REVIEW PROBLEMS FOR EXAM # 1 - MATH 401/501 - FALL 2016

Instructor: C. Pereyra

1. Show by induction that the statement

$$P(n): 1 + x + x^2 + \dots + x^n = \frac{1 - x^{n+1}}{1 - x}$$

is true for all natural numbers n, and any fixed rational number |x| < 1.

- 2. Given functions $f: X \to Y$, $g: Y \to Z$, show that if $g \circ f$ is surjective (onto) then g must be surjective. Is it true that f must also be surjective? If true prove it, if false present a counterexample.
- 3. Given a set X and subsets A and B of X. Show that

$$X \setminus (A \cup B) = (X \setminus A) \cap (X \setminus B).$$

- 4. Let a and b be integer numbers. Show that if ab = 0 then a = 0 or b = 0. (You can use the fact that this is true for natural numbers).
- 5. Let r and q be rational numbers. Show that if rq = 0 then r = 0 or q = 0. (You can use the fact that this is true for integer numbers).
- 6. Given a rational number r, and natural numbers n and m. We define $r^0 := 1$ and given the rational number r^n then we define the rational number $r^{n+1} := r^n \times r$.
 - (a) Show that

$$(r^n)^m = r^{n \times m}.$$

Hint: fix one of the natural numbers and induct on the other.

- (b) Assume now that $r \neq 0$, p and q are integers, and show that $(r^p)^q = r^{p \times q}$. Where we define for a negative integer p = -n, $n \in \mathbb{N}$, $r^p = r^{-n} := (r^n)^{-1}$. Useful auxiliary lemma is to show that: $(r^n)^{-1} = (r^{-1})^n$.
- 7. Let $\epsilon > 0$ be a positive rational number (a "step" or "unit"). Show that given a non-negative rational number $x \geq 0$, there exists a natural number n (depending both on the step ϵ and on x) such that $|x| < n\epsilon$. In words: given any positive step size we can overcome any fixed rational number with a finite number of steps.
- 8. Given a rational number x, show directly from the definition of absolute value, that |-x|=|x|.
- 9. In this problem, use any property of absolute value you wish, make sure you state properly the properties you are using.
 - (a) Show that if $x, y, z \in \mathbb{Q}$, |x y| < 1/2, then $|xz yz| \le |z|/2$.
 - (b) Show that if $w, x, y, z \in \mathbb{Q}$, $|w x| \le 1/2$ and $|y z| \le 1/2$ then $|(w + y) (x + z)| \le 1$. Can you find rational numbers x, w, x, y, z such that the hypothesis are satisfied and |(w + y) (x + z)| = 1?
- 10. Show that the "reverse triangle inequality" holds for $x, y \in \mathbb{Q}$: $||x| |y|| \le |x y|$.

The following are additional problems in case you want more. Do not worry about them for the purpose of the exam on Wednesday.

• Suppose $f: X \to Y$, and suppose that A, B are subsets of X and C, D are subsets of Y. The direct image of A under f is the subset of Y defined by

$$f(A) := \{ y \in Y : y = f(x), x \in A \}.$$

The inverse image of C under f is the subset of X defined by

$$f^{-1}(C) := \{ x \in X : f(x) \in C \}.$$

Determine which inclusion relationship must hold for the following pairs of sets:

- (a) $f(A \cap B)$ and $f(A) \cap f(B)$,
- (b) $f^{-1}(C \cap D)$ and $f^{-1}(C) \cap f^{-1}(D)$.
- Given sets A and B, the power set A^B is the collection of all functions $f: B \to A$. Show that given any sets (finite or not) A, B, C then

$$\#((A^B)^C) = \#(A^{B \times C}).$$