingredients

- Given a **principal** T^ℓ bundle $\mathcal{G} \rightarrow \mathbb{C}P^1$ construct the associated fiber bundle $M = \mathcal{G} \times_{T^\ell} V$ with **fiber** V where V is a compact **toric Kähler manifold** of complex dimension ℓ.

- The **Moment map** $\mathcal{Z} : V \rightarrow t^{\ast} \ell$ with image the Delzant polytope P in the dual of the Lie algebra $t^{\ast} \ell$.

- A principal connection on G with curvature $\omega_{FS} \otimes p \in C^\infty(\Sigma, \bigwedge^1, 1 \otimes t^{\ell})$ where ω_{FS} is the Fubini-Study form on $\mathbb{C}P^1$ and $p \in t^{\ell}$.

- A constant $\hat{c} \in \mathbb{R}$ such that the $(1,1)$-form $\hat{c} \omega_{\Sigma} + \langle v, \omega_{\Sigma} \otimes p \rangle$ is positive for $v \in P$.

- The **generalized Calabi data** on $\mathring{M} = \mathcal{G} \times_{T^\ell} \mathring{P}$ is $g = (\hat{c} + \langle p, \mathcal{Z} \rangle) g_{\mathbb{C}P^1} + \langle d\mathcal{Z}, G, d\mathcal{Z} \rangle + \langle \theta, H, \theta \rangle \omega = (\hat{c} + \langle p, \mathcal{Z} \rangle) \omega_{\mathbb{C}P^1} + \langle d\mathcal{Z} \wedge \theta \rangle d\theta = \omega_{\mathbb{C}P^1} \otimes p$, where $G = \text{Hess}(U) = H - 1$, U is the symplectic potential of the chosen toric Kähler structure g_V on V, and $\langle \cdot, \cdot, \cdot \rangle$ denotes the pointwise contraction $g^{\ast} \times S^2 t^{\ell} \times t^{\ast} \ell \rightarrow \mathbb{R}$ or the dual contraction.

- Get compatible Kähler metrics on M and

Lemma (Apostolov, Calderbank, Gauduchon, Tønnesen-Friedmann)

If V admits an extremal toric Kähler metric g_V, then M admits compatible extremal Kähler metrics (at least in some Kähler classes).
The Generalized Calabi Construction

Ingredients

- Given a **principal** T^ℓ bundle $\mathcal{G} \to \mathbb{C}P^1$ construct the associated fiber bundle $M = \mathcal{G} \times_{T^\ell} V$ with **fiber** V where V is a compact **toric Kähler manifold** of complex dimension ℓ.
- The **Moment map** $z : V \to t^*_\ell$ with image the **Delzant polytope** P in the dual of the Lie algebra t_ℓ.
The Generalized Calabi Construction

Ingredients

- Given a principal T^ℓ bundle $G \rightarrow \mathbb{CP}^1$ construct the associated fiber bundle $M = G \times_{T^\ell} V$ with fiber V where V is a compact toric Kähler manifold of complex dimension ℓ.
- The Moment map $z : V \rightarrow t^*_\ell$ with image the Delzant polytope P in the dual of the Lie algebra t^ℓ.
- A principal connection on G with curvature $\omega_{FS} \otimes p \in C^\infty (\Sigma, \wedge^{1,1} \otimes t^\ell)$ where ω_{FS} is the Fubini-Study form on \mathbb{CP}^1 and $p \in t^\ell$.

A constant $\hat{c} \in \mathbb{R}$ such that the $(1,1)$-form $\hat{c} \omega_{\Sigma} + \langle v, \omega_{\Sigma} \otimes p \rangle$ is positive for $v \in P$.

The generalized Calabi data on $\hat{M} = G \times_{T^\ell} z^{-1}(\hat{P})$ is $g = (\hat{c} + \langle p, z \rangle) g_{\mathbb{CP}^1} + \langle dz, Gdz \rangle + \langle \theta, H\theta \rangle$

$\omega = (\hat{c} + \langle p, z \rangle) \omega_{\mathbb{CP}^1} \otimes p$, where $G = \text{Hess} (U) = H^{-1}$.
The Generalized Calabi Construction

Ingredients

- Given a **principal** \mathbb{T}^ℓ bundle $\mathcal{G} \longrightarrow \mathbb{CP}^1$ construct the associated fiber bundle $M = \mathcal{G} \times_{\mathbb{T}^\ell} V$ with **fiber** V where V is a compact **toric Kähler manifold** of complex dimension ℓ.

- The **Moment map** $z : V \longrightarrow t^*_\ell$ with image the **Delzant polytope** P in the dual of the Lie algebra t^*_ℓ.

- A principal connection on \mathcal{G} with curvature $\omega_{FS} \otimes p \in C^\infty(\Sigma, \wedge^{1,1} \otimes t^*_\ell)$ where ω_{FS} is the **Fubini-Study** form on \mathbb{CP}^1 and $p \in t^*_\ell$.

