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Abstract

We return to our study [BEH] of invariant spin fields and spin tunes for polarized
beams in storage rings but in contrast to the continuous-time treatment in [BEH],
we now employ a discrete-time formalism, beginning with the Poincaré maps of the
continuous time formalism. As in [BEH] we focus on the spin-vector dynamics which is
sufficient for spin-1/2 particles whence again the emphasis is on the notions of invariant
spin field, spin tune and invariant frame field. Thet transformations of spin-orbit
systems in [BEH] is here extended to a transformation theory involving the notion of
H-normal form where H is an arbitrary subgroup of SO(3). Thus the notions of spin
tune and invariant frame field can be subsumed under the notion of H-normal form.
As in [BEH] we study the impact of the spin tunes on the spectral behavior of the
spin motion using the concept of quasiperiodicity. We also show via two examples
how the absence of spin tunes impacts the the spectral behavior of the spin motion.
As in [BEH], the particle motion is integrable but we now allow for nonlinear particle
motion on the torus. Moreover we distinguish between the angle variable z on the
torus and the angle variable φ on Rd, the latter being used in [BEH]. Since we use
many topological properties we here focus on z. This work is inspired by notions from
the theory of bundles which will come into play in our follow-up work.
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1 Introduction

In [BEH] we undertook an extensive study of the concept of spin tune in storage rings on the
basis of the Thomas–Bargmann–Michel–Telegdi (T–BMT) equation [Ja] of spin precession.
This naturally included a discussion of the invariant spin field and the invariant frame field.
This work and the follow-up work are a sequel to [BEH] based largely on mathematical
concepts and ideas in the PhD Thesis [He2] of the first author (KH), where a method
from Dynamical-Systems Theory is exploited to distil some essential features of particle-
spin motion in storage rings. As to be seen in the follow-up work this method clarifies
and considerably extends the current theory of [BEH]. In fact it generalizes the concepts
of invariant frame field, spin tune, spin-orbit resonances, invariant polarization field and
invariant spin field to an arbitrary subgroup H of SO(3) by using the concept of H-normal
form. This leads us to the Normal Form Theorem and various theorems which generalize
some standard theorems that are also presented in this work. For short versions of the
follow-up work, see [HBEV1, HBEV2].

In [BEH] we assumed the particle motion to be independent of the spin, i.e., we neglected
the Stern-Gerlach force. Also, the particle motion was described by an integrable Hamilto-
nian system in action-angle variables, J, φ ∈ Rd. We further assumed that the electric and
magnetic fields were of class C1, i.e., continuously differentiable) both in φ and θ. Thus the
T–BMT equation became a linear system of ordinary differential equations (ODE) for the
particle-spin-vector motion with smooth coefficients depending quasiperiodically on θ. This
quasiperiodic structure led us to a generalization of the Floquet theorem and a new approach
to the spin tune.

Although accelerator physicists tend to concentrate on studying specific models of particle-
spin motion in real storage rings, many of the issues surrounding the spin tune and the
invariant spin field depend just on the structure of the equations of particle-spin motion and
can be treated in general terms. This is the strategy to be adopted here and it clears the
way for the focus on purely mathematical matters and in particular for the exploitation of
methods from Dynamical-Systems Theory and the theory of bundles.

In storage-ring physics there are two main approaches for dealing with the independent
variable in the equations of motion (EOM), namely use of the flow formalism or the map
formalism. In the flow formalism the EOM is an ODE, whence the independent variable is
the continuous variable θ ∈ R describing the distance around the ring. In the map formalism
the independent variable in the EOM is the discrete variable n ∈ Z labelling the turn number
where Z denotes the set of integers. In Dynamical-Systems Theory it is common practice to
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refer to the independent variable in the EOM, such as θ, the “time” and that is the convention
that we will use here. Thus there is a continuous-time and a discrete-time formalism. In
[BEH] we used the former, here the emphasis is on discrete time. Nevertheless it would be
possible to present the machinery of this work in the continuous-time formalism.

