Microscopic Klimontovich-Maxwell (KM) to Macroscopic Vlasov-Maxwell (VM) ${ }^{1}$
Kinetic theory based on the random initial value problem and coarse graining

Jim Ellison
Department of Math\&Stat, UNM
In collaboration with
Gabriele Bassi BNL and Klaus Heinemann UNM

December 5, 2016
Applied Math Seminar Presentation

[^0]
Outline
 Micro Klimontovich-Maxwell (KM) \rightarrow Macro Vlasov-Maxwell (VM)

(1) Relation of 6 N -Dimensional KM as random IVP to associated 6-Dimensional VM IVP for N large
(2) General Framework: N particle motion with random IID initial conditions, associated PDF and random Klimontovich density (KD), coarse grained KD, large N statistics, BBGKY
(3) Four examples of evolution laws with random initial conditions

- Non-interacting particle case (Non-collective)
- Two particle interaction force
- Simple relativistic KM system
- 6N-Dimensional KM
(4) Main two questions
- How well does the coarse grained mean of KD approximate the the coarse grained KD?
- Kinetic theory: Find a good approximate evolution law for the mean of the KD

6D microscopic Klimontovich-Maxwell (KM) System

Goal today: Framework for KM \rightarrow VM

First: Microscopic N-particle Klimontovich-Maxwell (KM)
The coupled KM system for $i=1, \ldots, N$ is ${ }^{2}$

$$
\begin{aligned}
& \dot{\mathbf{R}}_{i}=\mathbf{v}\left(\mathbf{P}_{i}\right), \quad \dot{\mathbf{P}}_{i}=q\left[\mathbf{E}_{T}\left(\mathbf{R}_{i}, t\right)+\mathbf{v}\left(\mathbf{P}_{i}\right) \times \mathbf{B}_{T}\left(\mathbf{R}_{i}, t\right)\right] \\
& W_{0 i}=\left(\mathbf{R}_{i}(0), \mathbf{P}_{i}(0)\right) \text { as IID random vectors } \\
& \mathbf{E}_{T}=\mathbf{E}+\mathbf{E}_{e x t}, \quad \mathbf{B}_{T}=\mathbf{B}+\mathbf{B}_{e x t}, \quad \mathbf{v}(\mathbf{P})=\mathbf{P} / m \gamma(\mathbf{P}) \\
& \partial_{t} \mathbf{B}=-\nabla \times \mathbf{E}, \quad \partial_{t} \mathbf{E}=c^{2} \nabla \times \mathbf{B}-c Z_{0} \mathbf{J}^{K}\left(\mathbf{R}, t ; W_{0}\right), \\
& \mathbf{J}^{K}\left(\mathbf{R}, t ; W_{0}\right)=\sum_{n=1}^{N} q \mathbf{v}\left(\mathbf{P}_{n}\left(t ; W_{0}\right)\right) \delta\left(\mathbf{R}-\mathbf{R}_{n}\left(t ; W_{0}\right)\right)
\end{aligned}
$$

Primary interest: Random 6D Klimontovich phase space density

$$
K\left(\mathbf{R}, \mathbf{P}, t ; W_{0}\right)=\frac{1}{N} \sum_{n=1}^{N} \delta\left(\mathbf{R}-\mathbf{R}_{n}\left(t ; W_{0}\right)\right) \delta\left(\mathbf{P}-\mathbf{P}_{n}\left(t ; W_{0}\right)\right)
$$

${ }^{2}$ Needs slight revision as fields are infinite at particles

6D macroscopic Vlasov-Maxwell system

Goal today: Framework for KM \rightarrow VM

Second: Macroscopic Vlasov-Maxwell (VM)
The coupled VM system for $f(\mathbf{R}, \mathbf{P}, t), \mathbf{E}(\mathbf{R}, t)), \mathbf{B}(\mathbf{R}, t)$ is

