MATH 510 - Introduction to Analysis I - Fall 2020
 Homework \#9 (uniform convergence)

The following problems appeared in Qualifying exams in the past. Do all 5 problems for a total of 50 points. Homework due on Tuesday Dec 1st, 2020 at 11:59pm.

1. (Qual Jan $2001 \# 6)$ Consider the sequences of functions $f_{n}(x)$ and $g_{n}(x)$ on the interval $[0,1]$,

$$
f_{n}(x)=\left\{\begin{array}{cc}
1 & x<1 / n \\
0 & \text { otherwise }
\end{array}, \quad g_{n}(x)=\left\{\begin{array}{cc}
x & x<1 / n \\
0 & \text { otherwise }
\end{array}\right.\right.
$$

Do these sequences converge uniformly on $[0,1]$? If yes, find the limit function.
2. (Qual Aug 2014) Suppose $f_{n}, g_{n}: \mathbb{R} \rightarrow \mathbb{R}$ are two sequences of functions converging uniformly on \mathbb{R} to functions f, g respectively.
(a) Show that if both sequences are uniformly bounded (there is $M>0$ such that $\left|f_{n}(x)\right| \leq M$ for all $n \geq 1$ and for all $x \in \mathbb{R}$, and similarly for g_{n}), then the product $f_{n} g_{n}$ converges uniformly to $f g$.
(b) Show by example that the conclusion in part (a) may fail to hold if the sequences are not assumed to be uniformly bounded.
3. (Qual Aug $2016 \# 5$) Suppose $f:[a, b] \rightarrow \mathbb{R}$ is continuously differentiable on its domain. Given any $\epsilon>0$, prove that there exists a polynomial $P(x)$ such that

$$
|f(x)-P(x)|<\epsilon, \quad \text { and } \quad\left|f^{\prime}(x)-P^{\prime}(x)\right|<\epsilon
$$

for every $x \in[a, b]$.
4. (Qual Jan $2018 \# 5$) Let $\left\{\phi_{n}\right\}_{n=1}^{\infty}$ be a sequence of non-negative Riemann integrable functions on $[-1,1]$ satisfying
(i) $\quad \int_{-1}^{1} \phi_{n}(t) d t=1$ for all $n \geq 1$.
(ii) For every $\delta>0$ the sequence ϕ_{n} converges uniformly to zero on $[-1,-\delta] \cup[\delta, 1]$.

Prove that if $f:[-1,1] \rightarrow \mathbb{R}$ is Riemann integrable and continuous at $x=0$, then

$$
\lim _{n \rightarrow \infty} \int_{-1}^{1} f(t) \phi_{n}(t) d t=f(0)
$$

5. (Qual Jan $2007 \# 6$) Given a power series $\sum_{n=0}^{\infty} a_{n} x^{n}$, let $\alpha=\lim \sup _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}$. Let $R=1 / \alpha$ if $0<\alpha<\infty$, $R=\infty$ if $\alpha=0$, and $R=0$ if $\alpha=\infty$.
(a) Show that if $R>0$ then the series converges absolutely whenever $|x|<R$ to a function that we will denote $f(x)$.
(b) Show that if $0<K<R$ then the power series converges uniformly to $f(x)$ on $[-K, K]$.
(c) Show that if $R>0$, then the series can be differentiated term by term, and the differentiated series converges to $f^{\prime}(x)$ for $|x|<R$.

On your Own

6. (Qual Aug $2001 \# 5$) Let $\left\{f_{n}\right\}_{n=1}^{\infty}$ be a sequence of non-negative continuous functions on the interval [0,1], such that the sequence is bounded at every point. Prove that this sequence is uniformly bounded on some interval $D \subset[0,1]$.
7. (Qual Jan $2003 \# 7$ and Aug $2011 \# 3$) Prove the following.

