MATH 510 - Introduction to Analysis I - Fall 2020
 Homework \# 8 (Integration)

Homework due on Tuesday Nov 10th, 2020 at 11:59pm Choose 5 problems to turn in for 50 points, the sixth you can do to get 10 bonus points.

1. (Rudin Chapter 6 \#2) Suppose $f \geq 0, f$ is continuous on $[a, b]$, and $\int_{a}^{b} f(x) d x=0$. Prove that $f(x)=0$ for all $x \in[a, b]$.
2. (Rudin Chapter $6 \# 7$) Suppose f is a real function on $(0,1]$ and $f \in \mathcal{R}$ on $[c, 1]$ for every $c>0$. Define $\int_{0}^{1} f(x) d x=\lim _{c \rightarrow 0^{+}} \int_{c}^{1} f(x) d x$ if this limit exists (and is finite).
(a) If $f \in \mathcal{R}$ on $[0,1]$, show that this definition of the integral agrees with the old one.
(b) Construct a function f such that the above limit exists, although it fails to exist with $|f|$ in place of f.
3. (Qual Spring $2005 \# 3$) Let $f \in C[0,1]$ and suppose $f(t)>0$ for all $t \in[0,1]$. Define $\theta_{n}>0$ by the following equation:

$$
\int_{0}^{\theta_{n}} f(x) d x=\frac{1}{n} \int_{0}^{1} f(x) d x
$$

find the following limit $\lim _{n \rightarrow \infty} n \theta_{n}$.
4. (Qual Spring $2005 \# 2$) Let f, g be real-valued continuous functions defined on the interval $[0,1]$, i.e. $f, g \in C[0,1]$. Consider the uniform metric on $C[0,1]$ given by $\rho(f, g):=$ $\sup _{t \in[0,1]}|f(t)-g(t)|$. For $f \in C[0,1]$ define $F(f)$ as the continuous function defined for each $t \in[0,1]$ by $F(f)(t)=\int_{0}^{t} u f(u) d u$. Show that $F: C[0,1] \rightarrow C[0,1]$ is a contraction, i.e.

$$
\rho(F(f), F(g)) \leq \alpha \rho(g, f), \quad \forall f, g \in C[0,1] .
$$

with some $\alpha \in(0,1)$. Explain why this implies that the equation

$$
f(t)=\int_{0}^{t} u f(u) d u, \quad t \in[0,1]
$$

has a unique solution $f \in C[0,1]$.
5. (Qual Jan $2014 \# 4$) Suppose $f:[a, b] \rightarrow \mathbb{R}$ is Riemann integrable. Show that f^{2} is also a Riemann integrable function by proving that for any $\epsilon>0$ there exists a partition P such that $U\left(f^{2}, P\right)-L\left(f^{2}, P\right)<\epsilon$. You may not apply the theorem which states that the composition of a continuous function with an integrable function is integrable.
6. (Qual Jan $2020 \# 4$, Qual Aug $2014 \# 5$) Prove that the function $f(x)=\sin (1 /(x-1))$ if $x \neq 1$ and $f(1)=0$ is Riemann integrable on $[0,2]$.

On your own

7. Exercises in Rudin:
(i) Chapter 6 \# 6 (Cantor function is Riemann integrable),
(ii) Chapter 6 \# 10 (Holder's inequality),
(iii) Chapter 6 \# 11 (triangle inequality),
(iv) Chapter 6 \# 15 (uncertainty principle),
(v) Chapter 6 \# 17 (integration by parts),
(vi) Chapter 6 \# 18 (rectifiable curves).
8. (Qual Jan $2002 \# 5)$ Let $a, b \in \mathbb{R}, a<b$ and let f be a real-valued function on $[a, b]$.
(a) Define the Riemann integral of f between a and b.
(b) Show that f is Riemann integrable on $[a, b]$ if and only if, for each $\epsilon>0$, there exists step functions f_{1}, f_{2} on $[a, b]$ such that $f_{1}(x) \leq f(x) \leq f_{2}(x)$ for each $x \in[a, b]$, and

$$
\int_{a}^{b}\left[f_{2}(x)-f_{1}(x)\right] d x<\epsilon
$$

9. (Qual Jan $2003 \# 6$) Prove the following: Let f be a Riemann integrable function on $[a, b]$. For $a \leq x \leq b$, put $F(x)=\int_{a}^{x} f(t) d t$. Then F is continuous on $[a, b]$; furthermore, if f is continuous at a point x_{0} of $[a, b]$, then F is differentiable at x_{0}, and $F^{\prime}\left(x_{0}\right)=f\left(x_{0}\right)$.
10. (Qual Jan $2004 \# 5$) Given a Riemann integrable function f on $[0,1]$, prove the convergence of the following series and find its sum:

$$
\sum_{k=1}^{\infty} \frac{1}{2^{k}} \int_{1}^{2} f\left(\frac{x}{2^{k}}\right) d x
$$

11. (Qual Jan $2004 \#$ 6) Let f be a continuously differenctiable function with $f^{\prime}(0) \neq 0$. For $x>0$, let $\xi=\xi(x)$ be a number in $[0, x]$ such that

$$
\int_{0}^{x} f(u) d u=f(\xi) x
$$

Prove the following limit exists and find it: $\lim _{x \rightarrow 0+} \frac{\xi(x)}{x}$.

