Department of Mathematics and Statistics
 University of New Mexico

Homework 4

Math 510: Real Analysis 1
Fall 2020

Instructions: Complete 6 problems to get full credit (60 points), the seventh problem is bonus for extra 10 points.
This homework is due on Thursday Sept 17, 2020.

1. (Rudin Chapter $3 \# 3$) If $s_{1}=\sqrt{2}$, and $s_{n+1}=\sqrt{2+\sqrt{s_{n}}}(n=1,2,3, \ldots)$, prove that $\left\{s_{n}\right\}_{n=1}^{\infty}$ converges, and that $s_{n}<2$ for $n=1,2,3, \ldots$.
2. (Rudin Chapter $\mathbf{3} \# 5$) For any two real sequences $\left\{a_{n}\right\},\left\{b_{n}\right\}$, prove that

$$
\limsup _{n \rightarrow \infty}\left(a_{n}+b_{n}\right) \leq \limsup _{n \rightarrow \infty} a_{n}+\limsup _{n \rightarrow \infty} b_{n},
$$

provided the sum on the right is not of the form $\infty-\infty$.
3. (Rudin Chapter 3 \#7, Qual Jan 2001 \#5) Assume that the series $\sum_{n=1}^{\infty} a_{n}$ converges and $a_{n} \geq 0$. Prove that $\sum_{n=1}^{\infty} \frac{\sqrt{a_{n}}}{n}$ converges.
4. (Rudin Chapter $\mathbf{3} \# \mathbf{2 3}$) Suppose $\left\{p_{n}\right\}$ and $\left\{q_{n}\right\}$ are Cauchy sequences in a metric space X. Show that the sequence $d\left(p_{n}, q_{n}\right)$ converges. (There is a hint in the book.)
5. (a) (Qual Aug $2004 \# 4$) Let $s_{n}:=1+\frac{1}{2}+\cdots+\frac{1}{n}$. Prove that $s_{2 n}-s_{n} \geq \frac{1}{2}$, and use it to show that the series $1+\frac{1}{2}+\cdots+\frac{1}{n}+\ldots$ diverges.
(b) (Qual Aug $2005 \# 5$) Consider the following series $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}-\frac{1}{8}+\ldots$. In other words, the general term is $-1 / n$ if $n=2^{k}$ for some $k=1,2, \ldots$, and its equal to $1 / n$ otherwise. Show that the series diverges.
6. (Qual Fall $2008 \# 1$, Rudin Chapter $\mathbf{3} \# \mathbf{1 4 (a) (b))}$ Let $\left\{s_{n}\right\}_{n \geq 1}$ be a sequence of real numbers. Consider the sequence of its arithmetic means, defined to be for each $n \geq 1$,

$$
\sigma_{n}=\frac{s_{1}+s_{2}+\cdots+s_{n}}{n}
$$

Show that if the sequence s_{n} converges to s, then the sequence $\left\{\sigma_{n}\right\}_{n \geq 1}$ also converges and to the same limit s. Does convergence of the sequence of averages σ_{n} imply convergence of the given sequence $\left\{s_{n}\right\}_{n \geq 1}$? Explain.
7. (Rudin Chapter $3 \# 8$, compare to Qual Aug $1998 \# 2$) If $\sum_{n=0}^{\infty} a_{n}$ is convergent and if $\left\{b_{n}\right\}_{n=0}^{\infty}$ is monotonic and bounded prove that $\sum_{n=0}^{\infty} a_{n} b_{n}$ converges.

Practice Problems on your own

These are all problems from Rudin Chapter 3.
$\# 1$. Prove that convergence of $\left\{s_{n}\right\}$ implies convergence of $\left\{\left|s_{n}\right|\right\}$.
\#2. Calculate $\lim _{n \rightarrow \infty}\left(\sqrt{n^{2}+n}-n\right)$.
$\# 4$. Find the upper and lower limits of the sequence $\left\{s_{n}\right\}$ defined by

$$
s_{1}=0 ; \quad s_{2 m}=\frac{s_{2 m-1}}{2} ; \quad s_{2 m+1}=\frac{1}{2}+s_{2 m}
$$

\#9. Find the radius of convergence of each of the following power series:
(a) $\sum_{n=0}^{\infty} n^{3} z^{n}$,
(b) $\sum_{n=0}^{\infty} \frac{2^{n}}{n!} z^{n}$,
(c) $\sum_{n=1}^{\infty} \frac{2^{n}}{n^{2}} z^{n}$,
(d) $\sum_{n=0}^{\infty} \frac{n^{3}}{3^{n}} z^{n}$.
\#10. Suppose that the coefficients of the power series $\sum_{n=0}^{\infty} a_{n} z^{n}$ are integers, infinitely many of which are distinct from zero. Prove that the radius of convergence is at most 1 .
\#20. Suppose $\left\{p_{n}\right\}$ is a Cauchy sequence in a metric space X, and some subsequence $\left\{p_{n_{k}}\right\}$ converges to a point $p \in X$. Prove that the full sequence $\left\{p_{n}\right\}$ converges to p.

