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Fourier series Fourier series in 1-D

Fourier series in one dimension

A periodic function f (x) with a period of 2π and for which∫ 2π
0 f (x)2dx is finite has a Fourier series expansion

f (x) ∼ 1

2
a0 +

∞∑
n=1

[an cos nx + bn sin nx ]

and, this fourier series converges to f (x) in the mean
[Weinberger, 1965].

If f (x) is continuously differentiable, its Fourier series converges
uniformly.
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Fourier series Fourier series in higher dimensions (vector notation)

Periodic Functions

Consider a function f (x1, x2) (p1, p2)-periodic in variables x1 and x2
[Osgood, 2007]

f (x1 + n1p1, x2 + n2p2) = f (x1, x2) ∀ x1, x2 ∈ R; n1, n2 ∈ Z.

Assuming p1 and p2 to be 1, the new condition is

f (x1 + n1, x2 + n2) = f (x1, x2) ∀ x1, x2 ∈ [0, 1]2.

If we use vector notation, and write x for (x1, x2), and n for pairs
(n1, n2) of integers, then we can write the condition as

f (x+n) = f (x) ∀ x ∈ [0, 1]2, n ∈ N .

In d dimensions, we have x = (x1, x2, ...xd) and n = (n1, n2, ...nd).
and so the vector notation becomes

f (x+n) = f (x) ∀ x ∈ [0, 1]d , n ∈ N .
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Fourier series Fourier series in higher dimensions (vector notation)

Complex Exponentials

In 2-D, the building blocks for periodic function f (x1, x2) are the
product of complex exponentials in one variable. The general higher
harmonic is of the form

e2πin1x1 e2πin2x2 ,

and we can imagine writing the Fourier series expansion as∑
n1,n2

cn1,n2e
2πin1x1e2πin2x2 ,

with an equivalent vector notation using n = (n1, n2).∑
n∈Z2

cn e2πin1x1 e2πin2x2 .

So the Fourier series expansion in 2-D looks like∑
n∈Z2

cn e2πin.x .
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Fourier series Fourier series in higher dimensions (vector notation)

Complex Exponentials (contd.)

Similarly, in d-D, the corresponding complex exponential is

e2πin1x1 e2πin2x2 .... e2πindxd ,

and we can imagine writing the Fourier series expansion as∑
n1,n2,..,nd

cn1,n2,..nd e2πin1x1 e2πin2x2 ... e2πindxd .

with an equivalent vector notation using n = (n1, n2, ..., nd).∑
n∈Zd

cn e2πin1x1 e2πin2x2 e2πindxd .

So the Fourier series expansion in d-D looks like∑
n∈Zd

cn e2πin.x .
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Fourier series Fourier series in higher dimensions (vector notation)

Vector Notation Summarized

The Fourier series expansion in d-D is approximated as

f (x) =
∑
n∈Zd

cn e2πin.x ,

where x = [x1, x2, ... , xd ] ∈ [0, 1]d , and n = [n1, n2, ... , nd ] ∈ Zd .

The Fourier co-efficients (f̂ = cn) can be defined by the integral

f̂ (n) =

∫
[0,1]

...

∫
[0,1]

e−2πin1x1e−2πin2x2 ...e−2πindxd f (x1, x2, ..xd)dx1..dxd

=

∫
[0,1]

...

∫
[0,1]

e−2πi(n1x1+n2x2+...+ndxd )f (x1, x2, ..., xd)dx1dx2....dxd

=

∫
[0,1]d

e−2πin.xf (x)dx .
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Fourier series Fourier series in 2-D (convergence)

Fourier series in two dimensions

Let f (x , y) be a continuously differentiable periodic function with a
period of 2π in both of the variables:

f (x + 2π, y) = f (x , y + 2π) = f (x , y).

For each value of y, we can expand f (x , y) in a uniformly convergent
Fourier series

f (x , y) =
1

2
a0(y) +

∞∑
n=1

[an(y) cos nx + bn(y) sin nx ].