The external electrodynamic fields inside an accelerator’s vacuum chamber are smooth,
i.e., of class C∞. So the C1 assumption adopted in [BEH] appears to be perfectly reasonable.
On the other hand, practical numerical spin–orbit tracking simulations are usually carried
out with fields which cut off sharply at the ends of magnets and/or with thin-lens approx-
imations. Thus in [BEH] our formalism involved class C1 in the time variable θ although
numerical calculations cited there in Sec. X had been obtained using hard-edged and thin-lens
fields. However, hard-edged and thin-lens ring elements fit naturally into the discrete-time
formalism. In particular, for this, we merely require that the fields are continuous (i.e., of
class C0) in the orbital phases and we allow jump discontinuities in θ. Of course, this still
allows study of systems with fields smooth in θ and/or the orbital phases. The way that the
discrete-time formalism derives from the continuous-time formalism is explained in Section
2.1.

This work is designed so that it can be read independently of [BEH]. However, we wish to
avoid repeating the copious contextual material contained in [BEH]. We therefore invite the
reader to consult the Introduction and the Summary and Conclusion in [BEH] in order to
acquire a better appreciation of the context. In this work, as in [BEH], the particle motion is
integrable and we allow the number of angle variables, d, to be arbitrary (but ≥ 1) although
for particle-spin motion in storage rings, the case d = 3 is the most important. We use the
symbols φ = (φ1, ..., φd)

t, J = (J1, ..., Jd)
t and ω(J) = (ω1(J), ..., ωd(J))

t respectively for
the lists of orbital angles, orbital actions and orbital tunes where t denotes the transpose
and where with continuous time dφ/dθ = ω(J). In the continuous-time formalism, the T–
BMT equation is written as dS/dθ = Ω(θ, J, φ(θ)) × S where the 3-vector S is the spin
expectation value (“the spin vector”) in the rest frame of a particle and Ω is the precession
vector obtained as indicated in [BEH] from the electric and magnetic fields on the particle
trajectory. For the purposes of this work we don’t need to consider the whole (J, φ) phase
space since it will suffice to confine ourselves to a fixed J-value, i.e., to particle motion on
a single torus. Thus the actions J are just parameters. However it is likely that our work
can be easily generalized to arbitrary particle motion if one maintains our condition that the
particle motion is unaffected by the spin motion.

This work, in which we aim to present particle-spin motions in terms of Dynamical-
Systems Theory, is structured as follows. In Section 2.1 we discuss the continuous-time
formalism which will motivate, in Section 2.4, the discrete-time concept of the “spin-orbit
system” (j, A) which characterizes a given setup by its 1-turn particle map j on the torus
Td. While j characterizes the integrable particle dynamics, A is the 1-turn spin transfer
matrix function, the latter being a continuous function from Td to SO(3). In the special
case of the torus translation we have j = P[ω] where ω is the orbital tune and P[ω] is the
corresponding translation on the torus after one turn. Thus in Section 2.1 we derive the
discrete-time Poincaré map formalism from the continuous-time formalism and in Section
2.3 we introduce the torus Td as a topological space. For the torus the angle variable φ is
represented by the angle variable z. Then in Section 2.4 we define the set SOS(d, j) of spin-
orbit systems (j, A) to be considered in this work. In Chapter 3 we define polarization field
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trajectories and these lead to the definition of the invariant spin field (ISF). A transformation
rule, (j, A) 7→ (j, A′), is introduced in Chapter 4. This partitions SOS(d, j) into equivalence
classes and spin-orbit systems belonging to the same equivalence class have similar properties.
For the notions of partition and equivalence class, see Appendix A.2. It also leads us to
structure-preserving transformations of particle-spin-vector trajectories and to structure-
preserving transformations of polarization-field trajectories. In Chapter 5 the partition of
SOS(d, j) leads us to several important subsets of SOS(d, j) which are denoted by CBH(d, j).
Each of these subsets of SOS(d, j) is defined in terms of a simple form of A. In particular
a (j, A) in SOS(d, j) belongs to CBH(d, j) iff it can be transformed to a (j, A′) such that
A′ is H-valued where H is a subgroup of SO(3). Then (j, A′) is said to be an “H-normal
form” of (j, A). The concept of H-normal form is also the driving force which leads us to
the general theory of the follow-up work. In Chapter 6 we study H-normal forms in the case
H = SO(2) and formulate and prove a standard theorem, which connects the notions of ISF
and invariant frame field (IFF).

