MATH 510 - Introduction to Analysis I - Fall 2020 Homework #9 (uniform convergence)

The following problems appeared in Qualifying exams in the past. Do all 5 problems for a total of 50 points. Homework due on Tuesday Dec 1st, 2020 at 11:59pm.

1. (Qual Jan 2001 #6) Consider the sequences of functions $f_n(x)$ and $g_n(x)$ on the interval [0, 1],

$f_n(x) = \left\{ \right.$	1	x < 1/n		a (m) _	x	x < 1/n otherwise	
	0	otherwise	,	$g_n(x) = \left\{ \right.$	0	otherwise	·

Do these sequences converge uniformly on [0, 1]? If yes, find the limit function.

2. (Qual Aug 2014) Suppose $f_n, g_n : \mathbb{R} \to \mathbb{R}$ are two sequences of functions converging uniformly on \mathbb{R} to functions f, g respectively.

- (a) Show that if both sequences are uniformly bounded (there is M > 0 such that $|f_n(x)| \le M$ for all $n \ge 1$ and for all $x \in \mathbb{R}$, and similarly for g_n), then the product $f_n g_n$ converges uniformly to fg.
- (b) Show by example that the conclusion in part (a) may fail to hold if the sequences are not assumed to be uniformly bounded.

3. (Qual Aug 2016 #5) Suppose $f : [a, b] \to \mathbb{R}$ is continuously differentiable on its domain. Given any $\epsilon > 0$, prove that there exists a polynomial P(x) such that

$$|f(x) - P(x)| < \epsilon$$
, and $|f'(x) - P'(x)| < \epsilon$

for every $x \in [a, b]$.

4. (Qual Jan 2018 #5) Let $\{\phi_n\}_{n=1}^{\infty}$ be a sequence of non-negative Riemann integrable functions on [-1,1] satisfying

- (i) $\int_{-1}^{1} \phi_n(t) dt = 1$ for all $n \ge 1$.
- (ii) For every $\delta > 0$ the sequence ϕ_n converges uniformly to zero on $[-1, -\delta] \cup [\delta, 1]$.

Prove that if $f: [-1,1] \to \mathbb{R}$ is Riemann integrable and continuous at x = 0, then

$$\lim_{n \to \infty} \int_{-1}^{1} f(t)\phi_n(t) \, dt = f(0).$$

5. (Qual Jan 2007 #6) Given a power series $\sum_{n=0}^{\infty} a_n x^n$, let $\alpha = \limsup_{n \to \infty} |a_n|^{1/n}$. Let $R = 1/\alpha$ if $0 < \alpha < \infty$, $R = \infty$ if $\alpha = 0$, and R = 0 if $\alpha = \infty$.

- (a) Show that if R > 0 then the series converges absolutely whenever |x| < R to a function that we will denote f(x).
- (b) Show that if 0 < K < R then the power series converges uniformly to f(x) on [-K, K].
- (c) Show that if R > 0, then the series can be differentiated term by term, and the differentiated series converges to f'(x) for |x| < R.

ON YOUR OWN

6. (Qual Aug 2001 #5) Let $\{f_n\}_{n=1}^{\infty}$ be a sequence of non-negative continuous functions on the interval [0, 1], such that the sequence is bounded at every point. Prove that this sequence is uniformly bounded on some interval $D \subset [0, 1]$.

7. (Qual Jan 2003 #7 and Aug 2011 #3) Prove the following.

If $\{f_n\}_{n\in\mathbb{N}}$ is a sequence of continuous functions on a set E in a metric space, and if $f_n \to f$ uniformly on E, then f is continuous on E. As part of your argument give the precise definition of uniform convergence.

8. (Qual Aug 2003 #5) Let $\sum_{n=1}^{\infty} u_n(x)$ converge to F(x) for each $x \in [a, b]$. Let $u'_n(x)$ exist and be continuous on [a, b] and let $\sum_{n=1}^{\infty} u'_n(x)$ converge uniformly to g(x) on [a, b]. Show that F is differentiable and F' = g. State all theorems you use. Hint: Fundamental Theorem(s) of Calculus may be helpful.

