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1 Introduction

Fourier Analysis is among the largest areas of applied mathematics and can
be found in all areas of engineering and physics. Atomic physicists use the
Fourier transform to characterize and understand molecular structures, optical
physicist use Fourier series to decompose and resconstruct ultrafast photonic
pulses and particle physicsts use the ideas of orthogonal basis and Fourier coef-
ficients to describe the wave functions of particle states.

One of the most well known concepts in modern physics is the Heisenberg
Uncertainty Principle which tells us that we cannot know both the position and
momentum of a subatomic particle within a certain accuracy. To understand
this principle in some detail, we look to the subject of Fourier analysis. We
begin by motivating the idea that such a mathematical relationship exists and
then proceed to derive and describe the uncertainty principle in the formal set-
ting of Fourier analysis. After this, we discuss Fourier analysis as it is used and
understoof by physicists in quantum mechanics for several simple examples. Fi-
nally, we will attempt to see the relationship between our formal discussion of
the principle and some of the physical laws that govern the natural world.

This paper is written with the intent that the audiance is familiar with the
material presented during the semester of math 472 and as such the statements
and definitions regarding some topics taken to be well-understood are ommited.
The proofs given are a combination of our own and those presented in various
texts on the subject of Fourier analysis and wavelets.
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2 The Balian-Low Theorem

2.1 Motivation: Gabor Functions and Orthornomal Basis
of L2(R)

Before we discuss formally the subject of uncertainty in Fourier analysis,
we consider a few distinct but relavent ideas from which we can develope some
intuition. Additionally, just as is the case in Fourier analysis, as we will see
later the subject of quantum theory relies very heavily on the mathematics of
orthonormal basis and the relationships between wave functions represented in
these basis. As such a natural starting point for our discussion of uncertainty
is to examine how we can create orthonormal basis using techniques we have
already developed throughout the course such as translation and modulation.
For example, consider a basis of L2(R) in which we choose g = χ[0,1], the
characteristic function over the closed interval [0, 1] and let

gn,m = e2πimxg(x− n) for n,m ∈ Z.

We can see immediately that the basis is orthonormal because for any two
elements in {gn,m|n,m ∈ Z} are orthonormal since either the supports of the
functions are disjoint or, when they have the same support, the orthonormality
of the trigonometric functions take over. We conclude that

〈gk,l, gr,s〉L2(R) =

∫
R
gk,lgr,sdx = δ(k,r),(l,s)

where the twice-indexed Kroncker delta is defined as

δ(k,r),(l,s) =

{
0, for k 6= r or l 6= s

1, for k = r and l = s

This is a Gabor basis where the functions gn,m are Gabor functions.

2.2 The Balian-Low Theorem

We now state a theorem that is used for specifying the conditions these
functions must adhere to in order to form an orthonormal basis of the Hilbert
space L2(R) and in doing so we will develope some notions about localizations
of these fuctions.

Theorem 2.1 (The Balian-Low Theorem). Let g ∈ L2(R) and let

gn,m = e2πimxg(x− n) for n,m,∈ Z

then, if {gn,m|n,m ∈ Z} is an orthonormal basis of L2(R), either
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∫
R
x2|g(x)|2dx =∞

or ∫
R
ξ2|ĝ(ξ)|2dξ =∞.

Formally, this states that a window fuction (Gabor function) cannot be simul-
taniously well-localized in both time and frequency. Nor can it be compactly
supported and smooth because if it were, both integrals would be finite contra-
dicting the Balian-Low theorem.

Proof. For this proof, we follow the elegant and approachable one given by
Hernandez(1). First, let Q and P be operators defined outside of paradise on
the space S ′(R) of tempered distributions such that

Qf(x) = xf(x) and Pf(x) = −if ′(x)

Doing this allows us to rewrite the above integrals as∫ ∞
−∞

x2|g(x)|2dx =

∫ ∞
−∞
|Qg(x)|2dx

and
1

2π

∫ ∞
−∞

ξ2|ĝ(ξ)|2dξ =

∫ ∞
−∞
|P ĝ(ξ)|2dξ. 1

At this point, it suffices to show that Qg and Pg cannot both be in L2(R) simul-
taneously. We have the following relations

〈Qg, Pg〉 =
∑
n,m∈Z

〈Qg, gn,m〉〈gn,m, Pg〉 (1)

〈Qg, gn,m〉 = 〈g−m,−n, Qg〉 ∀m,n ∈ Z (2)

and also
〈Pg, gn,m〉 = 〈g−m,−n, Pg〉. (3)