The co-efficients

an(y) =
1

π

∫ π

−π
f (x , y) cos nx dx

bn(y) =
1

π

∫ π

−π
f (x , y) sin nx dx

are continuously differentiable in y.
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Fourier series Fourier series in 2-D (convergence)

Fourier Series in two dimensions (contd.)

Co-efficients can be expanded in uniformly convergent Fourier series

an(y) =
1

2
an0 +

∞∑
m=1

(anm cos my + bnm sin my)

bn(y) =
1

2
cn0 +

∞∑
m=1

(cnm cos my + dnm sin my)

where

anm =
1

π2

∫ π

−π

∫ π

−π
f (x , y) cos nx cos my dx dy

bnm =
1

π2

∫ π

−π

∫ π

−π
f (x , y) cos nx sin my dx dy

cnm =
1

π2

∫ π

−π

∫ π

−π
f (x , y) sin nx cos my dx dy

dnm =
1

π2

∫ π

−π

∫ π

−π
f (x , y) sin nx sin my dx dy .
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Fourier series Fourier series in 2-D (convergence)

Fourier Series in two dimensions (contd.)

Putting the series for the coefficients into the series for f(x,y), we have

f (x , y) ∼ 1

4
a00 +

1

2

∞∑
m=1

[a0mcos my + b0msin my ]

+
1

2

∞∑
n=1

[an0cos nx + cn0sin nx ]

+
∞∑
n=1

∞∑
m=1

[anm cos nx cos my + bnm cos nx sin my

+ cnm sin nx cos my + dnm sin nx sin my ]
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Fourier series Proof of convergence of double Fourier series

Proof of convergence of double Fourier series

The Parseval equation gives∫ π

−π
f (x , y)2 dx =

π

2
a0(y)2 + π

∞∑
n=1

[an(y)2 + bn(y)2].

The series on right converges uniformly in y. Hence we may integrate
with respect to y term by term:∫ π

−π

∫ π

−π
f (x , y)2 dx dy =

π2

2

∫ π

−π
a20 dy + π2

∞∑
n=1

∫ π

−π
[a2n + b2n] dy .

We now apply the Parseval equation to the functions an(y) and bn(y):∫ π

−π
an(y)2 dy =

π

2
a2n0 +

∞∑
m=1

(a2nm + b2nm)

∫ π

−π
bn(y)2 dy =

π

2
c2n0 +

∞∑
m=1

(c2nm + d2
nm)

Abdul Raheem, Anees Abrol (UNM) Multiple Fourier Series November 30, 2016 11 / 46



Fourier series Proof of convergence of double Fourier series

Proof of convergence of double Fourier series (contd.)

Thus, we get the Parseval’s equation for double Fourier series derived
under the hypothesis that f(x,y) is continuously differentiable.∫ π

−π

∫ π

−π
f (x , y)2 dx dy =

π2

4
a200 +

π2

2

∞∑
m=1

(a20m + b20m)

+
π2

2

∞∑
n=1

(a2n0 + c2n0)

+ π2
∞∑
n=1

∞∑
m=1

(a2nm + b2nm + c2nm + d2
nm)
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Fourier series Proof of convergence of double Fourier series

Proof of convergence of double Fourier series (contd.)

Assuming f(x,y) is such that
∫ π
−π
∫ π
−π f (x , y)2dxdy is finite implies

that f(x,y) can be approximated in the mean by continuously
differentiable functions. As such, Parseval equation remains valid for
such functions.

Additionally, we know that the functions cos(nx) cos(my),
cos(nx) sin(my), sin(nx) cos(my), and sin(nx) sin(my) are
orthogonal in the sense that∫ π

−π

∫ π

−π
cos(nx)cos(my)cos(kx)cos(ly)dxdy = 0 unless n = k,m = l ,∫ π

−π

∫ π

−π
cos(nx)cos(my)cos(kx)sin(ly)dxdy = 0

and so forth.
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Fourier series Proof of convergence of double Fourier series

Proof of convergence of double Fourier series (contd.)

