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We are going to introduce the Hilbert transform in a couple of different ways. We are going to deal with
the Hilbert transform in the sense of L2 space, but before doing that, we can see how it works in the sense
of distributions. In this report, labeling follows from that in the text. We start by considering the principal
value of 1/x.

Project 8.7.(a). (The Principal Value Distribution 1/x) The linear functional H0 : S(R)→ C is given by

H0(φ) = p.v.

∫
R

φ(y)

y
dy := lim

ε→0

∫
|y|>ε

φ(y)

y
dy.

Prove that the functional H0 is continuous, so it is a tempered distribution. Also, find f and k such that
H0 is the k th derivative (in the sense of distributions) of f .

Proof. It suffices to show that H0(φk) → 0 as k → ∞, when φk → 0 in S(R) as k → ∞. Observe that for
each ε > 0,

∫
ε<|y|<1

1
ydy = 0. It follows that φk(0)

∫
ε<|y|<1

1
ydy = 0. We know that∣∣∣∣∣

∫
|y|>ε

φk(y)

y
dy

∣∣∣∣∣ =

∣∣∣∣∣
∫
|y|>ε

φk(y)

y
dy − 0

∣∣∣∣∣ =

∣∣∣∣∣
∫
|y|>ε

φk(y)

y
dy − φk(0)

∫
ε<|y|≤1

1

y
dy

∣∣∣∣∣
≤

∣∣∣∣∣
∫
ε<|y|≤1

φk(y)− φk(0)

y
dy

∣∣∣∣∣+

∣∣∣∣∣
∫
|y|>1

φk(y)

y
dy

∣∣∣∣∣ .
Note that there exists cy between y and 0 satisfying φk(y)−φk(0)

y = φ′k(cy), by the Mean Value Theorem. So,
the first integral is∣∣∣∣∣

∫
ε<|y|≤1

φk(y)− φk(0)

y
dy

∣∣∣∣∣ =

∣∣∣∣∣
∫
ε<|y|≤1

φ′k(cy)dy

∣∣∣∣∣ ≤
∫
ε<|y|≤1

ρ0,1(φk)dy ≤ 2

∫ 1

0

ρ0,1(φk)dy = 2ρ0,1(φk).

Similarly, the second integral is∣∣∣∣∣
∫
|y|>1

φk(y)

y
dy

∣∣∣∣∣ ≤
∫
|y|>1

|φk(y)|
|y|

dy ≤ 2

∫ ∞
1

ρ1,0(φk)

y2
dy = 2ρ1,0(φk) −1

y

∣∣∣∣∞
1

= 2ρ1,0(φk).

It follows that ∣∣∣∣∣
∫
|y|>ε

φk(y)

y
dy

∣∣∣∣∣ ≤ 2(ρ1,0(φk) + ρ0,1(φk)).

If φk → 0 in S(R) as k →∞, then both ρ0,1(φk) and ρ1,0(φk) tend to 0 as k →∞. Thus, H0 is continuous;
it is a tempered distribution.
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Now, we show that H0 = p.v.(1/x) = d
dx (log |x|), that is, f(x) = log |x| and k = 1. Indeed, we know that

(log |x|)′(φ) = −(log |x|)(φ′)

= −
∫
R

log |x|φ′(x)dx

= − lim
ε→0

∫
|x|>ε

log |x|φ′(x)dx.

Note that ∫ ∞
ε

log |x|φ′(x)dx = [log |x|φ(x)]
∞
ε −

∫ ∞
ε

φ(x)

x
dx

= − log(ε)φ(ε)−
∫ ∞
ε

φ(x)

x
dx.

Similarly, we get
∫ −ε
−∞ log |x|φ′(x)dx = log(ε)φ(−ε) −

∫ −ε
−∞

φ(x)
x dx. Since φ ∈ S(R), we get φ(ε) − φ(−ε) =

2εφ′(cε), by the Mean Value Theorem(cε is between −ε and ε). Using the L’Hospital Rule, we have that
lim
ε→0

log ε(φ(ε)− φ(−ε)) = 2 lim
ε→0

(ε log ε)φ′(cε) = 2 · 0 · φ′(0) = 0. Hence,

(log |x|)′(φ) = − lim
ε→0

∫
|x|>ε

log |x|φ′(x)dx

= lim
ε→0

[
log ε(φ(ε)− φ(−ε)) +

∫
|x|>ε

φ(x)

x
dx

]

= lim
ε→0

[
0 +

∫
|x|>ε

φ(x)

x
dx

]
= H0(φ).

Since (log |x|)′(φ) = H0(φ) for every φ ∈ S(R), we get H0 = p.v.(1/x) = d
dx (log |x|), as desired. This

completes the proof.

So, we can define the principal value of 1/x in the sense of distributions.