$$
\begin{aligned}
& \left\{\partial_{t}+\mathbf{v}(\mathbf{P}) \cdot \nabla_{\mathbf{R}}+q\left[\mathbf{E}_{T}(\mathbf{R}, t)+\mathbf{v}(\mathbf{P}) \times\left(\mathbf{B}_{T}(\mathbf{R}, t)\right] \cdot \nabla_{\mathbf{P}}\right\} f=0\right. \\
& f(\mathbf{R}, \mathbf{P}, 0)=f_{0}(\mathbf{R}, \mathbf{P}) \text { smooth } \\
& \mathbf{E}_{T}=\mathbf{E}+\mathbf{E}_{e x t}, \quad \mathbf{B}_{T}=\mathbf{B}+\mathbf{B}_{e x t}, \quad \mathbf{v}(\mathbf{P})=\mathbf{P} / m \gamma(\mathbf{P}) \\
& \partial_{t} \mathbf{B}=-\nabla \times \mathbf{E}, \quad \partial_{t} \mathbf{E}=c^{2} \nabla \times \mathbf{B}-c Z_{0} \mathbf{J}(\mathbf{R}, t) \\
& \mathbf{J}(\mathbf{R}, t)=N q \int_{\mathbb{R}^{3}} d \mathbf{P v}(\mathbf{P}) f(\mathbf{R}, \mathbf{P}, t),
\end{aligned}
$$

Goal: Relate Klimontovich and Vlasov phase space densities, K, f
Let \bar{K} be expected value of K, and $K_{A}\left(t ; W_{0}\right)=\int_{A} d v K\left(v, t ; W_{0}\right)$
Issue 1: How close are K_{A} and \bar{K}_{A} for large N ?
Issue 2: How close are \bar{K}_{A} and f for large N ?

General Framework-I
 Particle motion and probability distribution

(1) N electron evolution in d-dimensional phase space

$$
\begin{aligned}
& w_{i}\left(t ; W_{0}\right) \in \mathbb{R}^{d} ; i=1, N ; t \geq 0 ; \quad w_{i}\left(0 ; W_{0}\right)=W_{0 i} \\
& W_{0}=\left(W_{01}, \cdots, W_{0 i N}\right)^{T},\left\{W_{0 i}\right\} \text { IID RVs with PDF } \psi_{0} \\
& W\left(t ; W_{0}\right)=\left[w_{1}\left(t ; W_{0}\right), \cdots, w_{N}\left(t ; W_{0}\right)\right]^{T} \in \mathbb{R}^{N d}
\end{aligned}
$$

(2) $\Psi(w, t)$ denotes joint PDF of the $w_{i}\left(t, W_{0}\right)$. It is assumed to have permutation symmetry (PS), i.e.,
$\Psi\left(\cdots, w_{i}, \cdots, w_{j}, \cdots, t\right)=\Psi\left(\cdots, w_{j}, \cdots, w_{i}, \cdots, t\right) \Rightarrow$ marginal PDFs, $\Psi_{s}\left(w_{i_{1}}, \cdots, w_{i_{s}}, t\right)$, of any s-particles are equal, thus Ψ_{s} given by integrating out any $N-s$ variables from Ψ.

General Framework- II

The random Klimontovich density (KD)

(1) Random Klimontovich density (KD)

$$
\begin{aligned}
& K\left(v, t ; W_{0}\right)=\frac{1}{N} \sum_{1}^{N} \delta\left(v-w_{i}\left(t ; W_{0}\right)\right) \\
& K_{A}\left(t, W_{0}\right)=\int_{A} d v K\left(v, t ; W_{0}\right)=\frac{1}{N} \cdot \# \text { particles in } A
\end{aligned}
$$

(2) Moments of KRD in terms of PDF Ψ

$$
\begin{aligned}
\bar{K}(v, t):=\overline{K\left(v, t ; W_{0}\right)} & =\Psi_{1}(v, t) \\
\bar{K}_{A}(t):=\overline{K_{A}\left(t ; W_{0}\right)} & =\int_{A} d v \Psi_{1}(v, t)
\end{aligned}
$$

Thus the expected value of K is the probability density of $w_{i}\left(t ; W_{0}\right)$ and the expected value of K_{A} is the probability that $w_{i}\left(t ; W_{0}\right) \in A$

