MATH 510 - Introduction to Analysis I - Fall 2020
 Homework \# 6 (more on continuous functions, uniform continuity)

Choose 5 problems for 50 points, and you can do the 6 th problem for 10 bonus points. The homework is due on Thursday October 15, 2020 at 11:59pm.

1. (Qual Jan $2019 \# 2$) Supose $f:(a, b) \rightarrow \mathbb{R}$ is a uniformly continuous function on a bounded open interval $(a, b) \subset \mathbb{R}$.
(a) (compare to Rudin Chapter 4 \#11) Prove that if $\left\{x_{n}\right\}_{n=1}^{\infty}$ is a Cauchy sequence in (a, b), then its image under $f,\left\{f\left(x_{n}\right)\right\}_{n=1}^{\infty}$, is also a Cauchy sequence.
(b) (compare to Rudin Chapter $4 \# 8$) Prove that f is a bounded function.
2. (Rudin Chapter $4 \# 10$ - Continuous functions on a compact set are uniformly continuous) Complete the details of the following alternative proof of Theorem 4.19: If f is not uniformly continuous, then for some $\epsilon>0$ there are sequences $\left\{p_{n}\right\}$ and $\left\{q_{n}\right\}$ in X such that $d_{X}\left(p_{n}, q_{n}\right) \rightarrow 0$ but $d_{Y}\left(f\left(p_{n}\right), f\left(q_{n}\right)\right)>\epsilon$. Use theorem 2.37 to obtain a contradiction.
3. (Rudin Chapter $\mathbf{4} \# \mathbf{1 4}$ - Fixed point on \mathbb{R}) Let $I=[0,1]$ be the closed unit interval. Suppose that f is a continuous mapping of I into I. Prove that $f(x)=x$ for at least one $x \in I$.
4. (Qual Aug $1999 \# 6)$ Let S be a bounded open interval $S=(a, b)$. Let $\bar{S}=[a, b]$ be its closure. Let f be a function defined on S.
(b) Show that if f is uniformly continuous on S then it can be extended continuously to \bar{S}.
(c) Give an example of a continuous function on S that cannot be extended continuously to \bar{S}.
5. (Qual Aug 2002 \#4) The space $C([a, b])$ of real-valued continuous functions over the interval $[a, b]$ is a complete metric space with the distance induced by the sup norm,

$$
d(f, g)=\sup _{x \in[a, b]}|f(x)-g(x)|
$$

(a) Given a real-valued function F defined on $C([a, b])$, define continuity and uniform continuity of F.
(b) Let $F: C([a, b]) \rightarrow \mathbb{R}$ be given by $F(f)=\int_{a}^{b} f(t) d t$. Show that F is uniformly continuous. (Operate here with integrals freely.)
6. (Qual Jan $1999 \# 3$) Let $f:[a, b] \rightarrow \mathbb{R}$, where $[a, b]$ is a compact interval.
(a) Define what it means that f is uniformly continuous.
(b) Prove that if f is continuous, then it is uniformly continuous.
(c) Show that the graph of $f, G_{f}:=\{(x, y): x \in[a, b], y=f(x)\}$, can be covered with a finite number of rectangles such that the area of their union is smaller than ϵ for any given $\epsilon>0$. (Remark: This implies that G_{f} has measure zero in \mathbb{R}^{2}.)

On your own

7. (Qual Fall $2009 \# 2$) [Assume known that the sine function is a continuous function]
(a) Show that the function $f(x)=\sin \left(\frac{\pi}{x}\right)$ is continuous on the interval $(0,1)$.
(b) Is f uniformly continuous on $(0,1)$?
(c) For a real-valued function g defined on a metric space (X, d) let

$$
w(r)=\sup \left\{\left|g(x)-g\left(x^{\prime}\right)\right|: d\left(x, x^{\prime}\right) \leq r\right\} .
$$