Together, these relations imply that

〈Qg, Pg〉 = 〈Pg,Qg〉. (4)

If this is true however then it cannot be that Qg and Pg and both in L2(R) since
we would have,

〈Qg, Pg〉 =

∫ ∞
−∞

xg(x)(−ig′(x))dx

1Note that the factor of 1
2π

on the left side comes from the facts that 〈f, g〉 = 1
2π
〈f̂ , ĝ〉 and

f̂ ′(ξ) = iξf̂(ξ). The later of the two expressions is proved as an auxillary lemma in the next
section. See 3.3
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where integration by parts gives2∫ ∞
−∞

xg(x)(−ig′(x))dx = −i
∫ ∞
−∞

(g(x) + xg′(x))g(x)dx

= −i〈g, g〉+ 〈Pg,Qg〉.
However, since g ∈ L2(R) is a Gabor function, and 〈g, g〉 = ||g||22 = 1, we have

〈Qg, Pg〉 = −i+ 〈Pg,Qg〉

which is a contradiction. We need also to verify that (1),(2), and (3) are true
for Qg, Pg ∈ L2(R).

Lemma 2.2. Let Q and P be operators and let g,Qg, Pg ∈ L2(R), and let
{gn,m|n,m ∈ Z} form and orthonormal basis of L2(R) then the equations

〈Qg, Pg〉 =
∑
n,m∈Z

〈Qg, gn,m〉〈gn,m, Pg〉,

〈Qg, gn,m〉 = 〈g−m,−n, Qg〉 ∀m,n ∈ Z,

and
〈Pg, gn,m〉 = 〈g−m,−n, Pg〉

hold.

Proof. This will again follow directly the proof given by Hernandez. Because
{gn,m|n,m ∈ Z} is an orthonormal basis, it must be that

〈Qg, Pg〉 = 〈
∑
m

∑
n

〈Qg, gm,n〉gm,n, Pg〉

for which we can simply remove the sums from the inner product to give

〈Qg, Pg〉 =
∑
m

∑
n

〈Qg, gm,n〉〈gm,n, Pg〉.

This proves the first expression. Now, for the second, we note that n〈g, gn,m〉 =
0 ∀n,m ∈ Z it must hold for both cases when n = 0 and when n 6= 0. For the
later case, this imples that g = g0,0 is orthogonal to gn,m so that

〈Qg, gn,m〉 = 〈Qg, gn,m〉 − n〈g, gn,m〉

=

∫ ∞
−∞

e−2πimxg(x)(x− n)g(x− n)dx

if we let x = y + n, and use the fact that e−2πinm = 1, we have∫
R
e−2πi(y+n)mg(y + n)yg(y)dy =

∫
R
e−2πiymg(y + n)Qg(y)dy

2If g ∈ S then it is clear that the boundary terms will cancel but here xg, g′ ∈ L2(R), and
that is sufficient to ensure this integration by parts formula holds in Sobolev space.
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= 〈g−m,−n, Qg〉

proving the second expression. Finally, we can integrate by parts and make the
substitution y = x− n to see that

〈Pg, gn,m〉 = −i
∫ ∞
−∞

e−2πimxg′(x)g(x− n)dx

= i

∫ ∞
−∞

e−2πimxg(x)(−2πimg(x− n) + g′(x− n))dx

= 2πmδ−m,0δ0,n +

∫
R
e−2πimyg(y + n)(−ig′(y))dy = 〈g−m,−n, Pg〉

which verifies the final expression. Thus, the lemma and the Balian-Low theo-
rem hold.

�

In discussing this theorem we are able to gain some motivation for expecting
(at least analytically) a more general notion of localization of a function and
its Fourier transform. The Balian-Low theorem tells us that we cannot have a
function localized at once in both time and frequency but to actually charac-
terize and quantify this, we now move into the idea of uncertainty.

3 The Uncertainty Principle

Indeed, as we expect, the term uncertainty comes from the fact that both a
function and its Fourier transform cannot be localized at once. This means that
if a function f is localized about a point, then its Fourier transform f̂ will be
non-localized. In terms of dispersion which we will see in a moment, this means
that the cooresponding dispersion of f̂ will be large. We will begin by restating
several relavant theorems that are needed to understand the uncertainty prin-
ciple.
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Theorem 3.1 ( Hölder’s inequality). Let 1 < p, q <∞ be such that 1
p + 1

q = 1.