General Framework- IIA Remarks on Klimontovich density

(1) $\delta\left(v-w_{i}\left(t ; W_{0}\right)\right)$ has three possible interpretations: (1) standard physics, (2) delta sequences, (3) generalized functions. But in (2) what would be the sequence for the electron as a point source? Here we use (1). K. Heinemann is working on (3).
(2) Using interpretation (1): $\overline{\delta\left(v-w_{i}\left(t ; W_{0}\right)\right)}=$ $\int d w_{0} \Psi_{0}\left(w_{0}\right) \delta\left(v-w_{i}\left(t ; w_{0}\right)\right)=\int d w \Psi(w, t) \delta\left(v-w_{i}\right)=$ $\int d w_{i} \Psi_{1}\left(w_{i}, t\right) \delta\left(v-w_{i}\right)=\Psi_{1}(v, t)$.
This justifies the formula $\bar{K}(v, t)=\Psi_{1}(v, t)$ on the previous slide.
(3) For a special $A, K_{A}\left(t, W_{0}\right)$ is the so-called empirical distribution function. The related Glivenko-Cantelli theorem applies in the IID case.

General Framework- III
 Basic Issues for KRD: coarse grained K and evolution law for K

Issue 1 How close are spiky K and smooth \bar{K} ? ${ }^{3}$ We compare K_{A} and \bar{K}_{A} and call K_{A} a coarse grained version of $K .{ }^{4}$
Issue 2 Given an evolution law for K, what is the evolution law for \bar{K} ? Once an evolution law for the w_{i} is defined, an evolution law for K follows. We explore three examples with increasing complexity below. The last example raises the main issues of importance for the 6D KM system mentioned above which is our main interest.

[^1]
General Framework IV

Coarse Graining leads to a sum of Bernoulli RVs

We show K_{A} is a sum of $\left(L^{2}\right)$ Bernoulli $R V s$.
(1) $K\left(v, t ; W_{0}\right)=\frac{1}{N} \sum_{1}^{N} \delta\left(v-w_{i}\left(t ; W_{0}\right)\right)$ and integrating over A
gives $K_{A}\left(t ; W_{0}\right)=\frac{1}{N} \sum_{1}^{N} X_{i}(t)$ where $X_{i}(t)=1_{A}\left(w_{i}\left(t ; W_{0}\right)\right)$
Ready for probabilistic analysis of large sum of RV s
(2) The $X_{i}(t)$ are Bernoulli RVs with
$\operatorname{Pr}\left\{X_{i}(t)=1\right\}=\int_{A} d v \Psi_{1}(v, t)=: p(t)$ thus
$\overline{X_{i}(t)}=p(t)^{5}, \quad \operatorname{Var} X_{i}(t)=p(t)(1-p(t))$
(3) $X_{i} X_{j}$ is also a Bernoulli RV. Here $\operatorname{Pr}\left\{X_{i} X_{j}=1\right\}=$
$\operatorname{Pr}\left\{X_{i} \in A \& X_{j} \in A\right\}=\int_{A \times A} d v d v^{\prime} \Psi_{2}\left(v, v^{\prime}, t\right) \Rightarrow$ $\overline{X_{i} X_{j}}=\int_{A \times A} d v d v^{\prime} \Psi_{2}\left(v, v^{\prime}, t\right) \Rightarrow$
$\operatorname{Cov}\left(X_{i} X_{j}\right)=\int_{A \times A} d v d v^{\prime}\left(\Psi_{2}\left(v, v^{\prime}, t\right)-\Psi_{1}(v, t) \Psi_{1}\left(v^{\prime}, t\right)\right)$
Recall Ψ_{2} is the joint PDF of $w_{i}\left(t ; W_{0}\right)$ and $w_{j}\left(t ; W_{0}\right)$ for any $i \neq j$.

[^2]
General Framework V

The variance of K_{A} is the square of the L^{2} difference of K_{A} and \bar{K}_{A}
(1) $K_{A}\left(t ; W_{0}\right)=\frac{1}{N} \sum_{1}^{N} X_{i}(t) \Rightarrow \bar{K}_{A}(t)=\overline{X_{i}}=p(t) \Rightarrow$ $\operatorname{Var} K_{A}\left(t ; W_{0}\right)=\frac{1}{N} p(t)(1-p(t))+\frac{N(N-1)}{N^{2}} \operatorname{Cov}\left(X_{1}, X_{2}\right)^{6}$
(2) Issue 1: Thus $K_{A} \approx \bar{K}_{A}$ in the L^{2} sense for N large if $\operatorname{Cov}\left(X_{1}, X_{2}\right)$ is small, i.e., if $\left.\Psi_{2}\left(v, v^{\prime}, t\right) \approx \Psi_{1}(v, t) \Psi_{1}\left(v^{\prime}, t\right)\right)$. So Issue 1 reduces to a study of Ψ_{2} for large N and its behavior in t. Surely Ψ depends on N in a complicated way and likely some mixing/chaotic behavior of the w_{i} will be needed.
(3) Issue 2: Given that $K_{A} \approx \bar{K}_{A}$, it then becomes important to study \bar{K}. This is discussed in the following examples.