- A constant $\hat{c} \in \mathbb{R}$ such that the $(1, 1)$-form $\hat{c} \omega_\Sigma + \langle v, \omega_\Sigma \otimes p \rangle$ is positive for $v \in P$.
The Generalized Calabi Construction

Ingredients

- Given a principal \mathbb{T}^ℓ bundle $\mathcal{G} \rightarrow \mathbb{CP}^1$ construct the associated fiber bundle $M = \mathcal{G} \times_{\mathbb{T}^\ell} V$ with fiber V where V is a compact *toric Kähler manifold* of complex dimension ℓ.
- The **Moment map** $z : V \rightarrow t_\ell^*$ with image the **Delzant polytope** P in the dual of the Lie algebra t_ℓ.
- A principal connection on \mathcal{G} with curvature $\omega_{FS} \otimes p \in C^\infty(\Sigma, \wedge^{1,1} \otimes t_\ell)$ where ω_{FS} is the **Fubini-Study** form on \mathbb{CP}^1 and $p \in t_\ell$.
- A constant $\hat{c} \in \mathbb{R}$ such that the $(1,1)$-form $\hat{c} \omega_\Sigma + \langle v, \omega_\Sigma \otimes p \rangle$ is positive for $v \in P$.
- The **generalized Calabi data** on $\hat{M} = \mathcal{G} \times_{\mathbb{T}^\ell} z^{-1}(\hat{P})$ is

$$
\begin{align*}
g &= (\hat{c} + \langle p, z \rangle) g_{\mathbb{CP}^1} + \langle dz, G, dz \rangle + \langle \theta, H, \theta \rangle \\
\omega &= (\hat{c} + \langle p, z \rangle) \omega_{\mathbb{CP}^1} + \langle dz \wedge \theta \rangle \\
d\theta &= \omega_{\mathbb{CP}^1} \otimes p,
\end{align*}
$$

where $G = \text{Hess}(U) = H^{-1}$, U is the **symplectic potential** of the chosen *toric Kähler* structure g_V on V, and $\langle \cdot, \cdot, \cdot \rangle$ denotes the pointwise **contraction** $g^* \times S^2 t_\ell \times t_\ell^* \rightarrow \mathbb{R}$ or the dual contraction.
The Generalized Calabi Construction

Ingredients

- Given a principal T^ℓ bundle $\mathcal{G} \rightarrow \mathbb{C}P^1$ construct the associated fiber bundle $M = \mathcal{G} \times_{T^\ell} V$ with fiber V where V is a compact toric Kähler manifold of complex dimension ℓ.

- The **Moment map** $z : V \rightarrow t^*_\ell$ with image the **Delzant polytope** P in the dual of the Lie algebra t_ℓ.

- A principal connection on \mathcal{G} with curvature $\omega_{FS} \otimes p \in C^\infty(\Sigma, \wedge^{1,1} \otimes t_\ell)$ where ω_{FS} is the **Fubini-Study** form on $\mathbb{C}P^1$ and $p \in t_\ell$.

- A constant $\hat{c} \in \mathbb{R}$ such that the $(1,1)$-form $\hat{c} \omega + \langle v, \omega \otimes p \rangle$ is positive for $v \in P$.

- The **generalized Calabi data** on $\hat{M} = \mathcal{G} \times_{T^\ell} z^{-1}(\hat{P})$ is

\[

g = (\hat{c} + \langle p, z \rangle) g_{\mathbb{C}P^1} + \langle dz, G, dz \rangle + \langle \theta, H, \theta \rangle \\
\omega = (\hat{c} + \langle p, z \rangle) \omega_{\mathbb{C}P^1} + \langle dz \wedge \theta \rangle \\
d\theta = \omega_{\mathbb{C}P^1} \otimes p,
\]

where $G = \text{Hess}(U) = H^{-1}$, U is the **symplectic potential** of the chosen toric Kähler structure g_V on V, and $\langle \cdot, \cdot, \cdot \rangle$ denotes the pointwise **contraction** $g t^* \times S^2 t_\ell \times t^*_\ell \rightarrow \mathbb{R}$ or the dual contraction.

- Get **compatible Kähler metrics** on M and
The Generalized Calabi Construction

Ingredients

- Given a principal \mathbb{T}^ℓ bundle $\mathfrak{g} \rightarrow \mathbb{C}P^1$ construct the associated fiber bundle $M = \mathfrak{g} \times_{\mathbb{T}^\ell} V$ with fiber V where V is a compact toric Kähler manifold of complex dimension ℓ.
- The Moment map $z : V \rightarrow t^*_\ell$ with image the Delzant polytope P in the dual of the Lie algebra t^ℓ.
- A principal connection on \mathfrak{g} with curvature $\omega_{FS} \otimes p \in C^\infty(\Sigma, \wedge^{1,1} \otimes t^\ell)$ where ω_{FS} is the Fubini-Study form on $\mathbb{C}P^1$ and $p \in t^\ell$.
- A constant $\hat{c} \in \mathbb{R}$ such that the $(1,1)$-form $\hat{c}\omega_\Sigma + \langle v, \omega_\Sigma \otimes p \rangle$ is positive for $v \in P$.
- The generalized Calabi data on $\check{M} = \mathfrak{g} \times_{\mathbb{T}^\ell} z^{-1}(\check{P})$ is
 \[
 g = (\hat{c} + \langle p, z \rangle) g_{\mathbb{C}P^1} + \langle dz, G, dz \rangle + \langle \theta, H, \theta \rangle \\
 \omega = (\hat{c} + \langle p, z \rangle) \omega_{\mathbb{C}P^1} + \langle dz \wedge \theta \rangle \\
 d\theta = \omega_{\mathbb{C}P^1} \otimes p,
 \]
 where $G = \text{Hess}(U) = H^{-1}$, U is the symplectic potential of the chosen toric Kähler structure g_V on V, and $\langle \cdot, \cdot, \cdot \rangle$ denotes the pointwise contraction $g t^* \times S^2 t^\ell \times t^*_\ell \rightarrow \mathbb{R}$ or the dual contraction.
- Get compatible Kähler metrics on M and