Therefore, we find that:

∫ π

−π

∫ π

−π

[
f (x, y)−

(
1

4
a00 +

1

2

M∑
m=1

[a0mcos(my) + b0msin(my)] +
1

2

N∑
n=1

[an0cos(nx) + cn0sin(nx)]

+
N∑

n=1

M∑
m=1

[anmcos(nx)cos(my)] + [bnmcos(nx)sin(my)] + [cnmsin(nx)cos(my)] + [dnmsin(nx)sin(my)]

)]2
dxdy

=

∫ π

−π

∫ π

−π
f (x, y)2 dxdy −

(
π2

4
a200 +

π2

2

M∑
m=1

[a20m + b20m ] +
π2

2

N∑
n=1

[a2n0 + c2n0]

+ π2
N∑

n=1

M∑
m=1

[a2nm + b2nm + c2nm + d2nm ]

)

In the above expression we have used

∫ b

a
[f (x)−

N∑
1

cnφn(x)]
2
ρ(x)dx =

∫ b

a
f 2ρdx −

N∑
1

c2n

∫ b

a
φ
2
nρdx.

By Parseval’s equation, the R.H.S. approaches 0 as N,M →∞. So,
Fourier series converges to f(x,y) in the mean as N,M →∞.
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Fourier series Proof of convergence of double Fourier series

Proof of convergence of double Fourier series (contd.)

Furthermore, it can be shown that if f(x,y) is continuous and
continuously differentiable, and if the squares of its second partial
derivatives have finite integrals, then the double fourier series
converges absolutely and uniformly to f(x,y) as a double series.
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Fourier series examples

Fourier series examples

Examples..

Abdul Raheem, Anees Abrol (UNM) Multiple Fourier Series November 30, 2016 16 / 46



Fourier series examples Laplace’s Equation in a Cube

Laplace’s Equation in a Cube

We consider the problem ∇2u = ∂2u
∂x2

+ ∂2u
∂y2 + ∂2u

∂z2
= 0 where,

0 < x < π, 0 < y < π, 0 < z < π,

u = 0 for x = 0, x = π, y = 0, y = π, and z = π,

u(x , y , 0) = g(x , y)

This problem arises in electrostatics when u is the potential whose value g
is given on the face z = 0, while other faces are perfect conductors kept at
zero potential.

u can also be interpreted as an equilibrium temperature distribution when
the faces are kept at temperatures 0 and g, respectively.
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Fourier series examples Laplace’s Equation in a Cube

Laplace’s Equation in a Cube (contd.)

Maximum principle holds for Laplace’s equation in 3 as well as 2
dimensions, so this 3-D boundary value problem for Laplace’s
equation has at most one solution which varies continuously with
boundary values.

We use the method of separation of variables to solve this problem.
Consider the product function

u = X (x)Y (y)Z (z)

that solves the Laplace’s equation

∇2u =
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
= 0.

By this substitution, we get

∇2u

u
=

X
′′

X
+

Y
′′

Y
+

Z
′′

Z
= 0⇒ X

′′

X
+

Y
′′

Y
= −Z

′′

Z
= C1
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Fourier series examples Laplace’s Equation in a Cube

Laplace’s Equation in a Cube (contd.)

Again,
X
′′

X
= C1 −

Y
′′

Y
= C2.

So we have,

X
′′ − C2X = 0,

Y
′′ − (C1 − C2)Y = 0,

Z
′′

+ C1Z = 0.

The homogeneous boundary conditions give

X (0) = X (π) = 0,

Y (0) = Y (π) = 0,

Z (π) = 0.
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Fourier series examples Laplace’s Equation in a Cube

Laplace’s Equation in a Cube (contd.)

We must have C2 = −n2, where n is a positive integer, with the
corresponding eigen function

X = sin nx .

For Y, we have C1 − C2 = −m2, where m is another positive integer,
and

Y = sin my .

Then C1 = −m2 − n2, so that Z is a multiple of

sinh
√
m2 + n2 (π − z).
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Fourier series examples Laplace’s Equation in a Cube

Laplace’s Equation in a Cube (contd.)