12. (Qual Jan 2002 \#4)

(i) Prove the Contraction Mapping Principle: Given a complete metric space (M, ρ), let $T: M \rightarrow$ M be a map such that there exists a constant $0<c<1$ such that $\rho(T u, T v) \leq c \rho(u, v)$ for all $u, v, \in M$. Then there exists a unique $w \in M$ such that $T w=w$ (that is w is a unique fixed point).
(ii) Let $T: C([0,1]) \rightarrow C([0,1])$ be defined by $T f(x)=x+\int_{0}^{x} t f(t) d t$. Prove that T satisfies the hypothesis of the contractive mapping principle. Show that the fixed point is a solution to the differential equation $f^{\prime}(x)=x f(x)+1$.

Note: Can assume known that $C([0,1])$ is a complete metric space (Problem \# 3(b) in the same qualifying).
13. (Qual Spring $2006 \# 4$) Let $[a, b]$ and $[c, d]$ be closed intervals in \mathbb{R}, and let $f(x, y)$ be a continuous real-valued function on $\left\{(x, y) \in \mathbb{R}^{2}: x \in[a, b], y \in[c, d]\right\}$. Show that the function $g:[c, d] \rightarrow \mathbb{R}$, defined by

$$
g(y)=\int_{a}^{b} f(x, y) d x, \quad \forall y \in[c, d]
$$

is continuous. First you need to explain why the function g is well-defined.
14. (Qual Spring $2007 \# 4$) Let $f:[0, \infty) \rightarrow \mathbb{R}$ be a decreasing function. Assume that $\left|\int_{0}^{\infty} f(x) d x\right|<\infty$. Show that

$$
\lim _{x \rightarrow \infty} x f(x)=0
$$

15. Hint: Verify the statements first for polynomials.
(a) (Qual Spring $2007 \# 5$) Let $f:[0,1] \rightarrow \mathbb{R}$ be a continuous function. Show that

$$
\lim _{n \rightarrow \infty} n \int_{0}^{1} x^{n} f(x) d x=f(1)
$$

(b) (Qual Spring $2009 \# 1$) Let $f \in \mathcal{C}([0,1])$. Show that $\lim _{n \rightarrow \infty} \int_{0}^{1} x^{n} f(x) d x=0$.
(c) (Qual Fall $2009 \# 1)$ Let $f \in \mathcal{C}([0,1])$. Show that $\lim _{n \rightarrow \infty} \frac{\int_{0}^{1} x^{n} f(x) d x}{\int_{0}^{1} x^{n} d x}=f(1)$.

16. (Qual Aug $2010 \# 3$)

(a) Let (X, d) be a metric space, and $F: X \rightarrow \mathbb{R}$. Define what it means for F to be uniformy continuous on X.
(b) Suppose $f:[a, b] \rightarrow \mathbb{R}$ is Riemann integrable, define for $x \in[a, b], F(x):=\int_{a}^{x} f(t) d t$.. Show that F is uniformly continuous.
(c) Let (K, d) be a compact metric space, and let $F: K \rightarrow \mathbb{R}$ be a continuous function. Show that F is uniformly continuous.
17. (Qual Aug $2012 \# 4$) Let $f:[a, b] \rightarrow \mathbb{R}$ be a function which is bounded and Riemann integrable on $[c, b]$ for every $c \in(a, b)$. Prove that f is Riemann integrable on all of $[a, b]$.
18. The integral test for series says: Let $f:[1, \infty) \rightarrow \mathbb{R}$ be a monotone decreasing non-negative function. Then the sum $\sum_{n=1}^{\infty} f(n)$ is convergent if and only if the improper integral $\int_{1}^{\infty} f(x) d x:=$ $\sup _{N>0} \int_{1}^{N} f(x) d x$ is finite.
(a) Qual Aug 2012 \#2, Rudin Chapter 6 \#8) Prove the integral test.
(b) (Qual Jan 2013 \#4) Show by constructing counterexamples that if the hypothesis of monotone decreasing non-negative function is replaced by continuous non-negative function on intervals $[1, N]$ for all $N>0$ then both directions of the if and only if above are false.
19. (Qual Aug $2013 \# 4$) Suppose f is Riemann integrable on $[0, A]$ for all $0<A<\infty$, that $\lim _{x \rightarrow \infty} f(x)=1$, and $t>0$. Prove that

$$
\lim _{t \rightarrow 0^{+}} \int_{0}^{\infty} t e^{-t x} f(x) d x=1
$$

20. (Qual Aug $2015 \# 3$) Let $f:[0,1] \rightarrow \mathbb{R}$ be a continuous function that is also differentiable on $[0,1]$ and such that $M:=\sup _{t \in[0,1]}\left|f^{\prime}(t)\right|<\infty$. Prove that for each $n \in \mathbb{N}$,

$$
\left|\sum_{j=0}^{n-1} \frac{f(j / n)}{n}-\int_{0}^{1} f(t) d t\right| \leq \frac{M}{2 n}
$$

21. (Qual Jan $2017 \# 3$) Show that if $f:[a, b] \rightarrow \mathbb{R}$ is a continuos function then f is Riemann integrable.

22. (Qual Aug 2019 \#4)

(a) Prove that for all $n \in \mathbb{N}$, the function $\ln \left(e^{x}+n^{-1}\right) /\left(1+x^{2}\right)^{2}$ is Riemann integrable on $[0, \infty)$.
(b) Evaluate $\lim _{n \rightarrow \infty} \int_{0}^{\infty} \frac{\ln \left(e^{x}+n^{-1}\right)}{\left(1+x^{2}\right)^{2}} d x$.