Project 8.7.(b). For each ε > 0, the function x−1χ|x|>ε(x) defines a tempered distribution, which we call
Hε

0. Then, for each φ ∈ S(R), we get

lim
ε→0

Hε
0(φ) = lim

ε→0

∫
R
x−1χ|x|>ε(x)φ(x)dx

= lim
ε→0

∫
|x|>ε

φ(x)

x
dx

= H0(φ).

Now, we are ready to define the Hilbert transform in the sense of distributions.

Project 8.7.(c). For each x ∈ R define a new tempered distribution by appropriately translating and
reflecting H0, as follows.

Definition 8.57. (The Hilbert Transform as a Distribution). Given x ∈ R, the Hilbert transform Hx(φ) of
φ at x, also written Hφ(x), is a tempered distribution acting on φ ∈ S(R) and defined by

Hx(φ) = Hφ(x) := (τ−xH0)∼(φ)/π.

Verify that Hφ(x) = 1
π limε→0

∫
|x−t|>ε

φ(t)
x−tdt.
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Proof. Note that τxφ̃(y) = τx(φ̃(y)) = φ̃(y − x) = φ(x − y). Using the time-frequency dictionary, we have
that

Hφ(x) =
1

π
(τ−xH0)∼(φ) =

1

π
(τ−xH0)(φ̃) =

1

π
H0(τx(φ̃))

=
1

π
lim
ε→0

∫
|y|>ε

τxφ̃(y)

y
dy

=
1

π
lim
ε→0

∫
|y|>ε

φ(x− y)

y
dy

=
1

π
lim
ε→0

∫
|x−t|>ε

φ(t)

x− t
dt.

Here, the last equality holds by substituting y = x − t and break the integral into two pieces so that ”−”
signs are canceled with each other.

In fact, we can replace S(R) by L2(R) in the definition of the Hilbert transform.

The first definition is,

Definition 12.12. The Hilbert transform H is defined by

Hf(x) := lim
ε→0

1

π

∫
|x−y|>ε

f(y)

x− y
dy for f ∈ L2(R).

Here, this definition is well-defined as follows:

Set kε,R(y) := (1/πy)χ{y∈R:ε<|y|<R}(y). Since kε,R is odd, we get (kε,R)∧(0) = 0 = i sgn(0). For ξ 6= 0,
note that

(kε,R)∧(ξ) =

∫
ε<|y|<R

1

πy
e−2πiyξ dy

= −i sgn(ξ)
2

π

∫ 2πR|ξ|

2πε|ξ|

sin t

t
dt→ −i sgn(ξ),

as ε→ 0, R→∞.

Set Hε,Rf := kε,R ∗ f = 1
π

∫
ε<|x−y|<R

f(y)
x−y dy. Then, Hε,Rf → Hf , as ε → 0, R → ∞. Also, we get

(Hε,Rf)∧(ξ) = (kε,R)∧(ξ)f̂(ξ)→ −i sgn(ξ)f̂ , as ε→ 0, R→∞. By the continuity of the Fourier transform,

it follows that (Hf)∧ = −i sgn(ξ)f̂ .

Since the Fourier transform in L2(R) is well-defined, so is (Hf)∧. So, by the Inversion formula, Hf is
well-defined. Here, note that the well-definedness of Hf is equivalent to that of (Hf)∧. This induces another
definition of the Hilbert transform:

Definition 12.1. The Hilbert transform H is defined on the Fourier side by the formula

(Hf)∧(ξ) := −i sgn(ξ)f̂(ξ),

for f in L2(R).

Historically, this is the definition of the Hilbert transform to solve the following problem:

Theorem (The Riemann-Hilbert Problem). Given f defined on R, find holomorphic functions F+

and F− defined on the upper and lower half-planes, respectively, such that f = F+ − F−.

Here, the Hilbert transform is given by Hf = 1
i (F

+ − F−).

Let me list properties of the Hilbert transform here:
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• f̂(ξ) + iĤf(ξ) is equal to 2f̂(ξ) for ξ > 0 and zero for ξ < 0.

• The Hilbert transform is an isometry on L2(R).

• Commutativity(translation): τhH = Hτh, where τhf(x) := f(x− h).

• Commutativity(dilation): δaH = Hδa, where δaf(x) := f(ax), for a > 0.

• Anti commutativity(reflection): H̃f = −Hf̃ , where f̃(x) := f(−x).

The first property follows from Definition 12.1. The second property is proved by applying Plancherel’s
Identity twice. The last three (Anti-)Commutative properties can be proved when we look at those identities
on the Fourier side by recalling that the Fourier transform is a bijection on L2(R). Notice that the second
property tells us that the Hilbert transform is bounded. The following proposition says that the last 4
properties above ”define” the Hilbert transform.