If f ∈ Lp(R) and g ∈ Lq(R), then fg ∈ L1(R) and
∫
R |f(t)g(t)|dt ≤ ||f ||p||g||q.

Proof. Let A=||f ||p, B = ||g||q, if A or B then f = 0 in Lp(R) or g = 0 in Lq(R)

then the result is trivial and we are done. Now let a = |f(x)|
A and b = |g(x)|

B and
we will use Young’s inequality3 to obtain

ab =
|f(x)g(x)|

AB
≤ |f(x)|p

pAp
+
|g(x)|q

qBq
.

Using the middle inequality and taking the integral yields

1

AB

∫
R
|f(x)g(x)|dx ≤ 1

pAp

∫
R
|f(x)|pdx+

1

qBq

∫
R
|g(x)|qdx.

Now we can substitute Ap =
∫
R |f(x)|pdx and Bq =

∫
R |g(x)|qdx and get

1

||f ||p||g||q
||fg||1 ≤

1

p
+

1

q
= 1,

which gives our result
||fg||1 ≤ ||f ||p||g||q.

�

Theorem 3.2 (Plancherel’s Theorem). For f ∈ L2(R),∫
R
|f(t)|2dt =

1

2π

∫
R
|f̂(w)|2dw

Proof. Since |f(t)|2 = f(t)f(t), we can take ĝ(t) = f(t) and g(w) = 1
2π

∫
R f(t)eiwtdt =

1
2π

∫
R f(t)e−iwtdt = 1

2π f̂(w) and then we have∫
R
|f(t)|2dt =

∫
R
f(t)f(t)dt =

∫
R
f(t)ĝ(t)dt

=

∫
R
f̂(t)g(t) =

1

2π

∫
R
f̂(w)f̂(w)dt =

1

2π

∫
R
|f̂(w)|2.

�

It is sufficient to discuss the Heisenberg uncertainty principle in one dimen-
sion using the L2(R) theory of the Fourier transform as is usually done. To do
so we introduce the following definition of the dispersion of a function which
tells us quantitatively how that function is distributed about a point x. We will
focus on the simple case when x = 0.

3Young’s inequality states that if a, b > 0 then ab ≤ ap

p
+ bq

q
where 1 < p, q < ∞ and

1
p

+ 1
q

= 1.
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Definition 3.1 (Dispersion Of A Function). Letf, xf ∈ L2()R. The dispersion
of a function f about x = 0 is given by

∆f = D0(f) =

∫
R x

2|f(x)|2dx∫
R |f(x)|2dx

. (5)

Lemma 3.3 (Fourier Transform Of A Derivative). Let f, xf ∈ L2(R). We find

f̂ ′ using the inversion formula then use integration by parts. First consider the
case where f ∈ S. Here we have

f̂ ′(ξ) =

∫
R
f ′(x)e−iξxdx = −

∫
R
f(x)(−iξe−iξx)dx.

Since f ∈ S we know that limx→±∞f(x) = 0 so that

f̂ ′(ξ) = 0 + iξ

∫
R
f(x)e−iξxdx = iξf̂(ξ).

This all works sufficiently for functions in S however, since we are interested
in functions f and f ′ in L2(R) where f ′ is now treated as a weak derivative (in
the distribution sense) we can instead use the time-frequency dictionary to write

f̂ ′(φ) = f ′(φ̂′) = f [(φ̂)]′.

Theorem 3.4 (The Heisenberg Uncertainty Principle In One Dimension). Let

f, xf, ξf̂ be in L2(R), then the product of the dispersion about zero of f with the

dispersion about zero of f̂ is such that

∆f∆f̂ ≥ 1

4
(6)

Proof: We will start with
∫
R xf(x)f ′(x)dx using integration by parts where, as

before there are no boundary terms, and the fact that f(x)f(x) = |f(x)|2 we see∫
R
xf(x)f ′(x)dx = −

∫
R
f(x)(f(x) + xf ′(x))dx = −

∫
R

(|f(x)|2 + xf(x)f ′(x))dx

and then rearranging the terms gives∫
R
|f(x)|2dx = −

∫
R
xf(x)f ′(x)dx−

∫
R
xf(x)f ′(x)dx

= −
∫
R
[xf(x)f ′(x) + xf(x)f ′(x)]dx,

We can use the fact that 2Re(z+z) = z+z and Re
( ∫

R F (x)dx
)

=
∫
RRe(F (x))dx

and that the integral on the left is real to combine the two integrals on the left
to get ∫

R
|f(x)|2dx = −2Re

(∫ b

a

xf(x)f ′(x)dx

)
.
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Note that the integral on the left is real as required since the right side is a real
number. Now, using the fact that |Re(z)| ≤ |z| and the Cauchy-Schwarz inequal-
ity we obtain, after squaring both sides and employing the triangle inequality for
integrals,(∫

R
|f(x)|2dx

)2

≤ 4

(∫
R
|xf(x)f ′(x)|dx

)2

≤ 4

(∫
R
x2|f(x)|2dx

)(∫
R
|f ′(x)|2dx

)
.