Lemma (Apostolov, Calderbank, Gauduchon, Tønnesen-Friedmann)

If V admits an extremal toric Kähler metric g_V, then M admits compatible extremal Kähler metrics (at least in some Kähler classes).
Theorem (2)

Any Bott manifold M_n admits a toric extremal Kähler metric. Alternatively, the extremal Kähler cone $\mathcal{E}(M_n)$ is a non-empty open cone in the Kähler cone $\mathcal{K}(M_n)$.
Theorem (2)

Any Bott manifold M_n admits a toric extremal Kähler metric. Alternatively, the extremal Kähler cone $\mathcal{E}(M_n)$ is a non-empty open cone in the Kähler cone $\mathcal{K}(M_n)$.

The proof is induction using the Lemma of Apostolov, Calderbank, Gauduchon, Tønnesen-Friedmann.
Theorem (2)

Any Bott manifold M_n admits a toric extremal Kähler metric. Alternatively, the extremal Kähler cone $\mathcal{E}(M_n)$ is a non-empty open cone in the Kähler cone $\mathcal{K}(M_n)$.

- The proof is induction using the Lemma of Apostolov, Calderbank, Gauduchon, Tønnesen-Friedmann.
- The last statement uses the well known LeBrun-Simanca rigidity result.
Theorem (2)

Any Bott manifold M_n admits a toric extremal Kähler metric. Alternatively, the extremal Kähler cone $\mathcal{E}(M_n)$ is a non-empty open cone in the Kähler cone $\mathcal{K}(M_n)$.

- The proof is **induction** using the **Lemma** of Apostolov, Calderbank, Gauduchon, Tønnesen-Friedmann.
- The last statement uses the well known LeBrun-Simanca **rigidity** result.

Problem

Describe the extremal Kähler cone $\mathcal{E}(M_n)$. In particular, when is $\mathcal{E}(M_n) = \mathcal{K}(M_n)$?
Theorem (2)

Any Bott manifold M_n admits a toric extremal Kähler metric. Alternatively, the extremal Kähler cone $\mathcal{E}(M_n)$ is a non-empty open cone in the Kähler cone $\mathcal{K}(M_n)$.

- The proof is induction using the Lemma of Apostolov, Calderbank, Gauduchon, Tønnesen-Friedmann.
- The last statement uses the well known LeBrun-Simanca rigidity result.

Problem

Describe the extremal Kähler cone $\mathcal{E}(M_n)$. In particular, when is $\mathcal{E}(M_n) = \mathcal{K}(M_n)$?

- We can describe the Kähler cone $\mathcal{K}(M_n)$ of a Bott manifold M_n. It is often, but not always, the first orthant in \mathbb{R}^n.
Extremal Kähler Metrics on Bott Manifolds

Theorem (2)

Any Bott manifold M_n *admits a toric extremal Kähler metric*. Alternatively, the extremal Kähler cone $\mathcal{E}(M_n)$ is a non-empty open cone in the Kähler cone $\mathcal{K}(M_n)$.

- The proof is *induction* using the *Lemma* of Apostolov, Calderbank, Gauduchon, Tønnesen-Friedmann.
- The last statement uses the well known LeBrun-Simanca *rigidity* result.

Problem

Describe the extremal Kähler cone $\mathcal{E}(M_n)$. In particular, when is $\mathcal{E}(M_n) = \mathcal{K}(M_n)$?

- We can describe the *Kähler cone* $\mathcal{K}(M_n)$ of a Bott manifold M_n. It is often, but not always, the *first orthant* in \mathbb{R}^n.
- For a Bott tower $M_n(A)$ the connected component $\text{Aut}(M_n(A))_0$ is the connected component of the isotropy subgroup of G_1^{BT} at $M_n(A)$.
Extremal Kähler Metrics on Bott Manifolds

Theorem (2)

Any Bott manifold M_n admits a toric extremal Kähler metric. Alternatively, the extremal Kähler cone $\mathcal{E}(M_n)$ is a non-empty open cone in the Kähler cone $\mathcal{K}(M_n)$.

- The proof is induction using the Lemma of Apostolov, Calderbank, Gauduchon, Tønnesen-Friedmann.
- The last statement uses the well known LeBrun-Simanca rigidity result.

Problem

Describe the extremal Kähler cone $\mathcal{E}(M_n)$. In particular, when is $\mathcal{E}(M_n) = \mathcal{K}(M_n)$?

- We can describe the Kähler cone $\mathcal{K}(M_n)$ of a Bott manifold M_n. It is often, but not always, the first orthant in \mathbb{R}^n.
- For a Bott tower $M_n(A)$ the connected component $\mathcal{A}_{\text{Aut}}(M_n(A))_0$ is the connected component of the isotropy subgroup of G_{1}^{BT} at $M_n(A)$.