We seek a solution of the form

u(x , y , z) =
∞∑
1

∞∑
1

αnm sinh
√
m2 + n2 (π − z) sin nx sin my .

Putting z = 0, we formally obtain

g(x , y) = u(x , y , 0) =
∞∑
1

∞∑
1

αnm sinh
√
m2 + n2 π sin nx sin my .

Therefore from the double Fourier series expansion we have

αnm sinh
√
m2 + n2 π = dmn =

4

π2

∫ π

0

∫ π

0
g(x , y) sin nx sin my dxdy .

Then

u(x , y , z) =
∞∑
1

∞∑
1

dnm

sinh
√
n2 + m2(π)

sinh
√

n2 + m2(π−z) sin nx sin my .
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Fourier series examples 3D Wave Equation in a Cube

3D Wave Equation in a Cube

We consider the problem

∂2u

∂t2
− c2

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
= 0

with initial conditions

u(0, y , z , t) = u(π, y , z , t) = 0,

u(x , 0, z , t) = u(x , π, z , t) = 0,

u(x , y , 0, t) = u(x , y , π, t) = 0,

u(x , y , z , 0) = f (x , y , z),

∂u

∂t
(x , y , z , 0) = g(x , y , z).

Solution to this hyperbolic problem describes the propagation of sound
waves from an initial disturbance in a cubical room...
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Fourier series examples 3D Wave Equation in a Cube

3D Wave Equation in a Cube (contd.)

The formal solution to this problem is given by

u(x , y , z , t) =
∑∑∑

[dlmncos
√

l2 + m2 + n2ct

+ d̃lmn
sin
√
l2 + m2 + n2ct√
l2 + m2 + n2c

]sin lx sin my sin nz ,

where

dlmn =
8

π3

∫ π

0

∫ π

0

∫ π

0
f (x , y , z) sin lx sin my sin nz dxdydz ,

d̃lmn =
8

π3

∫ π

0

∫ π

0

∫ π

0
g(x , y , z) sin lx sin my sin nz dxdydz .
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Fourier series examples Symmetrical Patterns from Dynamics

Symmetry in Nature
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Fourier series examples Symmetrical Patterns from Dynamics

Symmetry in Architecture
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Fourier series examples Symmetrical Patterns from Dynamics

Symmetry in Snowflakes
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Fourier series examples Symmetrical Patterns from Dynamics

1-D Repetitive Patterns
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Fourier series examples Symmetrical Patterns from Dynamics

2-D Repetitive Patterns
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Fourier series examples Symmetrical Patterns from Dynamics

Isometeries of the Euclidean plane (Translation)

To translate an object means to move it without rotating or reflecting it.
Every translation has a direction and a distance.
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Fourier series examples Symmetrical Patterns from Dynamics

Isometeries of the Euclidean plane (Rotation)

To rotate an object means to turn it around. Every rotation has a center
and an angle.
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Fourier series examples Symmetrical Patterns from Dynamics

Isometeries of the Euclidean plane (Reflection)

To reflect an object means to produce its mirror image. Every reflection
has a mirror line. A reflection of an ”R” is a backwards ”R”.
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Fourier series examples Symmetrical Patterns from Dynamics

Isometeries of the Euclidean plane (Glide Reflection)

A glide reflection combines a reflection with a translation along the
direction of the mirror line. Glide reflections are the only type of symmetry
that involve more than one step.
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Fourier series examples Symmetrical Patterns from Dynamics

Seventeen 2-D patterns

Wallpaper Group Finite Presentation

P111 < x , y : xy = yx >
P1m1 < x , y , z : x2 = y2 = 1, xz = zx , yz = zy >
P1g1 < x , y : x2 = y2 >
C1m1 < x , y : x2 = 1, xy2 = y2x >
P211 < t1, t2, t3 : t21 = t22 = t23 = (t1t2t3)2 = 1 >
P2mm < r1, r2, r3, r4 : r21 = r22 = r23 = r24 =