Proposition (Commutativity). Let T be a bounded operator on L2(R) that commutes with translations
and dilations. If T anticommutes with reflections, then T is a constant multiple of the Hilbert transform:
T = cH for some c ∈ R.

In fact, the above fact is just a part of Exercise 12.24. in the text. This position tells us that if we can
find a bounded operator on L2(R) satisfying the two commutative properties and the one anti-commutative
property, then the operator is a multiple of the Hilbert transform. In the sense of the Haar basis, the average
of the dilated and translated dyadic shift operators does satisfies all those properties. Indeed, if we pick this
operator as our T in the proposition, then we can say c = − 8

π , specifically. This process gives us the third
definition of the Hilbert transform in the L2 sense.

We have seen the definitions of the Hilbert transform so far, one as a distribution, three as a operator on
L2(R). Now, here is a different approach: considering a kernel in the complex plane.

Exercise 12.55. (Poisson and conjugate Poisson Kernels) Show that the Poisson kernel Py(x) and the
conjugate Poisson kernel Qy(x) are given by Py(x) = y

π(x2+y2) , Qy(x) = k x
π(x2+y2) . Calculate the Fourier

transform ofQy(x) for each y > 0, and show that Q̂y(ξ) = −isgn(ξ)exp(−2π|yξ|). Show that as y → 0, Qy(x)
approaches the principal value distribution p.v. 1

πx .

Proof. Let f ∈ L2(R) and F (z) be twice the analytic extension of f to the upper half plane R2
+ = {z =

x+ iy : y > 0}. By using Cauchy integral formula, F (z) can be written as:

F (z) =
1

πi

∫
R

f(t)

t− z
dt, z ∈ R2

+. (1)

Putting z = x+ iy, y > 0 in (1), we obtain the following expression:

F (z) =
1

πi

∫
R

f(t)

(t− x)− iy
dt

=
1

πi

∫
R

((t− x) + iy

(t− x)2 + y2
f(t)dt

=
1

πi

∫
R

(t− x)

(t− x)2 + y2
f(t)dt+

1

π

∫
R

y

(t− x)2 + y2
f(t)dt

=
i

π

∫
R

(x− t)
(x− t)2 + y2

f(t)dt+
1

π

∫
R

y

(x− t)2 + y2
f(t)dt

= iQy(x) ∗ f + Py(x) ∗ f.

=
i

π

∫
R

(x− t)
(x− t)2 + y2

f(t)dt+
1

π

∫
R

y

(x− t)2 + y2
f(t)dt

= iQy(x) ∗ f + Py(x) ∗ f.
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Thus we have Py(x) = y
π(x2+y2) and Qy(x) = k x

π(x2+y2) .

Now we find the Fourier transform of Qy(x). We have Qy(x) = x
π(x2+y2) . Since Qy(x) /∈ L1(R) and does not

have moderate decay, we define its Fourier transform by following:

Q̂y(ξ) = p.v

∫
R
Qy(x)e−2πixξdx.

= p.v
1

π

∫
R

xe−2πixξ

x2 + y2
dx

= lim
R→∞

1

π

∫ R

−R

xe−2πixξ

x2 + y2
dx. (2)

We use the contour integral to evaluate (2).
Let

g(z) =
ze−2πizξ

π(z2 + y2)
, ξ ∈ R, y > 0

and we see z = ±iy are the simple poles of g(z).

For ξ < 0 choose Γ+
R = C+

R ∪ [−R,R] where C+
R is the upper half semicircle of radius R and centred at

origin which contains the point of singularity z = iy of g(z).

Res(g(z), iy) = lim
z→iy

(z + iy)ze−2πixξ

π(z2 + y2)
=
e2πyξ

2π
for ξ < 0

For ξ > 0 choose Γ−R = C−R ∪ [−R,R] where C+
R is the lower half semicircle of radius R and centred at origin

which contains the point of singularity z = −iy of g(z).

Res(g(z),−iy) = lim
z→−iy

(z − iy)ze−2πixξ

π(z2 + y2)
=
e−2πyξ

2π
for ξ > 0

Q̂y(ξ) = lim
R→∞

1

π

∫ R

−R

xe−2πxξ

x2 + y2
dx = lim

R→∞

∮
Γ+
R

g(z)dz

= 2πiRes(g(z), iy)

Q̂y(ξ) = ie2πyξ. for ξ < 0.

Similarly,

Q̂y(ξ) = −ie−2πyξ for ξ > 0.

Therefore we conclude that

Q̂y(ξ) = −isgn(ξ)e−2πy|ξ| (3)

where y > 0 and sgn(ξ) = 1 if ξ > 0 , −1 if ξ < 0 and 0 if ξ = 0.