Theorem (3)

Let $M_n(A)$ be a Bott tower. If the elements below the diagonal of any row of the lower triangular unipotent matrix A all have the same sign, then $M_n(A)$ does not admit a Kähler metric with constant scalar curvature. In particular, if $A^1_2 \neq 0$ then $M_n(A)$ does not admit a Kähler metric with constant scalar curvature.
Extremal Kähler Metrics on Bott Manifolds

Theorem (2)

Any Bott manifold M_n admits a toric extremal Kähler metric. Alternatively, the extremal Kähler cone $\mathcal{E}(M_n)$ is a non-empty open cone in the Kähler cone $\mathcal{K}(M_n)$.

- The proof is induction using the Lemma of Apostolov, Calderbank, Gauduchon, Tønnesen-Friedmann.
- The last statement uses the well known LeBrun-Simanca rigidity result.

Problem

Describe the extremal Kähler cone $\mathcal{E}(M_n)$. In particular, when is $\mathcal{E}(M_n) = \mathcal{K}(M_n)$?

- We can describe the Kähler cone $\mathcal{K}(M_n)$ of a Bott manifold M_n. It is often, but not always, the first orthant in \mathbb{R}^n.
- For a Bott tower $M_n(A)$ the connected component $\mathfrak{Aut}(M_n(A))_0$ is the connected component of the isotropy subgroup of \mathfrak{g}^{BT} at $M_n(A)$.

Theorem (3)

Let $M_n(A)$ be a Bott tower. If the elements below the diagonal of any row of the lower triangular unipotent matrix A all have the same sign, then $M_n(A)$ does not admit a Kähler metric with constant scalar curvature. In particular, if $A_2^1 \neq 0$ then $M_n(A)$ does not admit a Kähler metric with constant scalar curvature.

- The proof essentially follows from Demazure’s Theorem by computing possible root vectors.
Following Choi-Suh we let \(t \) denote the number of non-trivial topological fibrations in the defining sequence of a Bott tower \(M_n(A) \). It is well defined and \(t = 0, 1, \ldots, n - 1 \).
Following Choi-Suh we let \(t \) denote the number of non-trivial topological fibrations in the defining sequence of a Bott tower \(M_n(A) \). It is well defined and \(t = 0, 1, \ldots, n - 1 \).

A \(t \)-twist Bott manifold is diffeo to a bundle over \((S^2)^{n-t} \) with fiber a stage \(t \) Bott manifold.
The Twist of Bott Manifolds

- Following Choi-Suh we let t denote the number of non-trivial topological fibrations in the defining sequence of a Bott tower $M_n(A)$. It is well defined and $t = 0, 1, \ldots, n - 1$.
- A t-twist Bott manifold is diffeo to a bundle over $(S^2)^{n-t}$ with fiber a stage t Bott manifold.

Theorem

Let $M_n(A)$ be a Bott tower with twist t and matrix A of the form

$$A = \begin{pmatrix}
\tilde{A} & 0 & \cdots & 0 \\
A^1_{n-t+1} & 1 & \cdots & \vdots \\
\vdots & \vdots & \ddots & 0 \\
A^1_n & A^{n-t+1}_n & \cdots & 1
\end{pmatrix}, \quad A^i_j \in \mathbb{Z},$$

where $\tilde{A} \neq \mathbb{1}_n$ has 0-twist. Then $M_n(A)$ does not admit a compatible Kähler metric with constant scalar curvature. In particular, if $t = 0$ and the Bott manifold $M_n(A)$ has a compatible Kähler metric with constant scalar curvature, then it is the product $(\mathbb{C}P^1)^n$.

The Kähler Geometry of Bott Manifolds
The Twist of Bott Manifolds

- Following Choi-Suh we let t denote the number of non-trivial topological fibrations in the defining sequence of a Bott tower $M_n(A)$. It is well defined and $t = 0, 1, \ldots, n - 1$.
- A t-twist Bott manifold is diffeo to a bundle over $(S^2)^{n-t}$ with fiber a stage t Bott manifold.

Theorem

Let $M_n(A)$ be a Bott tower with twist t and matrix A of the form

\[
A = \begin{pmatrix}
\tilde{A} & 0 & \cdots & 0 \\
A_1^1 & 1 & \cdots & \vdots \\
\vdots & \vdots & \ddots & 0 \\
A_n & A_{n-t+1} & \cdots & 1
\end{pmatrix}, \quad A_i^j \in \mathbb{Z},
\]

where $\tilde{A} \neq I_n$ has 0-twist. Then $M_n(A)$ does not admit a compatible Kähler metric with constant scalar curvature. In particular, if $t = 0$ and the Bott manifold $M_n(A)$ has a compatible Kähler metric with constant scalar curvature, then it is the product $(\mathbb{CP}^1)^n$.

- The only 0 twist Fano Bott manifold is the product $(\mathbb{CP}^1)^n$.

Charles Boyer (University of New Mexico)
A 1 twist Bott manifold is diffeomorphic to a non-trivial \mathbb{CP}^1 bundle over $(S^2)^{n-1}$.
1 Twist Bott Manifolds

- A 1 twist Bott manifold is diffeomorphic to a non-trivial \mathbb{CP}^1 bundle over $(S^2)^{n-1}$.
- The **diffeomorphism type** of a 1 twist Bott manifold is determined by its **cohomology ring** (Choi-Suh).

