Non-measurable sets on the real line

Nikhil Addleman

May 5, 2015

1 FORMAL MEASURES

We hope to be able to define a function called a measure which will serve as a formalization of the notion of lengths of sets in \mathbb{R} . We desire the following properties for our idealized "measure", μ :

Let *E* be a subset of \mathbb{R}

$$\mu: P(\mathbb{R}) \to [0, +\infty]$$

$$\mu(\emptyset) = 0$$

$$\{E_i\}_{i \in \mathbb{N}} \text{ is a collection of pairwise disjoint sets, then}$$

$$\mu\left(\bigcup_{i \in \mathbb{N}} E_i\right) = \sum_{i \in \mathbb{N}} \mu(E_i)$$

$$\text{if } E_1 \subseteq E_2 \text{ then } \mu(E_1) \leq \mu(E_2)$$
(1.1)

In English, such a function, a "measure", maps subsets of the reals into the non-negative reals union infinity. It also has the property that the "measure" of a countable collection of pairwise disjoint sets is the sum of the "measures" of the individual sets.

2 CONSTRUCTING A NON-MEASURABLE SET

The existence of non-measurable subsets of the reals was proved by the analyst Giuseppe Vitali. We state the "Vitali theorem" as follows:

There is no non-trivial additive function, μ on \mathbb{R} that is translation invariant.

In other words, we cannot have a μ satisfying

$$A \subseteq \mathbb{R}, x \in \mathbb{R}, A + x = \{a + x, a \in A\}$$

$$\mu(A) = \mu(A + x)$$
(2.1)

Proof: let $x, y \in [0, 1]$ define an equivalence relation, $x \sim y \Leftrightarrow x - y \in \mathbb{Q}$. The equivalence class given by this relation is written $\bar{x} = \{y \in [0, 1] : x \sim y\}$

Note that the equivalence relation partitions the unit interval:

$$[0,1] = \bigcup_{S \in \mathscr{S}} (S) \text{ where } \mathscr{S} = \{\bar{x} : x \in [0,1]\}$$

We now construct the Vitali set, one which must be non-measurable. We define the set *V* to be a set of numbers, one from each equivalence class $S_x \in \mathcal{S}$.

We have a one-to-one correspondence, that is, there is one $x \in V$ for each $S_x \in \mathcal{S}$.

To show that $V \cap (V + r) = \emptyset$ for $r \in \mathbb{Q}$, $r \neq 0$, that is, the Vitali set does not intersect with the shifted version of itself by a non-zero, rational distance, suppose for contradiction that:

$$\exists p \in V \cap (V+r)p \in V \text{ and } p \in (V+r) \text{ so } p = q+r, q \in Vp - q = r, \text{ so } p \sim q, \text{ by definition} S_p = S_q$$

However, we specifically chose only a single element, *x*, from each equivalence class, so $p = q \Rightarrow r = 0$, a contradiction. Therefore the non-zero, rational translation of *V* and *V* are disjoint.

Observe the following containment:

$$[0,1] \subseteq \bigcup_{r \in \mathbb{Q}, |r| < 1} (V+r) \subseteq [-1,2]$$

We have this because, if $x \in [0, 1]$ then *x* falls into one of the equivalence classes, S_y where *y* is the representative in the Vitali set *V*. In other words, $x - y = r \in \mathbb{Q}$ so $x \in V + r$. Since the center term is a disjoint union, and by the desired property of measures of subsets

$$\mu([0,1]) \leq \sum_{r \in \mathbb{Q}} \mu(V+r) \leq \mu([-1,2])$$

Because we assume the "measure" is translation invariant:

$$\mu([0,1]) \le \sum_{r \in \mathbb{Q}} \mu(V) \le \mu([-1,2])$$

Z	4	r		
~			,	,
	4	2		

The left side of the inequality implies $\mu(V) > 0$, or else $\mu([0,1]) = 0$, which gives the trivial measure. However, this forces the center term to be an infinite sum of positive numbers which forces $\mu([-1,2]) = \infty$, which clearly violates our assumption of additivity. Thus, we are forced to conclude that there is no general, non-trivial additive function on \mathbb{R} which satisfies the desired properties of a "measure" because \mathbb{R} contains non-measurable subsets. Therefore, a properly defined measure is a function whose domain is only those suitable, measurable subsets.