9. (Qual Jan 2004 #4) Suppose that for a sequence of real valued functions $\{f_n\}$ defined on the interval [0,1]

$$\sum_{n=1}^{\infty} \sup_{x \in [0,1]} |f_{n+1}(x) - f_n(x)| < \infty.$$

Prove that $\{f_n\}$ converges uniformly on [0, 1].

10. (Qual Aug 2004 #4) Suppose that f is uniformly continuous in \mathbb{R} and K is a continuous function in \mathbb{R} such that $K \ge 0$, K = 0 outside [-1, 1], and $\int_{-1}^{1} K(x) dx = 1$. Define

$$f_n(x) := n \int_{\mathbb{R}} K(n(x-y)) f(y) \, dy$$

Prove that $\{f_n\}$ converges uniformly to f in the real line.

11. (Qual Jan 2005 #3) Let $\{a_n\}_{n\geq 1}$ be a sequence of positive real numbers such that the series $\sum_{n=0}^{\infty} a_n$ is convergent.

(a) Show that the series $\sum_{n=0}^{\infty} a_n x^n$, is absolutely convergent for $|x| \leq 1$. Define the function $f: [-1,1] \to \mathbb{R}$ by the power series,

$$f(x) := \sum_{n=0}^{\infty} a_n x^n.$$

Show that f is differentiable for |x| < 1. Find an explicit formula for the derivative of f in terms of the data sequence $\{a_n\}$.

(b) Show that the function f defined on part (a) is continuous at x = 1. Show that it is not necessarily true that f is differentiable at x = 1.

12. (Qual Jan 2006 #1) Let $\{r_k\}_{k\geq 1}$ be an enumeration of the rationals in (0,1), and let $f_k(x) = H(x - r_k)$ where H(x) is the Heavyside function: H(x) = 0 if x < 0, and H(x) = 1 if $x \ge 0$.

- (a) Show that $f(x) = \sum_{k=1}^{\infty} \frac{f_k(x)}{2^k}$ is uniformly convergent on $x \in [0, 1]$.
- (b) Show that f is strictly increasing on [0, 1], with f(0) = 0 and f(1) = 1.

(c) Show that
$$\int_0^1 f(x) dx = 1 - \sum_{k=1}^\infty \frac{r_k}{2^k}$$
. Justify your reasoning.

13. (Qual Fall 2007 #4) Assume E is a compact subset of \mathbb{R}^n and $f_n : E \to \mathbb{R}$ is a sequence of continuous functions satisfying: (i) $f_1(x) \ge f_2(x) \ge f_3(x) \ge \ldots$, that is the sequence is decreasing, and (ii) there is a continuous function $f : E \to \mathbb{R}$ such that $\lim_{x \to \infty} f_n(x) = f(x)$ for all $x \in E$.

- (a) Prove that f_n converges to f uniformly on E.
- (b) Prove that (a) is false if the assumption (i) is removed.
- 14. (Qual Fall 2008 #5) Define for each positive integer n the function $h_n : \mathbb{R} \to \mathbb{R}$ by,

$$h_n(x) = \begin{cases} 1 & \text{if } x \in [0, 2^{n-1}), \\ -1 & \text{if } x \in [2^{n-1}, 2^n), \\ 0 & \text{otherwise.} \end{cases}$$

- (a) Verify that the series $\sum_{n=1}^{\infty} \frac{h_n(x)}{2^n}$ converges uniformly on \mathbb{R} .
- (b) Verify that the series defined on part (a) converges pointwise on \mathbb{R} to $\chi_{[0,1)}(x) = \begin{cases} 1 & \text{if } x \in [0,1), \\ 0 & \text{otherwise.} \end{cases}$
- (c) Denote by f_N the function given by the following partial sums, $f_N(x) = \sum_{n=1}^N \frac{h_n(x)}{2^n}$. Is it true that $\lim_{N\to\infty} \int_{\mathbb{R}} f_N(x) \, dx = \int_{\mathbb{R}} \lim_{N\to\infty} f_N(x) \, dx$?