Consider Bott manifolds $M_n(k)$ with $k = (k_1, \ldots, k_{n-1})$ satisfying $k_1 k_2 \cdots k_{n-1} \neq 0$ with a matrix $A = \begin{pmatrix} 1 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 0 \\ k_1 & k_2 & \cdots & k_{n-1} & 1 \end{pmatrix}$.

Then $M_n(k)$ admits an extremal Kähler metric in every Kähler class. If not all k_i have the same sign, then some of these metrics will have constant scalar curvature.

$M_n(k)$ is Fano if and only if $k_i = \pm 1$ for all i.

The monotone Kähler class admits a Kähler-Ricci soliton which is Kähler-Einstein if and only if the number of $+1$ in k equals the number of -1 in k. Much of this case recovers previous work of Koiso, Sakane, Guan, Hwang, and Apostolov–Calderbank–Gauduchon–Tønnesen-Friedman.
A 1 twist Bott manifold is diffeomorphic to a non-trivial $\mathbb{C}P^1$ bundle over $(S^2)^{n-1}$.

The diffeomorphism type of a 1 twist Bott manifold is determined by its cohomology ring (Choi-Suh).

Consider Bott manifolds $M_n(k)$ with $k = (k_1, \ldots, k_{n-1})$ satisfying $k_1 k_2 \cdots k_{n-1} \neq 0$ with A matrix

$$A = \begin{pmatrix}
1 & 0 & \cdots & 0 & 0 \\
0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & 0 \\
k_1 & k_2 & \cdots & k_{n-1} & 1
\end{pmatrix}.$$
A 1 twist Bott manifold is diffeomorphic to a non-trivial \mathbb{CP}^1 bundle over $(S^2)^{n-1}$.

The diffeomorphism type of a 1 twist Bott manifold is determined by its cohomology ring (Choi-Suh).

Consider Bott manifolds $M_n(k)$ with $k = (k_1, \ldots, k_{n-1})$ satisfying $k_1k_2 \cdots k_{n-1} \neq 0$ with A matrix

$$A = \begin{pmatrix}
1 & 0 & \cdots & 0 & 0 \\
0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & 0 \\
k_1 & k_2 & \cdots & k_{n-1} & 1
\end{pmatrix}.$$

Then $M_n(k)$ admits an extremal Kähler metric in every Kähler class.
A 1 twist Bott manifold is diffeomorphic to a non-trivial \mathbb{CP}^1 bundle over $(S^2)^{n-1}$.

The diffeomorphism type of a 1 twist Bott manifold is determined by its cohomology ring (Choi-Suh).

Consider Bott manifolds $M_n(k)$ with $k = (k_1, \ldots, k_{n-1})$ satisfying $k_1 k_2 \cdots k_{n-1} \neq 0$ with A matrix

$$A = \begin{pmatrix}
1 & 0 & \cdots & 0 & 0 \\
0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & 0 \\
k_1 & k_2 & \cdots & k_{n-1} & 1
\end{pmatrix}.$$

Then $M_n(k)$ admits an extremal Kähler metric in every Kähler class.

If not all k_i have the same sign, then some of these metrics will have constant scalar curvature.
A 1 twist **Bott manifold** is diffeomorphic to a non-trivial \mathbb{CP}^1 bundle over $(S^2)^{n-1}$.

The **diffeomorphism type** of a 1 twist **Bott manifold** is determined by its **cohomology ring** (Choi-Suh).

Consider Bott manifolds $M_n(k)$ with $k = (k_1, \ldots, k_{n-1})$ satisfying $k_1 k_2 \cdots k_{n-1} \neq 0$ with an A matrix

$$A = \begin{pmatrix}
1 & 0 & \cdots & 0 & 0 \\
0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & 0 \\
k_1 & k_2 & \cdots & k_{n-1} & 1
\end{pmatrix}.$$

Then $M_n(k)$ admits an **extremal Kähler metric** in every Kähler class.

If not all k_i have the same sign, then some of these metrics will have **constant scalar curvature**.

$M_n(k)$ is Fano if and only if $k_i = \pm 1$ for all i.
A 1 twist **Bott manifold** is diffeomorphic to a non-trivial \mathbb{CP}^1 bundle over $(S^2)^{n-1}$.

The **diffeomorphism type** of a 1 twist **Bott manifold** is determined by its **cohomology ring** (Choi-Suh).

Consider Bott manifolds $M_n(k)$ with $k = (k_1, \ldots, k_{n-1})$ satisfying $k_1 k_2 \cdots k_{n-1} \neq 0$ with A matrix

$$A = \begin{pmatrix}
1 & 0 & \cdots & 0 & 0 \\
0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & 0 \\
k_1 & k_2 & \cdots & k_{n-1} & 1
\end{pmatrix}.$$

Then $M_n(k)$ admits an **extremal Kähler metric** in every Kähler class.

If not all k_i have the same sign, then some of these metrics will have **constant scalar curvature**.

$M_n(k)$ is Fano if and only if $k_i = \pm 1$ for all i.