Show that g is a uniformly continuous function if and only if $\lim _{r \rightarrow 0} w(r)=0$.
8. (Qual Aug $2008 \mathbf{\# 2}$) Let K be a compact subset of \mathbb{R}, and let f be a real-valued function defined on K. Denote by Γ_{f} the graph of f, a subset of \mathbb{R}^{2}, more precisely,

$$
\Gamma_{f}=\left\{(x, y) \in \mathbb{R}^{2}: x \in K, y=f(x)\right\}
$$

Show that f is continuous on K if and only if its graph Γ_{f} is a compact subset of \mathbb{R}^{2}.
9. (Qual Jan $2005 \# 1$) Let K be a compact metric space with metric d and let f be a continuous real-valued function defined on K. Prove that the graph of the function f

$$
\Gamma_{f}=\{(x, y) ; x \in K, y=f(x)\}
$$

is a compact set in the metric space $(K \times \mathbb{R}, \rho)$, where

$$
\rho\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=d\left(x_{1}, x_{2}\right)+\left|y_{1}-y_{2}\right| .
$$

10. (Qual Jan $2006 \# 3$) Let (X, d), and (Y, ρ) be metric spaces, $f: X \rightarrow Y$ a continuous function. Prove that if X is compact and f is one-to-one and onto (bijective) then $f^{-1}: Y \rightarrow X$ is continuous. Will the statement remain true if X is not compact? Explain.
11. (Qual Aug $2008 \# 3$, Rudin Chapter $4 \# 20$) Let (X, d) be a metric space. Let E be a non-empty subset of X. Define the distance from $x \in X$ to E by

$$
\rho_{E}(x)=\inf _{y \in E} d(x, y) .
$$

(a) Prove that $\rho_{E}(x)=0$ if and only if x belongs to the closure of E, denoted \bar{E}.
(b) Prove that ρ_{E} is a uniformly continuous function on X.
(Hint: show that $\left|\rho_{E}\left(x_{1}\right)-\rho_{E}\left(x_{2}\right)\right| \leq d\left(x_{1}, x_{2}\right)$.

12. (Qual Fall $2009 \# 4$)

(a) The projection map $p: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is given by $p(x, y)=x$. Determine if the projection map is (i) a continuous map, (ii) an open map, or (iii) a closed map. We are using the standard metrics in the corresponding Euclidean spaces.
(b) Let $f: X \rightarrow Y$ be a continuous map between the metric spaces (X, d) ad (Y, ρ). If $K \subset X$ is compact, is it true that $f(K)$ is compact? Explain.
13. (Qual Aug $2016 \# 2(\mathrm{~b})$, Qual Aug $2000 \# 5(\mathrm{~b})$) Let (X, ρ) be a compact metric space, and let $f: X \rightarrow X$ be an isometry, i.e., $\rho(f(x), f(y))=\rho(x, y)$ for every $x, y \in X$. Show that f is bijective (that is a one-to-one and onto function).
14. (Qual Aug $2017 \# 5$) Let A be a symmetric (real-valued) matrix and $\lambda(\xi)=A \xi \cdot \xi /|\xi|^{2}$, for $\xi \in \mathbb{R}^{n} \backslash\{0\}$, where $|\xi|^{2}=\sum_{j=1}^{n} x_{j}^{2}$ for $\xi=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.
(a) Show that λ achieves its infimum on $\mathbb{R}^{n} \backslash\{0\}$. Hint: use that λ is constant on every ray emanating from the origin.
(b) Let $\xi_{0} \in \mathbb{R}^{n} \backslash\{0\}$ be such that $\lambda_{0}=\lambda\left(\xi_{0}\right)=\inf \left\{\lambda(\xi): \xi \in \mathbb{R}^{n} \backslash\{0\}\right.$. Show that ξ_{0} is an eigenvector of A with eigenvalue $\lambda_{0}, A \xi_{0}=\lambda_{0} \xi_{0}$. Hint: for any $\xi \in \mathbb{R}^{n} \backslash\{0\}$ consider the function $\phi(t)=\lambda\left(\xi_{0}+t \xi\right)$ for $t>0$.

