MATH 510 - Introduction to Analysis I - Fall 2020 Homework # 6 (more on continuous functions, uniform continuity)

Choose 5 problems for 50 points, and you can do the 6th problem for 10 bonus points. The homework is due on Thursday October 15, 2020 at 11:59pm.

1. (Qual Jan 2019 #2) Supose $f : (a, b) \to \mathbb{R}$ is a uniformly continuous function on a bounded open interval $(a, b) \subset \mathbb{R}$.

- (a) (compare to Rudin Chapter 4 #11) Prove that if $\{x_n\}_{n=1}^{\infty}$ is a Cauchy sequence in (a, b), then its image under f, $\{f(x_n)\}_{n=1}^{\infty}$, is also a Cauchy sequence.
- (b) (compare to Rudin Chapter 4 #8) Prove that f is a bounded function.

2. (Rudin Chapter 4 #10 - Continuous functions on a compact set are uniformly continuous) Complete the details of the following alternative proof of Theorem 4.19: If f is not uniformly continuous, then for some $\epsilon > 0$ there are sequences $\{p_n\}$ and $\{q_n\}$ in X such that $d_X(p_n, q_n) \to 0$ but $d_Y(f(p_n), f(q_n)) > \epsilon$. Use theorem 2.37 to obtain a contradiction.

3. (Rudin Chapter 4 #14 - Fixed point on \mathbb{R}) Let I = [0,1] be the closed unit interval. Suppose that f is a continuous mapping of I into I. Prove that f(x) = x for at least one $x \in I$.

4. (Qual Aug 1999 #6) Let S be a bounded open interval S = (a, b). Let $\overline{S} = [a, b]$ be its closure. Let f be a function defined on S.

- (b) Show that if f is uniformly continuous on S then it can be extended continuously to \overline{S} .
- (c) Give an example of a continuous function on S that cannot be extended continuously to \overline{S} .

5. (Qual Aug 2002 #4) The space C([a, b]) of real-valued continuous functions over the interval [a, b] is a complete metric space with the distance induced by the sup norm,

$$d(f,g) = \sup_{x \in [a,b]} |f(x) - g(x)|.$$

- (a) Given a real-valued function F defined on C([a, b]), define continuity and uniform continuity of F.
- (b) Let $F : C([a, b]) \to \mathbb{R}$ be given by $F(f) = \int_a^b f(t) dt$. Show that F is uniformly continuous. (Operate here with integrals freely.)
- 6. (Qual Jan 1999 #3) Let $f : [a, b] \to \mathbb{R}$, where [a, b] is a compact interval.
 - (a) Define what it means that f is uniformly continuous.
 - (b) Prove that if f is continuous, then it is uniformly continuous.
 - (c) Show that the graph of $f, G_f := \{(x, y) : x \in [a, b], y = f(x)\}$, can be covered with a finite number of rectangles such that the area of their union is smaller than ϵ for any given $\epsilon > 0$. (**Remark:** This implies that G_f has measure zero in \mathbb{R}^2 .)

7. (Qual Fall 2009 #2) [Assume known that the sine function is a continuous function]

- (a) Show that the function $f(x) = \sin\left(\frac{\pi}{x}\right)$ is continuous on the interval (0,1).
- (b) Is f uniformly continuous on (0, 1)?
- (c) For a real-valued function g defined on a metric space (X, d) let

$$w(r) = \sup\{|g(x) - g(x')| : d(x, x') \le r\}.$$

Show that g is a uniformly continuous function if and only if $\lim_{r\to 0} w(r) = 0$.

8. (Qual Aug 2008 #2) Let K be a compact subset of \mathbb{R} , and let f be a real-valued function defined on K. Denote by Γ_f the graph of f, a subset of \mathbb{R}^2 , more precisely,

$$\Gamma_f = \{(x, y) \in \mathbb{R}^2 : x \in K, y = f(x)\}.$$

Show that f is continuous on K if and only if its graph Γ_f is a compact subset of \mathbb{R}^2 .

9. (Qual Jan 2005 #1) Let K be a compact metric space with metric d and let f be a continuous real-valued function defined on K. Prove that the graph of the function f

$$\Gamma_f = \{(x, y); x \in K, y = f(x)\}$$

is a compact set in the metric space $(K \times \mathbb{R}, \rho)$, where

$$\rho((x_1, y_1), (x_2, y_2)) = d(x_1, x_2) + |y_1 - y_2|.$$

10. (Qual Jan 2006 #3) Let (X, d), and (Y, ρ) be metric spaces, $f : X \to Y$ a continuous function. Prove that if X is compact and f is one-to-one and onto (bijective) then $f^{-1}: Y \to X$ is continuous. Will the statement remain true if X is not compact? Explain.

11. (Qual Aug 2008 #3, Rudin Chapter 4 #20) Let (X, d) be a metric space. Let E be a non-empty subset of X. Define the distance from $x \in X$ to E by

$$\rho_E(x) = \inf_{y \in E} d(x, y).$$

- (a) Prove that $\rho_E(x) = 0$ if and only if x belongs to the closure of E, denoted \overline{E} .
- (b) Prove that ρ_E is a uniformly continuous function on X. (Hint: show that $|\rho_E(x_1) - \rho_E(x_2)| \le d(x_1, x_2)$.

12. (Qual Fall 2009 #4)

- (a) The projection map $p : \mathbb{R}^2 \to \mathbb{R}$ is given by p(x, y) = x. Determine if the projection map is (i) a continuous map, (ii) an open map, or (iii) a closed map. We are using the standard metrics in the corresponding Euclidean spaces.
- (b) Let $f: X \to Y$ be a continuous map between the metric spaces (X, d) ad (Y, ρ) . If $K \subset X$ is compact, is it true that f(K) is compact? Explain.

13. (Qual Aug 2016 #2(b), Qual Aug 2000 #5(b)) Let (X, ρ) be a compact metric space, and let $f: X \to X$ be an isometry, i.e., $\rho(f(x), f(y)) = \rho(x, y)$ for every $x, y \in X$. Show that f is bijective (that is a one-to-one and onto function).

14. (Qual Aug 2017 #5) Let A be a symmetric (real-valued) matrix and $\lambda(\xi) = A\xi \cdot \xi/|\xi|^2$, for $\xi \in \mathbb{R}^n \setminus \{0\}$, where $|\xi|^2 = \sum_{j=1}^n x_j^2$ for $\xi = (x_1, x_2, \dots, x_n)$.

- (a) Show that λ achieves its infimum on $\mathbb{R}^n \setminus \{0\}$. Hint: use that λ is constant on every ray emanating from the origin.
- (b) Let $\xi_0 \in \mathbb{R}^n \setminus \{0\}$ be such that $\lambda_0 = \lambda(\xi_0) = \inf\{\lambda(\xi) : \xi \in \mathbb{R}^n \setminus \{0\}$. Show that ξ_0 is an eigenvector of A with eigenvalue λ_0 , $A\xi_0 = \lambda_0\xi_0$. Hint: for any $\xi \in \mathbb{R}^n \setminus \{0\}$ consider the function $\phi(t) = \lambda(\xi_0 + t\xi)$ for t > 0.