The **monotone Kähler class** admits a **Kähler-Ricci soliton** which is **Kähler-Einstein** if and only if the number of $+1$ in k equals the number of -1 in k.
A 1 twist Bott manifold is diffeomorphic to a non-trivial \mathbb{CP}^1 bundle over $(S^2)^{n-1}$.

The diffeomorphism type of a 1 twist Bott manifold is determined by its cohomology ring (Choi-Suh).

Consider Bott manifolds $M_n(k)$ with $k = (k_1, \ldots, k_{n-1})$ satisfying $k_1k_2 \cdots k_{n-1} \neq 0$ with a matrix

$$A = \begin{pmatrix}
1 & 0 & \cdots & 0 & 0 \\
0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & 0 \\
k_1 & k_2 & \cdots & k_{n-1} & 1
\end{pmatrix}.$$

Then $M_n(k)$ admits an extremal Kähler metric in every Kähler class.

If not all k_i have the same sign, then some of these metrics will have constant scalar curvature.

$M_n(k)$ is Fano if and only if $k_i = \pm 1$ for all i.

The monotone Kähler class admits a Kähler-Ricci soliton which is Kähler-Einstein if and only if the number of $+1$ in k equals the number of -1 in k.

Much of this case recovers previous work of Koiso, Sakane, Guan, Hwang, and Apostolov–Calderbank–Gauduchon–Tønnesen-Friedman.
For **stage 3 Bott manifolds** the **cohomology ring** determines its **diffeomorphism type** (Choi-Masuda-Suh).

We divide stage 3 Bott manifolds into 3 types:

- **Type 1** is the generic type, not of type 2 or 3.
- **Type 2** has \(A_1^2 = 0 \) and is a \(\mathbb{CP}^1 \) bundle over \(\mathbb{CP}^1 \times \mathbb{CP}^1 \).
- **Type 3** has \(A_2^3 = 0 \) and is a \(\mathbb{CP}^1 \times \mathbb{CP}^1 \) bundle over \(\mathbb{CP}^1 \). Note that types 2 and 3 can have non-trivial intersection.

A type 2 stage 3 Bott manifold \(M^3(0, A_1^3, A_2^3) \) can be realized as the projectivization \(\mathbb{P}(1 \mathcal{L} \oplus \mathcal{O}(A_1^3, A_2^3)) \). If \(A_1^3 A_2^3 \neq 0 \), it is a 1 twist Bott manifold. There is an infinite number of diffeomorphism types determined by \(A_1^3 A_2^3 \). The number of Bott manifolds in each diffeomorphism type is determined by the factorizations of \(A_1^3 A_2^3 \) with fixed parity of \((1 + A_1^3)(1 + A_2^3) \).

A 0 twist stage 3 Bott manifold is \(M^3(2A_1^2, 2A_1^2, 0) \) or \(M^3(2A_1^2 A_2^3, 2A_1^2 A_2^3, 0) \). The former is type 3 whereas generically the latter is type 1.

There are 5 stage 3 Fano Bott manifolds \(M^3(A_1^2, A_1^3, A_2^3) \), up to equivalence, with representatives \(M^3(0, 0, 0) \), \(M^3(0, 1, -1) \), \(M^3(0, 1, 1) \), \(M^3(1, 0, 0) \), \(M^3(-1, 0, 1) \). The first 2 admit constant scalar curvature Kähler metrics, the remaining 3 do not.

There is an infinite number of pairs of \(c \)-projectively equivalent (Calderbank-Eastwood-Mateev-Neusser) constant scalar curvature Kähler metrics that are not affinely equivalent.

There are many extremal orbifold Kähler metrics on stage 3 Bott manifolds. There is an uncountable number of extremal almost Kähler metrics (non integrable) on stage 3 Bott manifolds. These are not constant scalar curvature.
For **stage 3 Bott manifolds** the **cohomology ring** determines its **diffeomorphism type** (Choi-Masuda-Suh).

We divide **stage 3 Bott Manifolds** into 3 types: **Type 1** is the generic type, not of type 2 or 3. **Type 2** has $A_2 = 0$ and is \mathbb{CP}^1 bundle over $\mathbb{CP}^1 \times \mathbb{CP}^1$. **Type 3** has $A_3 = 0$ and is a $\mathbb{CP}^1 \times \mathbb{CP}^1$ bundle over \mathbb{CP}^1. Note that types 2 and 3 can have non-trivial intersection.
Some Results for Stage 3 Bott Manifolds

- For **stage 3 Bott manifolds** the **cohomology ring** determines its **diffeomorphism type** (Choi-Masuda-Suh).

- We divide **stage 3 Bott Manifolds** into 3 types: **Type 1** is the generic type, not of type 2 or 3. **Type 2** has \(A_1^1 = 0\) and is \(\mathbb{CP}^1\) bundle over \(\mathbb{CP}^1 \times \mathbb{CP}^1\). **Type 3** has \(A_3^2 = 0\) and is a \(\mathbb{CP}^1 \times \mathbb{CP}^1\) bundle over \(\mathbb{CP}^1\). Note that types 2 and 3 can have non-trivial intersection.