[^3]
Example 1 (Non-interacting particles) - 1 Particle evolution law for the w_{i}

The non-interacting particle motions w_{i} are defined by

$$
\dot{w}_{i}=G\left(w_{i}, t\right), \quad w_{i}\left(0 ; W_{0}\right)=W_{0 i} \text { IID random ICs }
$$

The ODEs and ICs are uncoupled hence the $w_{i}\left(t ; W_{0}\right)$ are IID random vectors.

- Without self fields the 6D Klimontovich-Maxwell system reduces to these uncoupled EOM for the N -electrons.

Example 1 (Non-interacting particles) - 2

The $X_{i}(t)=1_{A}\left(w_{i}\left(t ; W_{0}\right)\right)$ are IID Bernoulli RVs with $p(t)=\int_{A} d v \Psi_{1}(v, t)$, thus:
LLNs: $K_{A}\left(t ; W_{0}\right) \rightarrow p(t)$ in probability, in L^{2} and a.s., as $N \rightarrow \infty$.
CLT: $K_{A}\left(t, W_{0}\right) \approx p(t)+\left(\frac{p(t)-p(t)^{2}}{N}\right)^{1 / 2} \chi$ in the sense of convergence in distribution. χ is a normal $(0,1)$ random variable.
LD: Large Deviation bounds for $\delta \in[0,1]^{7}$:
$\operatorname{Pr}\left\{K_{A}\left(t ; W_{0}\right) \geq(1+\delta) p(t)\right\} \leq \exp \left(-N \delta^{2} p(t) / 3\right)$ and $\operatorname{Pr}\left\{K_{A}\left(t ; W_{0}\right) \leq(1-\delta) p(t)\right\} \leq \exp \left(-N \delta^{2} p(t) / 2\right)$ The bounds are small if $N \delta^{2}$ is large.
GC: Glivenko-Cantelli applies here
Thus we have a complete answer to Issue 1

[^4]
Example 1 (Non-interacting particles) - 3
 Klimontovich density evolution law and Issue 2

The Klimontovich random density satisfies

$$
\begin{gathered}
\partial_{t} K+\nabla_{v} \cdot G(v, t) K=0 \\
K(v, 0)=\frac{1}{N} \sum_{i=1}^{N} \delta\left(v-W_{0 i}\right)
\end{gathered}
$$

and taking expected value we obtain

$$
\begin{gathered}
\partial_{t} \bar{K}+\nabla_{v} \cdot G(v, t) \bar{K}=0 \\
\bar{K}(v, 0)=\frac{1}{N} \overline{\sum_{i=1}^{N} \delta\left(v-W_{0 i}\right)}=\psi_{0}(v)
\end{gathered}
$$

Thus the equations for K and $\bar{K} \equiv \Psi_{1}$ are the same, the evolutions differ only because of the initial data. The equation for \bar{K} is called the Kinetic Equation.
Thus we have a complete answer to Issue 2.
We have not seen these results for single particle dynamics in accelerators.