Now we can use Plancherel’s theorem on the right integral term and get∫
R
|f ′(x)|2dx =

1

2π

∫
R
|f̂ ′(ξ)|2dξ

and applying 3.3, ∫
R
|f ′(x)|2dx =

1

2π

∫
R
ξ2|f̂(ξ)|2dξ.

Substituting back into the inequality yields(∫
R
|f(x)|2dx

)2

≤ 4

2π

(∫
R
x2|f(x)|2dx

)(∫
R
ξ2|f̂(ξ)|2dξ

)
.

Now we can apply Plancherel’s theorem to the left hand side, giving(
1

2π

∫
R
|f(x)|2dx

)(∫
R
|f̂(ξ)|2dξ

)
≤ 4

2π

(∫
R
x2|f(x)|2dx

)(∫
R
ξ2|f̂(ξ)|2dξ

)

⇒ 1

4
≤
∫
R x

2|f(x)|2dx∫
R |f(x)|2dx

∫
R ξ

2|f̂(ξ)|2dξ∫
R |f̂(ξ)|2dξ

.

Finally, using the definition of dispersion we get the result that

1

4
≤ ∆f(x)∆f̂(ξ).

�

This concludes our development and description of the uncertainty principle
as a purely mathematical idea. In the next section, we are going to look at
this principle from the perspective of quantum mechanics to see how such an
abstract mathematical result arising from the properties of the Fourier transform
manifests itself in such a far-reaching natural way.

4 The Heisenberg Uncertainty Principle And Quan-
tum Mechanics

Attempting to say what defines quantum mechanics and how one should
think about it is a difficult task that many scientists still do not agree on. The
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quantum world, even though its properties are the most fundemental found in
nature (at least at this point in the history of our understanding), is very much
different from the macroscopic world that we live in. The physical objects that
obey these laws are of atomic scales so small that attempting to vizualize these
properties is often analogous to trying to draw a four-dimesnional figure on a
chalk board - impossible. Because of this, the comic given in the introduction
is a good example of an incorrect use of the uncertainty principle as it is being
applied in a macroscopic situation.

4.1 Preliminaries: Operators, Observables, & Eigenstates

The mathematics governing quantum theory is group theory or more specif-
ically, that of Lie groups and representation theory. Though we do not need
much of this explicitly for the purpose of this discussion, it will be helpful to
understand the way that quantum mechanics is treated to give context to how
the uncertainty principle is used.

Quantum mechanics takes place in a complex vector space (usually a Hilbert
space), H called a state space endowed with a Hermitian inner product. In
general, for our purposes here, the objects in this space are wavefunctions. We
say that the state ψ of a quantum mechanical object, is specified by the complex
vector

|ψ〉 =

ψ1

...
ψn


called a ket vector. Every such vector has a dual4 vector called a bra vector
that is given by

〈ψ| =
(
ψ1 . . . ψn.

)
.

To obtain a more precise idea of what these abstract vectors are, consider
two spin-states of a particle such as an electron. We call them |ψ〉 and |φ〉. The
probability amplitude of a particle in state |ψ〉 to be found (measured) in state
|φ〉 is given by the bra-ket

〈φ|ψ〉

where, we take the normalization requirement5

〈ψ|ψ〉 = 1

To see this further, we introduce the idea of an observable. We are talking
about the discrete set of states available for the spin of a particle (we will see

4The linear vector space spanned by the bra vectors 〈ψ| forms a dual space of H
5This is axiomatic to the probabilistic interpretation of quantum mechanics. Formally, we

postulate the existance of a positive-definite metric 〈ψ|ψ〉 ≥ 0

11



the continuous case in position and momentum later). By observable we mean
a quantity A, such that a measurement of A will take discrete values a1, a2, . . ..
Then the general state of a quantum mechanical object can be written as the
superposition,

|ψ〉 = c1|a1〉+ c2|a2〉+ . . . =
∑
n∈Z

cn|an 〉 (7)

and
〈ψ| = c∗1〈a1|+ c∗2〈a2|+ . . . =

∑
n∈Z

c∗n〈an|, (8)

where
cn = 〈an|ψ〉

and the complex conjugate is

c∗n = 〈an|ψ〉∗ = 〈ψ|an〉,

where any two vectors are orthonormal so that,

〈ai|aj〉 = δi,j .