- A type 2 stage 3 Bott manifold \(M_3(0, A_3^1, A_3^2)\) can be realized a the projectivization \(\mathbb{P}(\mathbb{O}(A_3^1, A_3^2))\). If \(A_3^1 A_3^2 \neq 0\), it is a 1 twist Bott manifold. There is an **infinite number** of diffeomorphism types determined by \(A_3^1 A_3^2\). The number of **Bott manifolds** in each diffeomorphism type is determined by the **factorizations** of \(A_3^1 A_3^2\) with fixed parity of \((1 + A_3^1)(1 + A_3^2)\).
For **stage 3 Bott manifolds** the **cohomology ring** determines its **diffeomorphism type** (Choi-Masuda-Suh).

We divide **stage 3 Bott Manifolds** into 3 types: **Type 1** is the generic type, not of type 2 or 3. **Type 2** has $A_1^2 = 0$ and is \mathbb{CP}^1 bundle over $\mathbb{CP}^1 \times \mathbb{CP}^1$. **Type 3** has $A_3^2 = 0$ and is a $\mathbb{CP}^1 \times \mathbb{CP}^1$ bundle over \mathbb{CP}^1. Note that types 2 and 3 can have non-trivial intersection.

A type 2 stage 3 Bott manifold $M_3(0, A_3^1, A_3^2)$ can be realized a the projectivization $\mathbb{P}(\mathbb{C} \oplus \mathcal{O}(A_3^1, A_3^2))$. If $A_3^1A_3^2 \neq 0$, it is a 1 twist Bott manifold. There is an **infinite number** of diffeomorphism types determined by $A_3^1A_3^2$. The number of Bott manifolds in each diffeomorphism type is determined by the **factorizations** of $A_3^1A_3^2$ with fixed parity of $(1 + A_3^1)(1 + A_3^2)$.

A 0 twist **stage 3 Bott manifold** is $M_3(2A_3^1, 2A_3^1, 0)$ or $M_3(2A_3^1, 2A_3^1A_3^2, 2A_3^2)$. The former is type 3 whereas generically the later is type 1.
For **stage 3 Bott manifolds** the **cohomology ring** determines its **diffeomorphism type** (Choi-Masuda-Suh).

We divide **stage 3 Bott Manifolds** into 3 types: **Type 1** is the generic type, not of type 2 or 3. **Type 2** has \(A_2^1 = 0 \) and is \(\mathbb{CP}^1 \) bundle over \(\mathbb{CP}^1 \times \mathbb{CP}^1 \). **Type 3** has \(A_3^2 = 0 \) and is a \(\mathbb{CP}^1 \times \mathbb{CP}^1 \) bundle over \(\mathbb{CP}^1 \). Note that types 2 and 3 can have non-trivial intersection.

A type 2 stage 3 Bott manifold \(M_3(0, A_3^1, A_3^2) \) can be realized as the projectivization \(\mathbb{P}(\mathbb{O} \oplus 0(A_3^1, A_3^2)) \). If \(A_3^1 A_3^2 \neq 0 \), it is a 1 twist Bott manifold. There is an **infinite number** of diffeomorphism types determined by \(A_3^1 A_3^2 \). The number of Bott manifolds in each diffeomorphism type is determined by the **factorizations** of \(A_3^1 A_3^2 \) with fixed parity of \((1 + A_3^1)(1 + A_3^2)\).

A 0 twist **stage 3 Bott manifold** is \(M_3(2A_3^1, 2A_3^1, 0) \) or \(M_3(2A_3^1, 2A_3^1 A_3^2, 2A_3^2) \). The former is type 3 whereas generically the later is type 1.

There are 5 stage 3 **Fano Bott manifolds** \(M_3(A_3^1, A_3^1, A_3^2) \), up to equivalence, with representatives \(M_3(0, 0, 0), M_3(0, 1, -1), M_3(0, 1, 1), M_3(1, 0, 0), M_3(-1, 0, 1) \). The first 2 admit **constant scalar curvature** Kähler metrics, the remaining 3 do not.
For **stage 3 Bott manifolds** the **cohomology ring** determines its **diffeomorphism type** (Choi-Masuda-Suh).

We divide **stage 3 Bott Manifolds** into 3 types: **Type 1** is the generic type, not of type 2 or 3. **Type 2** has \(A_1^1 = 0 \) and is \(\mathbb{CP}^1 \) bundle over \(\mathbb{CP}^1 \times \mathbb{CP}^1 \). **Type 3** has \(A_3^2 = 0 \) and is a \(\mathbb{CP}^1 \times \mathbb{CP}^1 \) bundle over \(\mathbb{CP}^1 \). Note that types 2 and 3 can have non-trivial intersection.

A type 2 stage 3 Bott manifold \(M_3(0, A_3^1, A_3^2) \) can be realized a the projectivization \(\mathbb{P}(\mathbb{I} \oplus \mathcal{O}(A_3^1, A_3^2)) \). If \(A_3^1 A_3^2 \neq 0 \), it is a 1 twist Bott manifold. There is an **infinite number** of diffeomorphism types determined by \(A_3^1 A_3^2 \). The number of Bott manifolds in each diffeomorphism type is determined by the **factorizations** of \(A_3^1 A_3^2 \) with fixed parity of \((1 + A_3^1)(1 + A_3^2)\).

A 0 twist **stage 3 Bott manifold** is \(M_3(2A_3^1, 2A_3^1, 0) \) or \(M_3(2A_2^1, 2A_2^1 A_3^2, 2A_3^2) \). The former is type 3 whereas generically the later is type 1.