(r1r2)2 = (r2r3)2 = (r3r4)2 = (r4r1)2 == 1 >
P2mg < p, q, r : p2 = q2 = r2 = 1, pq = rpr >
P2gg < p, q, r : p2 = q2, r2 = 1, rpr = q−1 >
C2mm < p, q, r : p2 = q2 = r2 = (pq)2 = (prqr)2 = 1 >

Table: Wallpaper Group patterns and their Finite Presentations
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Fourier series examples Symmetrical Patterns from Dynamics

Seventeen 2-D patterns

Wallpaper Group Finite Presentation

P3 < u, v ,w : u3 = v3 = w3 = uvw = 1 >
P3m1 < r , s : r2 = s3 = (rs−1rs)3 = 1 >
P31m < p, q, r : p2 = q2 = r2 = (pq)3 = (qr)3 = (rp)3 = 1 >
P4 < a, b, c , d , e : a2 = b2 = c2 = d2 = abcd = 1,

= e5, e−1de = a, e−2de2 = b, e3de−3 = c >
P4mm < p, q, r : p2 = q2 = r2 =

(pq)4 = (qr)2 = (rp)4 = 1 >
P4gm < a, b, c , d , e : a2 = b2 = c2 = d2

= (ab)2 >= (bc)2 = (cd)2 = (da)2 = e4 = 1
P6 < a, b : a3 = b2 = ab6 = 1 >
P6mm < p, q, r : p2 = q2 = r2 = qr3 = rp2 = pq6 = 1 >

Table: Wallpaper Group patterns and their Finite Presentations
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Fourier series examples Symmetrical Patterns from Dynamics

Discrete dynamical systems

The system given by the recurrence relations

xn+1 = xn − f (xn, yn)

yn+1 = yn − g(xn, yn) (1)

is called a discrete dynamical system.
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Fourier series examples Symmetrical Patterns from Dynamics

Translational Symmetry

Suppose that the phase portrait has a period T along the x-axis. The
phase portrait is invariant after the transformation x

′
= x + T and y

′
= y .

Substituting x
′

and y
′

into (1), we have

x
′
n+1 = x

′
n − f (x

′
n + T , y

′
n)

y
′
n+1 = y

′
n − g(x

′
n + T , y

′
n) (2)

For (1) and (2) to be identical, we must have

f (x + T , y) = f (x , y)

g(x + T , y) = g(x , y) (3)

Similarly, if the phase portrait has a period T ∗ along the y-axis, it can be
shown that

f (x , y + T ∗) = f (x , y)

g(x , y + T ∗) = g(x , y) (4)
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Fourier series examples Symmetrical Patterns from Dynamics

Reflection Symmetry

Suppose that the phase portrait has reflective symmetry about the x-axis.
Let x

′
= x and y

′
= −y . Then we have,

x
′
n+1 = x

′
n − f (x

′
n,−y

′
n)

y
′
n+1 = y

′
n + g(x

′
n,−y

′
n) (5)

From invariance of the transformation we obtain

f (x ,−y) = f (x , y)

g(x ,−y) = −g(x , y) (6)

Similarly, if the phase portrait has reflective symmetry about the y-axis,
then

f (−x , y) = −f (x , y)

g(−x , y) = g(x , y) (7)
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Fourier series examples Symmetrical Patterns from Dynamics

Glide Reflective Symmetry

Suppose that phase portrait has a period T along x-axis and a glide
reflection in the same direction. Let x

′
= x + T

2 and y
′

= −y . Then,

x
′
n+1 = x

′
n − f (x

′
n +

T

2
,−y ′n)

y
′
n+1 = y

′
n + g(x

′
n +

T

2
,−y ′n) (8)

From invariance of the transformation we obtain

f (x +
T

2
,−y) = f (x , y), g(x +

T

2
,−y) = −g(x , y) (9)

Similarly, if the phase portrait has a period T ∗ about the y-axis and a glide
reflection in the same direction, then

f (−x , y +
T ∗

2
) = −f (x , y)

g(−x , y +
T ∗

2
) = g(x , y). (10)
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Fourier series examples Symmetrical Patterns from Dynamics