The set of possible measured states of A form a set of orthonormal basis vectors.
It is not hard to see that we can write the probabilities under this requirement
as

1 = 〈ψ|ψ〉 =

(∑
i

c∗i 〈ai|
)(∑

j

cj |aj〉
)

=
∑
i

∑
j

c∗i cj〈ai|aj〉 =
∑
i

∑
j

c∗i cjδi,j =
∑
i

c∗i ci.

Thus, the probability of measuring ai from a measurement of A is given by

|ci|2 = |〈ai|ψ〉|2

and will sum to one. That is, There is a one hundred percent chance that |ψ〉 is
in one of those states. We will now introduce the expectation value of A which
is given as the average

〈A〉 =
∑
n

|cn|2an, (9)

and the uncertainty of this measurement is then given by

∆A =
√
〈A2〉 − 〈A〉2, (10)

where
〈A2〉 =

∑
n

|cn|2a2n.

We are almost ready to define and develope an uncertainty relation from these
ideas. Before this however we will define one more idea that is central to the
mathematics of quantum mechanics called an operator. An observable A such
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as spin or energy of a quantum system is represented as an operator . Infor-
mally, the observables of a quantum system are the eigenvalues of a self-adjoint
(Hermitian) linear operator on H. We will define an operator as

∆A := A− 〈A〉.

Note that all operators considered here are self-adjoint so that A = A†.

Theorem 4.1 ( Uncertainty Relation From Operators). Let A and B be ob-
servables as defined above on the Hilbert space H such that

|a〉 = ∆A|ψ〉

and
|b〉 = ∆B|ψ〉

then

〈(∆A)2〉〈(∆B)2〉 ≥ 1

4
|〈[A,B]〉|2

where [A,B] is the commutator of the operators A and B given as,

[A,B] = AB −BA (11)

and the anti-commutator is

{A,B} = AB +BA (12)

Note that these commutators are elements of subspaces of the state space H.
We will not discuss this here as the algebra becomes very cumbersome quickly.
Proof. First, we consider the Schwarz inequality,

〈a|a〉〈b|b〉 ≥ |〈a|b〉|2

Substituting the definition of the operators into this expression, we get

〈a|a〉 = 〈ψ|(A− 〈A〉)2|ψ〉 = 〈(∆A)2〉

and
〈b|b〉 = 〈ψ|(B − 〈B〉)2|ψ〉 = 〈(∆B)2〉

The Schwarz inequality then becomes,

〈(∆A)2〉〈(∆B)2〉 ≥ |〈(∆A∆B)〉|2

To get to the next step, we will write ∆A∆B in terms of the commutator and
the anti-commutator as

〈∆A∆B〉 =
1

2
〈[∆A,∆B]〉+

1

2
〈{∆A,∆B}〉
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Where [∆A,∆B]†=−[∆A,∆B] (not Hermitian) and {∆A,∆B}† = {∆A,∆B}
(Hermitian). Since the expectation value of a Hermitian operator is real and the
expectation value of a non-Hermitian operator is purely imaginary, this enables
us to write the right side of the inequality as

|〈(∆A∆B)〉|2 =
1

4
|〈[∆A,∆B]〉|2 +

1

4
|〈{∆A,∆B}〉|2.

We conclude by the Schwarz inequality, that the theorem holds. Note that the
uncertainty principle as a physical law in quantum mechanics comes directly
from the fact that [x, p] = i~ where x and p are the position and momentum
operators that we will see in the next section.

Now, let us move on to the Heisenberg’s uncertainty principle in quantum
mechanics.

4.2 Variance And Uncertainty Of A Particle

We will now move in to the continuous case of position and momentum. In
this case we will follow the standard treatment given in all quantum mechanics
books. Specifically, See Cahill(2) for a further description. To do this let us first
define the position and momentum operators. For simplicity, we will consider a
particle confined to move in one dimension.