There are 5 stage 3 **Fano Bott manifolds** \(M_3(A_1^1, A_3^1, A_3^2) \), up to equivalence, with representatives \(M_3(0, 0, 0), M_3(0, 1, -1), M_3(0, 1, 1), M_3(1, 0, 0), M_3(-1, 0, 1) \). The first 2 admit **constant scalar curvature** Kähler metrics, the remaining 3 do not.

There is an infinite number of pairs of \(c \)-projectively equivalent (Calderbank-Eastwood-Mateev-Neusser) **constant scalar curvature** Kähler metrics that are not affinely equivalent.
For **stage 3 Bott manifolds** the **cohomology ring** determines its **diffeomorphism type** (Choi-Masuda-Suh).

We divide **stage 3 Bott Manifolds** into 3 types: **Type 1** is the generic type, not of type 2 or 3. **Type 2** has $A_2^1 = 0$ and is \mathbb{CP}^1 bundle over $\mathbb{CP}^1 \times \mathbb{CP}^1$. **Type 3** has $A_2^2 = 0$ and is a $\mathbb{CP}^1 \times \mathbb{CP}^1$ bundle over \mathbb{CP}^1. Note that types 2 and 3 can have non-trivial intersection.

A type 2 stage 3 Bott manifold $M_3(0, A_3^1, A_3^2)$ can be realized a the projectivization $\mathbb{P}(\mathcal{O} \oplus \mathcal{O}(A_3^1, A_3^2))$. If $A_3^1 A_3^2 \neq 0$, it is a 1 twist Bott manifold. There is an **infinite number** of diffeomorphism types determined by $A_3^1 A_3^2$. The number of Bott manifolds in each diffeomorphism type is determined by the **factorizations** of $A_3^1 A_3^2$ with fixed parity of $(1 + A_3^1)(1 + A_3^2)$.

A 0 twist stage 3 Bott manifold is $M_3(2A_3^1, 2A_3^1, 0)$ or $M_3(2A_3^1, 2A_3^2 A_3^2, 2A_3^2)$. The former is type 3 whereas generically the later is type 1.

There are 5 stage 3 **Fano Bott manifolds** $M_3(A_1^1, A_3^1, A_3^2)$, up to equivalence, with representatives $M_3(0, 0, 0), M_3(0, 1, −1), M_3(0, 1, 1), M_3(1, 0, 0), M_3(−1, 0, 1).$ The first 2 admit **constant scalar curvature** Kähler metrics, the remaining 3 do not.

There is an infinite number of pairs of c-projectively equivalent (Calderbank-Eastwood-Mateev-Neusser) **constant scalar curvature** Kähler metrics that are not affinely equivalent.

There are many **extremal orbifold** Kähler metrics on **stage 3 Bott manifolds**.
Some Results for Stage 3 Bott Manifolds

- **For stage 3 Bott manifolds** the cohomology ring determines its **diffeomorphism type** (Choi-Masuda-Suh).

- We divide **stage 3 Bott Manifolds** into 3 types: **Type 1** is the generic type, not of type 2 or 3. **Type 2** has $A_2^1 = 0$ and is \mathbb{CP}^1 bundle over $\mathbb{CP}^1 \times \mathbb{CP}^1$. **Type 3** has $A_2^2 = 0$ and is a $\mathbb{CP}^1 \times \mathbb{CP}^1$ bundle over \mathbb{CP}^1. Note that types 2 and 3 can have non-trivial intersection.

- A type 2 stage 3 Bott manifold $M_3(0, A_1^1, A_3^2)$ can be realized as the projectivization $\mathbb{P}(\mathbb{O} \oplus 0(A_1^1, A_3^2))$. If $A_1^1A_3^2 \neq 0$, it is a 1 twist Bott manifold. There is an **infinite number** of diffeomorphism types determined by $A_1^1A_3^2$. The number of **Bott manifolds** in each diffeomorphism type is determined by the **factorizations** of $A_1^1A_3^2$ with fixed parity of $(1 + A_3^1)(1 + A_3^2)$.

- A 0 twist **stage 3 Bott manifold** is $M_3(2A_3^1, 2A_3^1, 0)$ or $M_3(2A_2^1, 2A_2^1A_3^2, 2A_3^2)$. The former is type 3 whereas generically the later is type 1.

- There are 5 stage 3 **Fano Bott manifolds** $M_3(A_1^1, A_3^1, A_3^2)$, up to equivalence, with representatives $M_3(0, 0, 0), M_3(0, 1, -1), M_3(0, 1, 1), M_3(1, 0, 0), M_3(-1, 0, 1)$. The first 2 admit **constant scalar curvature** Kähler metrics, the remaining 3 do not.

- There is an infinite number of pairs of **c-projectively equivalent** (Calderbank-Eastwood-Mateev-Neusser) **constant scalar curvature** Kähler metrics that are not affinely equivalent.

- There are many **extremal orbifold** Kähler metrics on **stage 3 Bott manifolds**.

- There is an **uncountable** number of **extremal almost Kähler metrics** (non integrable) on **stage 3 Bott manifolds**. These are not **constant scalar curvature**
THANK YOU FOR YOUR ATTENTION

and

HAPPY BIRTHDAY JACQUES