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Abstract-1

We consider an N-particle electron bunch moving, at nearly the speed of light, through a particle accelerator

system inside a vacuum chamber. Typically, N is of an order greater than ≈ 109 and the bunch is small relative to

the vacuum chamber cross-section. We model the evolution of the bunch by a random initial boundary value

problem (IBVP) with random, independent identically distributed (IID) initial conditions with a given density* and

where the electron evolution is given in terms of the Lorentz force and the associated microscopic Maxwell fields.

The electron phase space density is Klimontovich, i.e., a sum of delta functions. Taking expected value of the

associated Klimontovich evolution equation (with respect to the random initial conditions) and making reasonable

assumptions, we obtain the Vlasov equation with a correction term, for the expected value of the Klimontovich

density, coupled to the macroscopic Maxwell equations. With this framework we then pose the important

mathematical issues: (1) How well does the Vlasov density approximate a coarse-grained Klimontovich density

when N is large? We imagine that the vast literature on probabilistic limit theorems will be relevant here, e.g. the

Strong-Law of-Large-Numbers (SLLN). (2) The Vlasov equation without correction terms is the starting point for

many beam dynamics calculations so it is important to estimate the size of the correction term (surely related to

the correction term in the BBGKY hierarchy). In addition the correction term may shed light on FEL dynamics.

These mathematical issues are likely difficult analysis issues. We begin the talk with the much simpler

non-collective case, assuming the electrons do not radiate and thus ignoring the Maxwell self-fields, in order to set

the stage for the more complex KM→ VM case.
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Abstract-2

*In a physical context the N initial conditions are impossible to know. One view is to think of them as a set of

scattered data from which a density can be constructed using e.g., a density estimation procedure from

Mathematical Statistics. The IID random ICs are then given in terms of such a density. In our work here we simply

consider the initial density as given.
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Outline
Micro Klimontovich-Maxwell (KM) → Macro Vlasov-Maxwell (VM)

1 6N-Dimensional KM as random IBVP (ICs from scattered
data (SD)) and associated 6D VM “standard” IBVP

2 Simple case: Assume electrons don’t radiate, thus ignore
Maxwell self-fields and thus electrons don’t interact

Random Klimontovich density with 6N parameters →
6D-Liouville density (coarse grained) approximation

3 Formulate KM to eliminate a singularity

4 Derive evolution law for Klimontovich density in KM system

5 Derive evolution law for expected value of random KM system.
This leads to the VM system with a correction term (CT).

6 Open mathematical issues
VM with CT as a coarse-grained approximation to KM.
Relevance of probabilistic limit theorems?

Estimates of CT. The CT must be related to the CT in the
BBGKY hierarchy and may be relevant to FEL dynamics

AMa Talk 10/20/2014 Vlasov-Klimontovich Maxwell 4/20



Dynamics for Relativistic Electron Bunches
Goal today: Relate microscopic Klimontovich-Maxwell (KM) to macroscopic
Vlasov-Maxwell (VM)

First: Microscopic N-particle Klimontovich-Maxwell (KM)
The coupled KM system for i = 1, . . . ,N is:

Ṙi = v(Pi ), Ṗi = q
[
ET (Ri , t) + v(Pi )× BT (Ri , t)

]
,

Ri (0),Pi (0) given

ET = E + Eext , BT = B + Bext , v(P) = P/mγ(P)

∂tB = −∇× E, ∂tE = c2∇× B− cZ0J
K (R, t),

JK (R, t) =
N∑

n=1

qv(Pn(t))δ(R− Rn(t))

Primary interest: 6D Klimontovich phase space density

f K (R,P, t) =
1

N

N∑
n=1

δ(R− Rn(t))δ(P− Pn(t))

ODEs do not make sense since fields are infinite at particles, we
revise later
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Dynamics for Relativistic Electron Bunches - II
Goal today: Relate microscopic Klimontovich-Maxwell (KM) to macroscopic
Vlasov-Maxwell (VM)

Second: Macroscopic Vlasov-Maxwell (VM)
The coupled VM system for f V (R,P, t),E(R, t)),B(R, t) is

{∂t + v(P) · ∇R + q[ET (R, t) + v(P)× (BT (R, t)] · ∇P}f V = 0

f V (R,P, 0) smooth

ET = E + Eext , BT = B + Bext , v(P) = P/mγ(P)

∂tB = −∇× E, ∂tE = c2∇× B− cZ0J
V (R, t)

JV (R, t) = Nq

∫
R3

dPv(P)f V (R,P, t),

Goal: Relate the Klimontovich and Vlasov phase space densities

Note:
∫
A f K ,V = fraction of electron bunch in A
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Non-collective case- I
Newton → Einstein

Remark on Newton vs. Einstein

F = ma =
d

dt
mv→ F =

d

dt
mγv, γ = (1− v2

c2
)−1/2, thus |v| < c

Consider single particle dynamics where self fields E,B are zero
Uncoupled EOM for the N-electrons are

Ṙi = v(Pi ),

Ṗi = q
[
Eext(Ri , t) + v(Pi )× Bext(Ri , t)