Under what circumstances uniform convergence of a sequence of real-valued functions guarantees that one can interchange the limit and the integral?

15. (Qual Jan 2009 #2) Let |a| < 1 and $f_n(t) = \sin\left((2n+1)\frac{\pi}{2}t\right), t \in \mathbb{R}$.

(a) Show that for any a and t as above, the series $\sum_{n=1}^{\infty} a^{2n+1} f_n(t)$ converges absolutely.

(b) Determine if $f(t) = \sum_{n=1}^{\infty} a^{2n+1} f_n(t)$ is a continuous function of t.

(c) Show that
$$\frac{1}{\pi} \ln \frac{1+a}{1-a} - \frac{2}{\pi}a = \int_0^1 f(t) dt$$

16. (Qual Aug 2010 #4) Prove that the following two series converge uniformly, however one converges absolutely always and the other never.

- (a) Show that $\sum_{n=1}^{\infty} \frac{\cos(nx)}{2^n}$ converges uniformly and absolutely for all $x \in \mathbb{R}$.
- (b) Show that $\sum_{n=1}^{\infty} (-1)^n \left(\frac{x^n+n}{n^2}\right)$ converges uniformly for all $x \in [0,1]$, but not absolutely.

17. (Qual Jan 2012 #3) Suppose $f : \mathbb{R} \to \mathbb{R}$ is a uniformly continuous function on all of \mathbb{R} . Let $\{y_n\}_{n=1}^{\infty}$ be a sequence of real numbers. For each $n \in \mathbb{N}$ define a new function, $f_n(x) = f(x + y_n)$, for all $x \in \mathbb{R}$. If $\lim_{n\to\infty} y_n = 0$ show that the sequence of functions $\{f_n\}_{n=1}^{\infty}$ converges uniformly on \mathbb{R} .

18. (Qual Jan 2012 #4) A real valued function f on [0,1] is said to be *Hölder continuous of order* α if there is a positive constant C such that $|f(x) - f(y)| \leq C|x - y|^{\alpha}$ for all $x, y \in [0,1]$. For these functions define

$$||f||_{\alpha} := \max_{0 \le x \le 1} |f(x)| + \sup_{0 \le x, y \le 1, x \ne y} \frac{|f(x) - f(y)|}{|x - y|^{\alpha}}$$

Suppose that $0 < \alpha \leq 1$ and $\{f_n\}_{n=1}^{\infty}$ is a sequence of Hölder continuous functions of order α satisfying $||f_n||_{\alpha} \leq 1$ for all $n \geq 1$. Show that $\{f_n\}_{n=1}^{\infty}$ is an equicontinuous sequence. Conclude that there exists a subsequence $\{f_{n_k}\}_{k=1}^{\infty}$ which converges uniformly on [0, 1].

19. (Qual Aug 2013 #3) Suppose $f_k : [a, b] \to \mathbb{R}$ is a sequence of Riemann integrable functions on [a, b] such that the series $\sum_{k=1}^{\infty} f_k$ is uniformly convergent.

(a) Show that $\sum_{k=1}^{\infty} f_k$ is Riemann integrable.

(b) Show that moreover,
$$\sum_{k=1}^{\infty} \int_{a}^{b} f_{k}(x) dx = \int_{a}^{b} \sum_{k=1}^{\infty} f_{k}(x) dx.$$

20. (Qual Jan 2015 #5) Prove that if a power series $\sum_{k=1}^{\infty} a_k x^k$ converges for some $x_0 \neq 0$, then it converges uniformly on every interval [-R, R] and the sum of the series represents a continuous function on [-R, R], where $0 < R < |x_0|$.

