Homework 1

Math 510: Real Analysis 1
Fall 2020
Instructions: Complete all six problems to get full credit. Complete the Bonus problem for extra credit. The exercises are in Chapter 1 of our textbook Rudin's Principles of Mathematical Analysis. This homework is due on Tuesday August 25, 2020.

1. (\#3 in Rudin) Prove Proposition 1.15: The axioms of multiplication imply the following statements for all x, y, and z in a field F.
(a) If $x \neq 0$ and $x y=x z$ then $y=z$.
(b) If $x \neq 0$ and $x y=x$ then $y=1$.
(c) If $x \neq 0$ and $x y=1$ then $y=1 / x$.
(d) If $x \neq 0$ then $1 /(1 / x)=x$.

Note that (b) and (c) assert the uniqueness of the multiplicative identity and the multiplicative inverse respectively.
2. (\#5 in Rudin) Let A be a nonempty set of real numbers which is bounded below. Let $-A$ be the set of all numbers $-x$, where $x \in A$. Prove that

$$
\inf A=-\sup (-A)
$$

Where the $\inf A$ is defined to be the greatest lower bound of A.
3. (\#8 in Rudin) Prove that no order can be defined in the complex field that turns it into an ordered field. Hint: -1 is a square.
4. (\#10 in Rudin) Suppose $z=a+i b, w=u+i v$, and

$$
a=\left(\frac{|w|+u}{2}\right)^{1 / 2}, \quad b=\left(\frac{|w|-u}{2}\right)^{1 / 2}
$$

Prove that $z^{2}=w$ if $v \geq 0$ and that $(\bar{z})^{2}=w$ if $v \leq 0$. Conclude that every complex number (with one exception!) has two complex square roots.
5. (\#13 in Rudin, this is often called the Reverse Traingle Inequality) If x, y are complex, prove that

$$
||x|-|y|| \leq|x-y|
$$

6. (\#15 in Rudin) Under what conditions does equality hold in the Cauchy-Schwarz inequality? Recall that the aformentioned inequality says that if $a_{1}, a_{2}, \ldots, a_{n}$ and $b_{1}, b_{2}, \ldots, b_{n}$ are complex numbers, then

$$
\left|\sum_{j=1}^{n} a_{j} \overline{b_{j}}\right|^{2} \leq \sum_{j=1}^{n}\left|a_{j}\right|^{2} \sum_{j=1}^{n}\left|b_{j}\right|^{2}
$$

7. Bonus Problem (\#7 in Rudin) Fix $b>1, y>0$, and prove that there is a unique real x such that $b^{x}=y$, by completing the following outline. (This is called the logarithm of y to the base b.)
(a) For any positive integer $n, b^{n}-1 \geq n(b-1)$.
(b) Hence $b-1 \geq n\left(b^{1 / n}-1\right)$.
(c) If $t>1$ and $n>(b-1) /(t-1)$, then $b^{1 / n}<t$.
(d) If w is such that $b^{w}<y$ then $b^{w+(1 / n)}<y$ or sufficiently large n; to see this apply part (c) with $t=y \cdot b^{-w}$.
(e) If $b^{w}>y$, then $b^{w-(1 / n)}>y$ for sufficiently large n.
(f) Let A be the set of all w such that $b^{w}<y$, and show that $x=\sup A$ satisfies $b^{x}=y$.
(g) Prove that this x is unique.