]
=: F(Ri ,Pi , t),

v(P) = P/mγ(P), γ2 = 1 +
P · P
m2c2

F = q(Eext + v × Bext) is called the Lorentz force
More compactly we write

u̇i = G(ui , t), ∇uG(u, t) = 0, ui = (Ri ,Pi )
T , G = (v,F)T
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Non-collective case II
General Solution

Consider the IVP with general solution ϕ,

u̇ = G(u, t), u(t0) = u0,

u(t) = ϕ(t, t0,u0), ϕ(t0, t0,u0) = u0

1 Divergence free =⇒ measure preserving flow.

2 The system can be transformed into a Hamiltonian system.

3 General Solution satisfies (No-Name in standard ODE books)

ϕ(t2, t0,u0) = ϕ(t2, t1, ϕ(t1, t0,u0))

It is a Markov Property: Future depends on the past only
through the present. Some call it a co-cycle condition.
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Non-collective case III
Klimontovich Density

Main quantity: N-particle phase space (Klimontovich) density

ψN(u, t) :=
1

N

N∑
n=1

δ(u− ϕ(t, t0,u0n)),

Differentiating gives

∂tψN(u, t) := − 1

N

N∑
n=1

Dδ(u− ϕ(t, t0,u0n))G(ϕ(t, t0,u0n), t),

= − 1

N

N∑
n=1

Dδ(u− ϕ(t, t0,u0n))G(u, t)

Thus ψN is the unique solution of the IVP

∂tψN + G(u, t) · ∇uψN = 0,

ψN(u, t0) = 1
N

∑N
n=1 δ(u− u0n),

AMa Talk 10/20/2014 Vlasov-Klimontovich Maxwell 9/20



Non-collective case IIIa
Klimontovich Density

Physical issue on ICs: How to view the ICs? My current view:
{u0n}N1 is a given set of “scattered data” from which a density can
be constructed via density estimation from Statistics. I then
consider the Random IVP where the {u0n}N1 are replaced by IID
RVs {Un}N1 from the constructed density. But, is this the right
physics?
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Non-collective case IV
Klimontovich to Liouville and SLLN

Let {Un}N1 be a sequence of IID random vectors with density
ψ0(u), i.e., Prob(Un ∈ A) =

∫
A ψ0(u)du then

EψN(u, t;U1, . . . ,UN) = ψ0(ϕ(t0, t,u)).

SLLN Conjecture: ψN(u, t)→ ψ0(ϕ(t0, t,u)) a.s. in coarse grain
sense, i.e.

∫
A duψN(u, t)→

∫
A duψ0(ϕ(t0, t,u)) for rich class of

sets A
Fact: ψ(u, t) = ψ0(ϕ(t0, t,u)) is the unique solution of the IVP
for the 6D Liouville equation:

Lψ = ∂tψ + G(u, t) · ∇uψ = 0,

ψ(u, t0) = ψ0(u).
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Summary of Non-collective case

The microscopic evolution of the N-particle electron bunch is
governed by the Klimontovich IVP

Lψ = ∂tψN + G(u, t) · ∇uψN = 0,

ψN(u, t0) = 1
N

∑N
n=1 δ(u−Un),

The macroscopic evolution of the (smooth) electron bunch is
governed by Liouville IVP

LψL = ∂tψ
L + G(u, t) · ∇uψ

L = 0,

ψ(u, t0) = ψ0(u).

Remark: This is a Huge simplification (going from 6N to 6
dimensions) assuming the coarse graining and
Strong-Law-of-Large-Numbers (SLLN) can be justified.
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Fermi@Elettra First Bunch Compressor System

In a typical situation Eext = 0 and Bext = B(R) is determined by
dipole and quadrupole magnets.

Proposed layout of FERMI@Elettra first bunch compressor system.
Accelerating rf cavities in red, quadrupole magnets in blue, drift
sections in black and dipoles in green.
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Relativistic Electron Bunches with Self Fields
Back to beginning

The coupled macro VM system for f V (R,P, t),E(R, t),B(R, t) is

{∂t + v(P) · ∇R + q[ET (R, t) + v(P)× (BT (R, t)] · ∇P}f V = 0

ET = E + Eext , BT = B + Bext

∂tB = −∇× E, ∂tE = c2∇× B− cZ0J(R, t)

JV (R, t) = Q

∫
R3

dPv(P)f V (R,P, t), f V (R,P, 0) smooth

The coupled micro KM system for f K (R,P, t),E(R, t)),B(R, t) is

f K (R,P, t) =
1

N

N∑
n=1

δ(R− Rn(t))δ(P− Pn(t))

Ṙi = v(Pi ), Ṗi = q
[
ET (Ri , t) + v(Pi )× BT (Ri , t)

]
,

∂tB = −∇× E, ∂tE = c2∇× B− cZ0J
K (R, t),

JK (R, t) =
N∑

n=1

qv(Pn(t))δ(R− Rn(t)), Ri (0),Pi (0) Random IID

AMa Talk 10/20/2014 Vlasov-Klimontovich Maxwell 14/20



Modified Approach
Removing infinities due to Lienard-Wiechart fields

But the KM system has singularities. To remove the infinities we
rewrite as follows for i = 1, . . . ,N:

f K (R,P, t) =
1

N

N∑
n=1

δ(R− Rn(t))δ(P− Pn(t))