21. (Qual Jan 2017 #4) Recall the summation by parts formula valid for any pair of real-valued sequences $\{a_n\}_{n>0}, \{b_n\}_{n>0}$, and any pair of natural numbers p.q with $p \leq q$, namely

$$\sum_{n=p}^{q} a_n b_n = \sum_{n=p}^{q} (a_n - a_{n+1}) \sum_{k=p}^{n} b_k + a_{q+1} \sum_{k=p}^{q} b_k$$

Let $f_n : [-1,0] \to [0,\infty)$ for each $n \in \mathbb{N}$ be a sequence of functions uniformly convergent to zero on its domain. Suppose for each fixed $x \in [-1,0]$ the sequence of non-negative numbers $\{f_n(x)\}_{n\geq 0}$ is monotone decreasing. Show that the series $\sum_{n=0}^{\infty} f_n(x)x^n$ converges uniformly on [-1,0].

22. (Qual Aug 2017 #2) Let $\mathbb{Q} \cap (0, 1) = \{x_1, x_2, \dots\}$ be the set of rational numbers in (0, 1) listed as a sequence. For $n \in \mathbb{N}$ let $f_n(x) = 0$ if $0 \le x < x_n$ and $f_n(x) = 1/3^n$ if $x_n \le x \le 1$.

- (a) Determine if the series $\sum_{n=1}^{\infty} f_n(x)$ converges uniformly on [0, 1].
- (b) Show that f is an increasing function on [0, 1] which is continuous at every irrational number.
- (c) Show that f is discontinuous at every rational number.

23. (Qual Aug 2017 #3) Let $\{p_n\}_{n=1}^{\infty}$ be a sequence of polynomials of degree at most 100 defined on [0, 1] and such that for all $n, k \in \mathbb{N}$ we have $|p_n^{(k)}(0)/k!| \leq 1$.

- (a) Show that $\{p_n\}_{n=1}^{\infty}$ has a uniform convergent subsequence.
- (b) Show that the limit function is a polynomial.

24. (Qual Jan 2019 #5) Let $\sum_{n=0}^{\infty} a_n x^n$ be a power series centered at 0. Suppose the series converges at some $x_0 \in \mathbb{R} \setminus \{0\}$. Let $\epsilon \in (0, |x_0|)$. Without appealing to the radius of convergence, prove that the series converges uniformly on any closed interval $[-|x_0| + \epsilon, |x_0| + \epsilon]$.

This result is part of the theory behind the radius of convergence, hence a solution independent of this is asked for here. Instead use the comparison test and/or Weiertrass M-test.

25. (Qual Aug 2019 #3)

- (a) State the ϵ -N definition of uniform convergence of a sequence of functions $\{f_n\}_{n=1}^{\infty}$ to a function f on \mathbb{R} .
- (b) Consider the sequence of functions given by $f_n(x) = \sqrt{x^2 + \frac{1}{n^2}}, \quad x \in \mathbb{R}, n \in \mathbb{N}$. Prove that $\{f_n\}_{n=1}^{\infty}$ converges uniformly on \mathbb{R} .
- (c) State what it means by the ϵ -N definition that the sequence of functions $\{g_n\}_{n=1}^{\infty}$ does not converge to a function g uniformly on \mathbb{R} .
- (d) Prove that the sequence of derivatives $\{f'_n\}_{n=1}^{\infty}$ of the functions defined in part (b) does not converge uniformly on \mathbb{R} .

26. (Qual Jan 2020 #5) Let $\{f_n\}_{n=1}^{\infty}$ be a sequence of real-valued functions that are continuous on [0,1] and converges to f uniformly on [0,1]. Prove that

$$\lim_{n \to \infty} \int_0^{1 - \frac{1}{n}} f_n(x) \, dx = \int_0^1 f(x) \, dx.$$