If $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ is a sequence of continuous functions on a set E in a metric space, and if $f_{n} \rightarrow f$ uniformly on E, then f is continuous on E. As part of your argument give the precise definition of uniform convergence.
8. (Qual Aug $2003 \# 5$) Let $\sum_{n=1}^{\infty} u_{n}(x)$ converge to $F(x)$ for each $x \in[a, b]$. Let $u_{n}^{\prime}(x)$ exist and be continuous on $[a, b]$ and let $\sum_{n=1}^{\infty} u_{n}^{\prime}(x)$ converge uniformly to $g(x)$ on $[a, b]$. Show that F is differentiable and $F^{\prime}=g$. State all theorems you use. Hint: Fundamental Theorem(s) of Calculus may be helpful.
9. (Qual Jan $2004 \# 4$) Suppose that for a sequence of real valued functions $\left\{f_{n}\right\}$ defined on the interval $[0,1]$

$$
\sum_{n=1}^{\infty} \sup _{x \in[0,1]}\left|f_{n+1}(x)-f_{n}(x)\right|<\infty
$$

Prove that $\left\{f_{n}\right\}$ converges uniformly on $[0,1]$.
10. (Qual Aug $2004 \# 4$) Suppose that f is uniformly continuous in \mathbb{R} and K is a continuous function in \mathbb{R} such that $K \geq 0, K=0$ outside $[-1,1]$, and $\int_{-1}^{1} K(x) d x=1$. Define

$$
f_{n}(x):=n \int_{\mathbb{R}} K(n(x-y)) f(y) d y
$$

Prove that $\left\{f_{n}\right\}$ converges uniformly to f in the real line.
11. (Qual Jan $2005 \# \mathbf{3}$) Let $\left\{a_{n}\right\}_{n \geq 1}$ be a sequence of positive real numbers such that the series $\sum_{n=0}^{\infty} a_{n}$ is convergent.
(a) Show that the series $\sum_{n=0}^{\infty} a_{n} x^{n}$, is absolutely convergent for $|x| \leq 1$. Define the function $f:[-1,1] \rightarrow \mathbb{R}$ by the power series,

$$
f(x):=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Show that f is differentiable for $|x|<1$. Find an explicit formula for the derivative of f in terms of the data sequence $\left\{a_{n}\right\}$.
(b) Show that the function f defined on part (a) is continuous at $x=1$.

Show that it is not necessarily true that f is differentiable at $x=1$.
12. (Qual Jan 2006 \#1) Let $\left\{r_{k}\right\}_{k \geq 1}$ be an enumeration of the rationals in $(0,1)$, and let $f_{k}(x)=H\left(x-r_{k}\right)$ where $H(x)$ is the Heavyside function: $H(x)=0$ if $x<0$, and $H(x)=1$ if $x \geq 0$.
(a) Show that $f(x)=\sum_{k=1}^{\infty} \frac{f_{k}(x)}{2^{k}}$ is uniformly convergent on $x \in[0,1]$.
(b) Show that f is strictly increasing on $[0,1]$, with $f(0)=0$ and $f(1)=1$.
(c) Show that $\int_{0}^{1} f(x) d x=1-\sum_{k=1}^{\infty} \frac{r_{k}}{2^{k}}$. Justify your reasoning.
13. (Qual Fall $2007 \# 4$) Assume E is a compact subset of \mathbb{R}^{n} and $f_{n}: E \rightarrow \mathbb{R}$ is a sequence of continuous functions satisfying: (i) $f_{1}(x) \geq f_{2}(x) \geq f_{3}(x) \geq \ldots$, that is the sequence is decreasing, and (ii) there is a continuous function $f: E \rightarrow \mathbb{R}$ such that $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$ for all $x \in E$.
(a) Prove that f_{n} converges to f uniformly on E.
(b) Prove that (a) is false if the assumption (i) is removed.
14. (Qual Fall $2008 \# 5$) Define for each positive integer n the function $h_{n}: \mathbb{R} \rightarrow \mathbb{R}$ by,

$$
h_{n}(x)=\left\{\begin{array}{rc}
1 & \text { if } x \in\left[0,2^{n-1}\right) \\
-1 & \text { if } x \in\left[2^{n-1}, 2^{n}\right) \\
0 & \text { otherwise }
\end{array}\right.
$$

(a) Verify that the series $\sum_{n=1}^{\infty} \frac{h_{n}(x)}{2^{n}}$ converges uniformly on \mathbb{R}.
(b) Verify that the series defined on part (a) converges pointwise on \mathbb{R} to $\chi_{[0,1)}(x)= \begin{cases}1 & \text { if } x \in[0,1) \text {, } \\ 0 & \text { otherwise } .\end{cases}$
(c) Denote by f_{N} the function given by the following partial sums, $f_{N}(x)=\sum_{n=1}^{N} \frac{h_{n}(x)}{2^{n}}$.