Remark 1. From (3) we see that limy→0 Q̂y(ξ) = −isgn(ξ).

Remark 2. Note that

lim
y→0

Qy ∗ f(x) = lim
y→0

1

π

∫
R

(x− t)2

(x− t)2 + y2
f(t)dt

= p.v.
1

π

∫
R

1

x− t
f(t)dt = Hf(x).
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By Remark 1 and continuity of Fourier transform in L2(R) we conclude that

(Hf)∧(ξ) = −isgn(ξ)f̂(ξ).

Remark 3. In project 7.8 we proved that Poisson kernel is an approximation of identity. Therefore we have
limy→0 Py ∗ f(x) = f(x) in L2 .

Definition 12.7.2. The Fourier multiplier Tm of a periodic function f ∈ L2(T) on the Fourier side is given
by

(Tmf)∧(n) = m(n)f̂(n).

where the sequence {m(n)}n∈Z is called the symbol of Tm. For Hp,m(n) = −isgn(n).

So, the Fourier multiplier of the Hilbert transform can be viewed as the limit of the conjugate Poisson
kernel Qy.

Now, we move on to the next section: Connection to Fourier series. We need the definition of the partial
Fourier sum for L2(T)

Definition . (Partial Fourier sum) For a nice function f ∈ L2(T), the N th partial Fourier sum is given by

SNf(θ) =
∑
|n|≤N

f̂(n)e2πinθ.

We can prove that SNf is a Fourier multiplier with symbol mN (n) = 1 if |n| ≤ N and mN (n) = 0 if
|n| > N .

Exercise 12.60. (Partial Fourier Sums as Modulations of the Periodic Hilbert transform) We prove 2 and
3 of the the followings(1 follows from simple calculations. In the talk, we used ”a picture” to show 1):

1.

mN (n) =

{
(sgn(n+N)− sgn(n−N))/2, if|n| 6= N

sgn(n+N)− sgn(n−N), if|n| = N
.

2. Let f ∈ Lp(T) and MN denote the modulation operator MNf(θ) := f(θ)e2πiθN . Show that

i(MNHpM−N )∧(n) = sgn(n+N)f̂(n).

3. Let MN denote the modulation operator ,MNf(θ) := f(θ)e2πiθN .Then

SNf(θ) =
i

2
(M−NHpMNf(θ)−MNHpM−Nf(θ)) +

1

2
(f̂(N)e2πiNθ + f̂(−N)e−2πiNθ).

Proof. The second statement follows from the time-frequency dictionary:

(MNHpM−Nf(θ))∧(n) = τN (HpM−Nf(θ))∧(n)

= (HpM−Nf(θ))∧(n−N)

= −isgn(n−N) ̂M−Nf(θ)(n−N)

= −isgn(n−N)τ−N f̂(n−N)

= −isgn(n−N)f̂(n).
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Now, the N th Fourier partial sum of a function f is

SNf(θ) =
∑
|n|≤N

f̂(n)e2πinθ

=
∑
n∈Z

f̂(n)e2πinθχ[−N,N ]

=
∑
n∈Z

mN (n)f̂(n)e2πinθ

=
∑
|n|6=N

mN (n)f̂(n)e2πinθ +
∑
|n|=N

mN (n)f̂(n)e2πinθ

=
∑
|n|6=N

mN (n)f̂(n)e2πinθ +
1

2

∑
|n|=N

mN (n)f̂(n)e2πinθ +
1

2

∑
|n|=N

mN (n)f̂(n)e2πinθ.

By using 1 of Exercise(12.60) above we get

SNf(θ) =
∑
|n|6=N

(
sgn(n+N)− sgn(n−N)

2
f̂(n)e2πinθ +

∑
|n|=N

(
sgn(n+N)− sgn(n−N)

2
f̂(n)e2πinθ

+
1

2

∑
|n|=N

mN (n)f̂(n)e2πinθ

=
∑
n∈Z

(
sgn(n+N)− sgn(n−N)

2
f̂(n)e2πinθ +

1

2

∑
|n|=N

mN (n)f̂(n)e2πinθ.

By using 2 of Exercise(12.60) we get

SNf(θ) =
i

2

∑
n∈Z

(M−NHpMNf(θ))∧(n)f̂(n)e2πinθ − i

2

∑
n∈Z

(MNHpM−Nf(θ))∧(n)f̂(n)e2πinθ

+
1

2
{mN (N)f̂(N)e2πiNθ +mN (−N)f̂(−N)e−2πiNθ}.

Using 1 Exercise(12.60) again we conclude that

SNf(θ) =
i

2
(M−NHpMNf(θ)−MNHpM−Nf(θ)) +

1

2
(f̂(N)e2πiNθ + f̂(−N)e−2πiNθ).

This completes the proof.
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