Example 2 (Two particle interaction force) - 1 Particle evolution law and KD

The particle motions and associated KD are given by
$\dot{\theta}_{i}=\omega\left(\epsilon_{i}\right), \dot{\epsilon}_{i}=\sum_{1}^{N} F\left(\theta_{i}-\theta_{j}\right)$
$K\left(\theta, \epsilon, t ; W_{0}\right)=\frac{1}{N} \sum_{1}^{N} \delta\left(\theta-\theta_{i}\left(t ; W_{0}\right)\right) \delta\left(\epsilon-\epsilon_{i}\left(t ; W_{0}\right)\right)$
As in the general case
$\operatorname{Var} K_{A}\left(t ; W_{0}\right)=\frac{1}{N} p(t)(1-p(t))+\frac{N(N-1)}{N^{2}} \operatorname{Cov}\left(X_{1}, X_{2}\right)$
$\operatorname{Cov}\left(X_{i} X_{j}\right)=\int_{A \times A} d \theta d \epsilon d \theta^{\prime} d \epsilon^{\prime} \mathcal{C}\left(\theta, \epsilon, \theta^{\prime}, \epsilon^{\prime}, t\right)$ where
$\left.\mathcal{C}\left(\theta, \epsilon, \theta^{\prime}, \epsilon^{\prime}, t\right)=\Psi_{2}\left(v, v^{\prime}, t\right)-\Psi_{1}(v, t) \Psi_{1}\left(v^{\prime}, t\right)\right), v=(\theta, \epsilon)$
Issue 1: If $w_{i}\left(t ; W_{0}\right)$ and $w_{j}\left(t ; W_{0}\right)$ are independent then $\mathcal{C}=0$ and \bar{K} is a good approximation to K. Next step : study the N and t behavior of the covariance.

Example 2 (Two particle interaction force) - 2

Klimontovich evolution law and the associated mean

The Klimontovich density and its expected value satisfy

$$
\begin{aligned}
& K_{t}+\omega(\epsilon) K_{\theta}+N \mathcal{L}(K) K_{\epsilon}=0 \\
& \bar{K}_{t}+\omega(\epsilon) \bar{K}_{\theta}+N \mathcal{L}(\bar{K}) \bar{K}_{\epsilon}=-N \overline{\mathcal{L}(K) K_{\epsilon}-\mathcal{L}(\bar{K}) \bar{K}_{\epsilon}} \text { where } \\
& \mathcal{L}(K)(\theta)=\int d \theta^{\prime} d \epsilon^{\prime} K\left(\theta^{\prime}, \epsilon^{\prime} ; W_{0}\right) F\left(\theta-\theta^{\prime}\right)
\end{aligned}
$$

The equation for \bar{K} in terms of Ψ_{1} and Ψ_{2} is

$$
\begin{aligned}
& \Psi_{1 t}+\omega(\epsilon) \Psi_{1 \theta}+N \mathcal{L}\left(\Psi_{1}\right) \Psi_{1 \epsilon}=-N \int d \theta^{\prime} d \epsilon^{\prime} \mathcal{C}\left(\theta, \epsilon, \theta^{\prime}, \epsilon^{\prime}, t\right)+O(1) \\
& \mathcal{C}\left(\theta, \epsilon, \theta^{\prime}, \epsilon^{\prime}, t\right)=\Psi_{2}\left(\theta, \epsilon, \theta^{\prime}, \epsilon^{\prime}, t\right)-\Psi_{1}(\theta, \epsilon, t) \Psi_{1}\left(\theta^{\prime}, \epsilon^{\prime}, t\right)
\end{aligned}
$$

Issue 2: Recall $\Psi_{2}\left(v, v^{\prime}, t\right)$ is the joint probability density of w_{i} and w_{j}, so independence $\Rightarrow \bar{K}=\Psi_{1}$ satisfies the so-called Vlasov equation. Note independence also $\Rightarrow \bar{K} \approx K$. However, this is not the case and so a study of $\Psi_{2}\left(v, v^{\prime}, t\right)$ is the next step:

Example 3 (Simple relativistic KM system) - 1

We consider particle motion coupled to a Maxwell field E^{8} :

$$
\begin{aligned}
& q_{i}^{\prime}=p_{i}, p_{i}^{\prime}=-a E\left(q_{i}, z ; W_{0}\right) ; \quad q_{i}\left(0 ; W_{0}\right)=Q_{i 0}, p_{i}\left(0 ; W_{0}\right)=P_{i 0} \\
& E_{z}+E_{q}=-b \sum_{1}^{N} \delta\left(q-q_{i}\left(z ; W_{0}\right)\right) ; \quad E\left(q, 0 ; W_{0}\right)=0
\end{aligned}
$$

Using the method of characteristics the E field can be written $E\left(q, t ; W_{0}\right)=-b \sum_{i=1}^{N} \int_{0}^{z} d s \delta\left(q+(s-z)-q_{i}\left(s ; W_{0}\right)\right)$.
The self-contained particle motion can be written
$q_{i}^{\prime}(z)=p_{i}(z), p_{i}^{\prime}(z)=a b \sum_{i=1}^{N} \int_{0}^{z} d s \delta\left(q+(s-z)-q_{i}\left(s ; W_{0}\right)\right)$
This is a functional ODE system ${ }^{9}$ containing an integral over history. This makes the study of Ψ_{2} problematic.