Is it true that $\lim _{N \rightarrow \infty} \int_{\mathbb{R}} f_{N}(x) d x=\int_{\mathbb{R}} \lim _{N \rightarrow \infty} f_{N}(x) d x$?
Under what circumstances uniform convergence of a sequence of real-valued functions guarantees that one can interchange the limit and the integral?
15. (Qual Jan $2009 \# \mathbf{2}$) Let $|a|<1$ and $f_{n}(t)=\sin \left((2 n+1) \frac{\pi}{2} t\right), t \in \mathbb{R}$.
(a) Show that for any a and t as above, the series $\sum_{n=1}^{\infty} a^{2 n+1} f_{n}(t)$ converges absolutely.
(b) Determine if $f(t)=\sum_{n=1}^{\infty} a^{2 n+1} f_{n}(t)$ is a continuous function of t.
(c) Show that $\frac{1}{\pi} \ln \frac{1+a}{1-a}-\frac{2}{\pi} a=\int_{0}^{1} f(t) d t$.
16. (Qual Aug 2010 \#4) Prove that the following two series converge uniformly, however one converges absolutely always and the other never.
(a) Show that $\sum_{n=1}^{\infty} \frac{\cos (n x)}{2^{n}}$ converges uniformly and absolutely for all $x \in \mathbb{R}$.
(b) Show that $\sum_{n=1}^{\infty}(-1)^{n}\left(\frac{x^{n}+n}{n^{2}}\right)$ converges uniformly for all $x \in[0,1]$, but not absolutely.
17. (Qual Jan $2012 \# 3$) Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is a uniformly continuous function on all of \mathbb{R}. Let $\left\{y_{n}\right\}_{n=1}^{\infty}$ be a sequence of real numbers. For each $n \in \mathbb{N}$ define a new function, $f_{n}(x)=f\left(x+y_{n}\right)$, for all $x \in \mathbb{R}$. If $\lim _{n \rightarrow \infty} y_{n}=0$ show that the sequence of functions $\left\{f_{n}\right\}_{n=1}^{\infty}$ converges uniformly on \mathbb{R}.
18. (Qual Jan 2012 \#4) A real valued function f on $[0,1]$ is said to be Hölder continuous of order α if there is a positive constant C such that $|f(x)-f(y)| \leq C|x-y|^{\alpha}$ for all $x, y \in[0,1]$. For these functions define

$$
\|f\|_{\alpha}:=\max _{0 \leq x \leq 1}|f(x)|+\sup _{0 \leq x, y \leq 1, x \neq y} \frac{|f(x)-f(y)|}{|x-y|^{\alpha}}
$$

Suppose that $0<\alpha \leq 1$ and $\left\{f_{n}\right\}_{n=1}^{\infty}$ is a sequence of Hölder continuous functions of order α satisfying $\left\|f_{n}\right\|_{\alpha} \leq 1$ for all $n \geq 1$. Show that $\left\{f_{n}\right\}_{n=1}^{\infty}$ is an equicontinuous sequence. Conclude that there exists a subsequence $\left\{f_{n_{k}}\right\}_{k=1}^{\infty}$ which converges uniformly on $[0,1]$.
19. (Qual Aug $2013 \# 3$) Suppose $f_{k}:[a, b] \rightarrow \mathbb{R}$ is a sequence of Riemann integrable functions on $[a, b]$ such that the series $\sum_{k=1}^{\infty} f_{k}$ is uniformly convergent.
(a) Show that $\sum_{k=1}^{\infty} f_{k}$ is Riemann integrable.
(b) Show that moreover, $\sum_{k=1}^{\infty} \int_{a}^{b} f_{k}(x) d x=\int_{a}^{b} \sum_{k=1}^{\infty} f_{k}(x) d x$.
20. (Qual Jan $2015 \# 5$) Prove that if a power series $\sum_{k=1}^{\infty} a_{k} x^{k}$ converges for some $x_{0} \neq 0$, then it converges uniformly on every interval $[-R, R]$ and the sum of the series represents a continuous function on $[-R, R]$, where $0<R<\left|x_{0}\right|$.
21. (Qual Jan 2017 \#4) Recall the summation by parts formula valid for any pair of real-valued sequences $\left\{a_{n}\right\}_{n \geq 0},\left\{b_{n}\right\}_{n \geq 0}$, and any pair of natural numbers $p . q$ with $p \leq q$, namely

$$
\sum_{n=p}^{q} a_{n} b_{n}=\sum_{n=p}^{q}\left(a_{n}-a_{n+1}\right) \sum_{k=p}^{n} b_{k}+a_{q+1} \sum_{k=p}^{q} b_{k} .
$$