Ṙi = v(Pi ) Ṗi = q
[
ETi (Ri , t) + v(Pi )× BTi (Ri , t)

]
=: Fi (Ri ,Pi , t)

∂tBi = −∇× Ei , ∂tEi = c2∇× Bi − cZ0J
K
i (R, t),

JKi (R, t) =
N∑
n=1
n 6=i

qv(Pn(t))δ(R− Rn(t)), (Ri (0),Pi (0)) Random ICs

Note: Ei (Ri , t) is not singular even though Ei (Rn, t) is for n 6= i
(same for Bi ). Thus the ODEs are well defined, assuming no two
particles occupy the same position.
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Random Klimontovich Density and its Time Derivative

f K (R,P, t) =
1

N

N∑
n=1

δ(R− Rn(t))δ(P− Pn(t))

We emphasize that f K is random through the electron ICs, i.e.,

f K (R,P, t) = f K (R,P, t; Θ) where

Θ = (R1(0),P1(0), . . . ,RN(0),PN(0))

∂t f
K (R,P, t) = − 1

N

N∑
n=1

Dδ(R− Rn(t))v(Pn(t))δ(P− Pn(t))

+δ(R− Rn(t))Dδ(P− Pn(t)Fn(Rn(t),Pn(t), t)

= − 1

N

N∑
n=1

Dδ(R− Rn(t))δ(P− Pn(t))v(P)

+δ(R− Rn(t))Dδ(P− Pn(t))Fn(R,P, t)

Convention: For f : Rn → Rm, Df := [∂1f , . . . , ∂nf ] = [m × n]
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Taking Expected Value with Respect to ICs - 1

Taking expected value we obtain

∂t f̄
K (R,P, t) = −DRf̄

K (R,P, t)v(P)

− 1

N

N∑
n=1

δ(R− Rn(t))Dδ(P− Pn(t)) Fn(R,P, t)

+Correction Term.

Here Correction Term = − 1
N

∑N
n=1 anbn − anbn

Thus we need to analyze

Fn(R,P, t) = q[ETn(R, t) + v(P)× BTn(R, t)].

Note: Bar and overline denote expected value with respect to the
ICs. The traditional use of E is cumbersome and conflicts with
electric field.
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Taking Expected Value with Respect to ICs - 2
Analysis of Fn(R,P, t)

Expected value of the microscopic Maxwell equations yields

∂tB̄i = −∇× Ēi , ∂t Ēi = c2∇× B̄i − cZ0JKi (R, t),

Now

JK (R, t) =
N∑

n=1

qv(Pn(t)δ(R− Rn(t)) = Nq

∫
R3

dPv(P)f K (R,P, t)

and it follows that

JKi (R, t) = JK (R, t)− qv(Pi (t))δ(R− Ri (t)) ≈ JK (R, t)

for large N, and we obtain B̄i ≈ B, Ēi ≈ E where

∂tB = −∇× E, ∂tE = c2∇× B− cZ0JK (R, t)

JK (R, t) = qN

∫
R3

dPv(P)f̄ K (R,P, t)
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Taking Expected Value with Respect to ICs - 3
Analysis of Fn(R,P, t) continued

Thus

Fn(R,P, t) = q[ETn(R, t) + v(P)× BTn(R, t)]

≈ q[ET (R, t) + v(P)× BT (R, t)] =: F(R,P, t)
Recalling

∂t f̄ (R,P, t) = −DRf̄ (R,P, t)v(P)

− 1

N

N∑
n=1

δ(R− Rn(t))Dδ(P− Pn(t)) Fn(R,P, t)

+Correction Term ≡ CT.
we obtain the approximation

∂t f̄ (R,P, t) = −DRf̄ (R,P, t)v(P)− DPf̄ (R,P, t)F(R,P, t)) + CT
which can be rewritten

[∂t +∇R · v(P) +∇P · F(R,P, t)]f̄ (R,P, t) = CT

For CT= 0 We Have The Vlasov Equation
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Summary and Mathematical issues
Approximation via probabilistic limit theorems? When is CT small?

1 We have formulated the N-particle electron dynamics with
self-fields in term of the N-particle KM random IBVP. The
randomness enters via density estimation from scattered data
representing the initial electron positions.

2 We have taken expected value of the microscopic KM IBVP
and shown that it leads, in reasonable approximation, to the
macroscopic VM +CT. Is CT related to FEL dynamics?

3 Open mathematical issues
How well does VM with CT approximate the coarse-grained
KM? Relevance of vast literature on probabilistic limit
theorems? A generalized SLLN? Recall the simple
non-collective case where this is likely straight forward.

Good estimates of CT are likely difficult. E.g., the CT must be
related to the CT in the BBGKY hierarchy. Note there is no
CT in the non-collective case going from Klimontovich to
Liouville.
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