[^5]
Example 3 (Simple relativistic KM system) - 2 Mean field evolution

The equivalent Klimontovich-Maxwell system becomes

$$
\begin{array}{r}
K_{z}+p K_{q}-a N E K_{p}=0 ; \quad K\left(q, p, 0 ; W_{0}\right)=\frac{1}{N} \sum_{1}^{N} \delta\left(q-Q_{i 0}\right) \delta\left(p-P_{i 0}\right) \\
E_{z}+E_{q}=-b N \int d p K\left(q, p, z ; W_{0}\right) ; \quad E\left(q, 0 ; W_{0}\right)=0
\end{array}
$$

The mean field equations are

$$
\begin{aligned}
& \bar{K}_{z}+p \bar{K}_{q}-a N \bar{E} \bar{K}_{p}=a \partial_{p} \operatorname{Cov}(E, K) \\
& \bar{E}_{z}+\bar{E}_{q}=-b N \int d p \bar{K}(q, p, z)
\end{aligned}
$$

- Integral over history also a problem here.
- If $\operatorname{Cov}(E, F)$ is small then we have the macroscopic

Vlasov-Maxwell system.

Example 3 (Simple relativistic KM system) - 3 Issues 1 and 2

Issue 1 The situation is as in general case i.e.,
$\operatorname{Var} K_{A}\left(t ; W_{0}\right)=\frac{1}{N} p(t)(1-p(t))+\frac{N(N-1)}{N^{2}} \operatorname{Cov}\left(X_{1}, X_{2}\right)$ and so \bar{K} is a good approximation to K for large N if $\operatorname{Cov}\left(X_{1}, X_{2}\right)$ is small. A major complication over the previous example is that we do not have a clear picture of Ψ_{2}.
Issue 2 The work here is to estimate $\operatorname{Cov}(E, K)$. This also appears to be major complication over the previous example in that we do not have a clear picture of Ψ_{2}. The BBGKY hierarchy works in Example 1 and 2, but is problematic here, as evidenced by the integral over history issue.

General Summary: This example contains the major issues for the full 6D Microscopic Klimontovich-Maxwell (KM) to Macroscopic Vlasov-Maxwell (VM) problem. So our next step is continued study of Example 3.

[^0]: ${ }^{1}$ Partial support from DOE:DE -FG02-99ER41104
 AMa Talk 12/5/2016 IPAM beam dynamics workshop draft

[^1]: ${ }^{3} K$ is an empirical density and $\bar{K}=\Psi_{1}$ is a probability density, so we are comparing densities.
 AMa Talk 12/5/2016 IPAM beam dynamics workshop draft

[^2]: ${ }^{5}$ Expected value is a probability in analogy with $\bar{K}_{A}(t)=\int_{A} d v \Psi_{1}(v, t)$ AMa Talk 12/5/2016 IPAM beam dynamics workshop draft

[^3]: ${ }^{6} \operatorname{Var}\left(X_{1}+\cdots+X_{N}\right)=N \operatorname{Var} X_{1}+N(N-1) \operatorname{Cov}\left(X_{1}, X_{2}\right)$ which are given in terms of Ψ_{1} and Ψ_{2}
 AMa Talk 12/5/2016 IPAM beam dynamics workshop draft

[^4]: ${ }^{7}$ From http://cs.brown.edu/courses/cs155/slides/Chapter-4.pdf AMa Talk 12/5/2016 IPAM beam dynamics workshop draft

[^5]: ${ }^{8}$ Based on EOM in Kim, Lindberg paper in FEL2011 proceedings, Shanghai
 ${ }^{9}$ See e.g., J. Hale's Theory of Functional Differential Equations

