REVIEW FOR TEST # 3 - MATH 401/501 - FALL 2006

December 5-7, 2006

Instructor: C. Pereyra

1. Let $X \subset \mathbb{R}$, α and C positive real numbers. Suppose a function $f: X \to \mathbb{R}$ satisfies the following Hölder continuity property:

$$|f(x) - f(y)| \le C|x - y|^{\alpha}$$
, for all $x, y \in X$.

Show that f is uniformly continuous on X.

- 2. (Squeeze Theorem). Let f, g and h satisfy $f(x) \leq g(x) \leq h(x)$ for all x in some common domain $X \subset \mathbb{R}$. If $\lim_{x \to x_0} f(x) = L = \lim_{x \to x_0} h(x)$ at some adherent point x_0 of X, show that $\lim_{x \to x_0} g(x)$ exists and is L. (You might want to use the squeeze theorem for sequences and the sequential characterization of limits of functions).
- 3. Show that any function f with domain the integers \mathbb{Z} will necessarily be continuous at every point on its domain. More generally, show that if $f: X \to \mathbb{R}$, and x_0 is an isolated point of $X \subset \mathbb{R}$, then f is continuous at x_0 .
- 4. Let $f: \mathbb{R} \to \mathbb{R}$ that satisfies the additive property f(x+y) = f(x) + f(y) for all $x, y \in \mathbb{R}$.
 - (i) Show that f(0) = 0 and that f(-x) = -f(x) for all $x \in \mathbb{R}$.
 - (ii) Show that if f is continuous at x=0, then f is continuous at every point in \mathbb{R} .
 - (iii) Let k = f(1). Show that f(n) = kn for all $n \in \mathbb{N}$, and then prove that f(z) = kz for all $z \in \mathbb{Z}$. Now show that f(r) = kr for all $r \in \mathbb{Q}$.
 - (iv) Assume f is continuous at zero, use (ii) and (iii) to conclude that f(x) = kx for all $x \in \mathbb{R}$. Thus an additive function that is continuous at x = 0 must necessarily be a linear function through the origin.
- 5. For each choice of subsets A of the real numbers, construct a function $f : \mathbb{R} \to \mathbb{R}$ that has discontinuities at every point $x \in A$ and is continuous on its complement $\mathbb{R} \setminus A$.
 - (a) $A = \mathbb{Z}$.
 - (b) $A = \{x : 0 < x < 1\} = (0, 1).$
 - (c) $A = \{x : 0 < x \le 1\} = (0, 1].$
 - (d) $A = \{1/n : 0 < n \in \mathbb{N}\}.$
- 6. Assume g is defined on an open interval (a, c) and it is known to be uniformly continuous on (a, b] and on [b, c) where a < b < c. Prove that g is uniformly continuous on (a, c).

Show that if f is uniformly continuous on (a, b) and (b, c), for some $b \in (a, c)$, then f is uniformly continuous on (a, c) if and only if f is continuous at b.

- 7. Assume $f, g : \mathbb{R} \to \mathbb{R}$ are uniformly continuous on \mathbb{R} .
 - (a) Show that (f+g) is uniformly continuous on \mathbb{R} .
 - (b) Show that the composition $(f \circ g)$ is uniformly continuous.
 - (c) Show that the product (fg) is not necessarily uniformly continuous unless one of the functions is bounded.

8. Is it true that if f is continuous on \mathbb{R} then

$$f(\limsup_{n\to\infty} x_n) = \limsup_{n\to\infty} f(x_n)?$$

- 9. Verify the quotient rule for differentiation.
- 10. (Intermediate Value Theorem for Derivatives or Darboux's Theorem). If f is differentiable on [a,b], and if α is a real number in between f'(a) and f'(b) say $f'(a) < \alpha < f'(b)$ (or $f'(b) < \alpha < f'(a)$), then there exists a point $c \in (a,b)$ such that $f'(c) = \alpha$. (Warning: you can not assume that f' is continuous even if it is defined on all of [a,b], so you cannot use the IVT for continuous functions. Consider the example discussed in class $f(x) = x^2 \sin(1/x)$ it is differentiable on [-1,1] but the derivative is not continuous at x = 0.) Hint: to simplify define a new function $g(x) = f(x) \alpha x$ on [a,b]. This function g is differentiable on [a,b] and show that our hypothesis on f imply that g'(a) < 0 < g'(b) (or g'(b) < 0 < g'(a)). Now show that there is a $c \in (a,b)$ such that g'(c) = 0. To do the later, show that there exists a point $x \in (a,b)$ such that g(a) > g(x), and a point $y \in (a,b)$ such that g(b) < g(y). Now finish the proof of Darboux's theorem.
- 11. Assume known that the functions $\sin x$ and $\cos x$ are differentiable, and that their derivatives are $\cos x$ and $-\sin x$ respectively. Let $g_a : \mathbb{R} \to \mathbb{R}$ be defined by

$$g_a(x) = \begin{cases} x^a \sin(1/x) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0. \end{cases}$$

Find particular (potentially noninteger) values of a so that

- (a) g_a is differentiable on \mathbb{R} but g_a' is unbounded on [0,1].
- (b) g_a is differentiable on \mathbb{R} with g'_a continuous but not differentiable at zero.
- (c) g_a is differentiable on \mathbb{R} and g'_a differentiable on \mathbb{R} , but such that g''_a is not continuous at zero
- 12. Give an example of a function on \mathbb{R} that has the intermediate value property for every interval (that is it takes on all values between f(a) and f(b) on $a \le x \le b$ for all a < b), but fails to be continuous at a point. Can such function have a jump discontinuity?
- 13. (L'Hopital's Rule). Show that if $f, g: X \to \mathbb{R}$, $x_0 \in X$ is a limit point of X such that $f(x_0) = g(x_0)$, f, g are differentiable at x_0 , and $g'(x_0) \neq 0$, then there is some $\delta > 0$ such that $g(x) \neq 0$ for all $x \in X \cap (x_0 \delta, x_0 + \delta)$ and

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{f'(x_0)}{g'(x_0)}.$$

Hint: Use Newton's approximation theorem.

Show that the following version of L'Hopital's Rule is not correct. Under the above hypothesis then,

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}.$$

Hint: Consider $f(x) = g_2(x)$ (as in exercise 11), and g(x) = x at $x_0 = 0$.