Rotational Symmetry

Suppose that the phase portrait remains unchanged after a rotation of an
angle θ counter clockwise. Let[

x
′

y
′

]
=

[
cos θ −sin θ
sin θ cos θ

] [
x
y

]
= Tθ

[
x
y

]
(11)

Substituting (11) into (1), we have[
x
′
n+1

y
′
n+1

]
=

[
x
′
n

y
′
n

]
− Tθ

[
f
g

]
(12)

From (1) and (12), we have

f (x
′
, y
′
) = cos θ f (x , y)− sin θ g(x , y)

g(x
′
, y
′
) = sin θ f (x , y) + cos θ g(x , y) (13)

Eliminating g(x,y) from (13), we obtain

f (x
′′
, y
′′

)− 2cos θ f (x
′
, y
′
) + f (x , y) = 0, (14)
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Dynamical systems with P6mm Symmetry

We chose the wallpaper group P6mm as an example and show how to
construct dynamical system with this symmetry as shown in [Chung, 1993].
Patterns having other symmetries can be constructed in a similar fashion.
P6mm has a 6-fold rotational symmetry. To obtain a phase portrait of (1)
with P6mm symmetry we substitute θ = π

3 into (14) and obtain

f (x
′′
, y
′′

)− f (x
′
, y
′
) + f (x , y) = 0. (15)

To find the general solution of (15), we express f (x , y) as a linear
combination of the function h(x (n), y (n))(n = 0, 1, 2, 3, 4, 5) where h(x,y) is
any function and the point y (n) is a rotation of the point
(x , y) = (x (0), y (0)) by an angle nπ

3 counter-clockwise i.e.

f (x , y) = rh(x , y) + sh(x
′
, y
′
) + th(x

′′
, y
′′

)

+ uh(−x ,−y) + vh(−x ′ ,−y ′ + wh(−x ′′ ,−y ′′) (16)

where r, s , t , u , v and w are real numbers.
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Dynamical systems with P6mm Symmetry (contd.)

From (15) and (16), we get t=s-r, u = -r, v = -s, and w = r-s. Therefore,

f (x , y) = r [h(x , y)− h(−x ,−y)] + s[h(x
′
, y
′
)− h(−x ′ ,−y ′)]

+ (s − r)[h(x
′′
, y
′′

)− h(−x ′′ ,−y ′′)]. (17)

From (13), we have

g(x , y) =
1√
3
f (x , y)− 2√

3
f (x

′
, y
′
). (18)

Since the pattern also has a reflection in a line (x-axis), the function h(x,y)
chosen should satisfy (6). From the periodic property of the pattern, we
obtain from (3)

f (x , y) = f (x + T , y) = f (x , y + αT )

g(x , y) = g(x + T , y) = g(x , y + αT ) (19)

where α =
√

3 or 1√
3
.
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Dynamical systems with P6mm Symmetry (contd.)

Considering the possible choices of h(x , y), and assuming that h(x , y) is
periodic along the x-axis with period 2π and the y-axis with period 2

√
3π.

Then, h(x , y) may be expressed in Fourier series as

h(x , y) =
∑

amncos(mx)cos(
ny√

3
) +

∑
bmncos(mx)sin(

ny√
3

)

+
∑

cmnsin(mx)cos(
ny√

3
) +

∑
dmnsin(mx)sin(

ny√
3

). (20)

From (6) and (17), the first, second and fourth sums on R.H.S. vanish.
Therefore,

h(x , y) =
∑

cmnsin(mx)cos(
ny√

3
) (21)
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Dynamical systems with P6mm Symmetry (contd.)

Assuming

h(x , y) = sin(x)cos(
2y√

3
) (22)

we calculate f(x,y) and g(x,y) using (17,18) which are then substituted in
(1).
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Dynamical systems with P6mm Symmetry (contd.)

The corresponding pattern was programmed in Matlab and the result is
shown in the figure below.
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Questions and Feedback..
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