Unlike the previous case, we now consider an observable over a continuous
set of states. The position operator x̂ 6 acting on a position state |x〉 is given
by the following relation

x̂|x〉 = x|x〉

where the state of a particle in position space is now written as

|ψ〉 =

∫ ∞
−∞

dx|x〉〈x|ψ〉.

We define the one-dimensional wave function in position space as

〈x|ψ〉 := ψ(x) (13)

where the average (expectation) value for a measurement of the position of a
particle is now given as

〈x〉 = 〈ψ|x̂|ψ〉 =

∫
R
dx〈ψ|x̂|x〉〈x|ψ〉

=

∫
R
x|ψ(x)|2dx.

6Often in physics, the hat notation is used for operators and matracies and a tilde such as
f̃(x) is used to denote the Fourier transform.
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For the momentum operator given such that p̂|p〉 = p|p〉 in momentum space,
The above definitions follow exactly the same so that the wave function in
position space is

〈p|ψ〉 = ψ(p).

Now, let us write the invese Fourier transform of ψ(x) as

ψ(x) =

∫ ∞
−∞

1√
2π
ψ̃(k)eikxdk =

∫ ∞
−∞

1√
2π~

ψ̃(p/~)√
~

ei(p/~)xdp

where we have made the substitution for the wavenumber k = p
~ . Now, for the

normalized wave function ψ(x), we use Parseval’s theorem to write

1 =

∫
R
|ψ(x)|2dx =

∫
R
|ψ̃(k)|2dk =

∫
R

∣∣ ψ̃(p/~)√
~
∣∣2dp

or equivalently, in Dirac notation, where ψ(x) = 〈x|ψ〉 and φ(p) = 〈p|ψ〉 =
ψ̂(p/~)√

~

1 = 〈ψ|ψ〉 =

∫
R
〈ψ|x〉〈ψ|x〉dx =

∫
R
|ψ(x)|2dx =

∫
R
|ψ(p)|2dp =

∫
R
〈ψ|p〉〈ψ|p〉dp.

The Fourier transform that connects momentum and position space wave func-
tions is then

ψ(x) =

∫
R

eipx/~√
2π~

φ(p)dp (14)

and the inverse is given as

φ(p) =

∫
R

e−ipx/~√
2π~

ψ(x)dx. (15)

Differentiating equation (14), we get

~
i

d

dx
ψ(x) =

∫
R

eipx/~√
2π~

pφ(p)dp (16)

however, recognizing that

〈x|p|ψ〉 =

∫
R

eipx/~√
2π~

pφ(p)dp,

we see that we have the equation

~
i

d

dx
ψ(x) = 〈x|p|ψ〉

where p̂ = ~
i
d
dx is the momentum operator in the position basis.
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Now, we want to normalize the Gaussian wave ψ(x) = Ne−(x/a)
2

to 1 in R
as

1 = N2

∫
R
e−2(x/a)

2

dx = N2a

√
π

2

so that N2 =
√

2πa2 and the normalized Gaussian wave function is

ψ(x) = 〈x|ψ〉 =

(
2

π

) 1
4 1√

a
e−(x/a)

2

Notice that since the Gaussian is an even function, the expectation value of the
position operator is zero.

〈x̂〉 = 〈ψ|x̂|ψ〉 =

∫
R
x|ψ(x)|2dx = 0

and the variance of x̂, given as (∆x̂)2 = 〈ψ|(x̂− 〈x̂〉)2|ψ〉 is

〈ψ|(x̂− 〈x̂〉)2|ψ〉 = 〈ψ|(x̂− 0)2|ψ〉 = 〈ψ|x̂2|ψ〉 =

∫
R
x2|ψ(x)|2 =

a2

4
.

Using the Fourier transform, we can also compute the variance of the momentum
operator to get the gaussian wave function in momentum space as

φ(p) =

√
a

2~

(
2

π

) 1
4

e−(ap)
2/(2~)2

and so, computing the variance of the momentum operator p̂, we get that

(∆p)2 =

∫
R
p2|φ(p)|2dp =

√
(

2

π
)

∫
R
p2

a

2~
e−(ap)

2/2~2

dp =
~2

2
.

Multiplying the two variances together, we get

(∆x)2(∆p)2 =
~2a2

4a2
=

~2

4
.

This is an example of uncertainty in quantum mechanics showing that the prod-

uct of the variances cannot be made smaller than ~2

4 . As a physical law, Heisen-
berg’s uncertainty principle states that,

(∆x)2(∆p)2 ≥ ~2

4
.
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