Let $f_{n}:[-1,0] \rightarrow[0, \infty)$ for each $n \in \mathbb{N}$ be a sequence of functions uniformly convergent to zero on its domain. Suppose for each fixed $x \in[-1,0]$ the sequence of non-negative numbers $\left\{f_{n}(x)\right\}_{n \geq 0}$ is monotone decreasing. Show that the series $\sum_{n=0}^{\infty} f_{n}(x) x^{n}$ converges uniformly on $[-1,0]$.
22. (Qual Aug $2017 \# 2$) Let $\mathbb{Q} \cap(0,1)=\left\{x_{1}, x_{2}, \ldots\right\}$ be the set of rational numbers in $(0,1)$ listed as a sequence. For $n \in \mathbb{N}$ let $f_{n}(x)=0$ if $0 \leq x<x_{n}$ and $f_{n}(x)=1 / 3^{n}$ if $x_{n} \leq x \leq 1$.
(a) Determine if the series $\sum_{n=1}^{\infty} f_{n}(x)$ converges uniformly on $[0,1]$.
(b) Show that f is an increasing function on $[0,1]$ which is continuous at every irrational number.
(c) Show that f is discontinuous at every rational number.
23. (Qual Aug $2017 \# 3$) Let $\left\{p_{n}\right\}_{n=1}^{\infty}$ be a sequence of polynomials of degree at most 100 defined on $[0,1]$ and such that for all $n, k \in \mathbb{N}$ we have $\left|p_{n}^{(k)}(0) / k!\right| \leq 1$.
(a) Show that $\left\{p_{n}\right\}_{n=1}^{\infty}$ has a uniform convergent subsequence.
(b) Show that the limit function is a polynomial.
24. (Qual Jan $2019 \# 5$) Let $\sum_{n=0}^{\infty} a_{n} x^{n}$ be a power series centered at 0 . Suppose the series converges at some $x_{0} \in \mathbb{R} \backslash\{0\}$. Let $\epsilon \in\left(0,\left|x_{0}\right|\right)$. Without appealing to the radius of convergence, prove that the series converges uniformly on any closed interval $\left[-\left|x_{0}\right|+\epsilon,\left|x_{0}\right|+\epsilon\right]$.
This result is part of the theory behind the radius of convergence, hence a solution independent of this is asked for here. Instead use the comparison test and/or Weiertrass M-test.

25. (Qual Aug 2019 \#3)

(a) State the $\epsilon-N$ definition of uniform convergence of a sequence of functions $\left\{f_{n}\right\}_{n=1}^{\infty}$ to a function f on \mathbb{R}.
(b) Consider the sequence of functions given by $f_{n}(x)=\sqrt{x^{2}+\frac{1}{n^{2}}}, \quad x \in \mathbb{R}, \quad n \in \mathbb{N}$. Prove that $\left\{f_{n}\right\}_{n=1}^{\infty}$ converges uniformly on \mathbb{R}.
(c) State what it means by the $\epsilon-N$ definition that the sequence of functions $\left\{g_{n}\right\}_{n=1}^{\infty}$ does not converge to a function g uniformly on \mathbb{R}.
(d) Prove that the sequence of derivatives $\left\{f_{n}^{\prime}\right\}_{n=1}^{\infty}$ of the functions defined in part (b) does not converge uniformly on \mathbb{R}.
26. (Qual Jan $2020 \# 5)$ Let $\left\{f_{n}\right\}_{n=1}^{\infty}$ be a sequence of real-valued functions that are continuous on $[0,1]$ and converges to f uniformly on $[0,1]$. Prove that

$$
\lim _{n \rightarrow \infty} \int_{0}^{1-\frac{1}{n}} f_{n}(x) d x=\int_{0}^{1} f(x) d x
$$