In Chapter 7 the partition of SOS(d, j) leads us to the important subset ACB(d, j) of
SOS(d, j). This subset ACB(d, j) of SOS(d, j) is defined in terms of another simple form
of A. In particular a (j, A) in SOS(d, j) belongs to ACB(d, j) iff it can be transformed to
a (j, A′) such that A′ is constant. On the other hand spin tunes describe constant rates of
precession in appropriate reference frames so that one needs special spin-orbit systems which
can be reached by transforming from the original spin-orbit systems to such frames. This
relates the notions of spin tune and spin-orbit resonance to the notion of H-normal form
in the case H = Gν and thus to ACB(d, j). Chapter 8 covers the topic of polarization. In
particular in Section 8.1 we derive various formulas which estimate the bunch polarization
with special emphasis on the situation where only two ISF’s exist. In Section 8.2 we state
and prove an important and well-known theorem which provides conditions under which
only two ISF’s exist. In Appendix A we introduce the basic analytic notions like bijection
and continuous function. Appendix B provides results on the quasiperiodicity and spectral
properties of spin motions. Appendix C contains some of our proofs.

2 Spin-orbit systems

A central aim of the present work and of its follow-up is a study of the 1-turn particle-
spin-vector map P[j, A] where j is the 1-turn particle map and A is the 1-turn spin transfer
matrix function derived from the T-BMT equation, both defined on the d-torus. Thus the
1-turn particle-spin-vector map is the continuous function defined by (2.22), i.e.,

P[j, A](z, S) :=

(
j(z)
A(z)S

)
,

where z represents the angle variable of the action-angle variable dynamics on the d-torus.
We will proceed in Chapter 2 as follows. In the pedagogical Section 2.1 we consider

the continuous-time T-BMT equation in the case of integrable particle dynamics and by
excluding thin-lens magnets. In Section 2.2 we derive the discrete-time particle-spin-vector
Poincaré map from the continuous-time particle-spin-vector motion of Section 2.1. Also in
Section 2.2 we generalize the Poincaré map to the general 1-turn map P̂[ĵ, Â] in (2.12) in
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order to capture thin-lens magnets like Siberian snakes. Thus from Section 2.2 onwards we
use the language of topological dynamical systems and no more restrict ourselves to the
assumptions underlying the continuous-time formalism of Section 2.1. In Section 2.3 we
introduce the d-torus and its topology, i.e., we replace the angle variable φ of Sections 2.1
and 2.2 by the angle variable z. Thus in Section 2.3 we derive the 1-turn map P[j, A] from
the 1-turn map P̂[ĵ, Â] and we show their “equivariance”.

2.1 The continuous-time particle-spin-vector motion

We assume the particle dynamics is integrable and that there exist action-angle variables
(J, φ) so that the particle dynamics is governed by

dφ

dθ
= ω(J) and

dJ

dθ
= 0. (2.1)

Here φ is on the torus where, in dynamical systems, the torus, Td, is often considered to be
the quotient space Rd/Zd. Here we will take φ ∈ Rd and then at a later stage introduce the
torus variable z of (2.22).

We begin our study by deriving our discrete-time particle-spin-vector motion from a
continuous-time initial value problem (IVP) which has the form

dφ

dθ
= ω , φ(0) = φ0 ∈ Rd , (2.2)

dS

dθ
= A(θ, φ)S , S(0) = S0 ∈ R3 , (2.3)

where ω ∈ Rd and where the matrix-valued function A : Rd+1 → R3×3 is continuous, i.e.,
A ∈ C(Rd+1,R3×3) where C(Rd+1,R3×3) is the set of continuous functions from Rd+1 into
R3×3. See Appendix A.4 too. Moreover we assume that A is 2π-periodic in each of its
d + 1 arguments and that it is skew–symmetric, i.e., At(θ, φ) = −A(θ, φ). Without loss of
generality and for simplicity of notation we choose θ = 0 as the initial time. We denote the
set of A, where A satisfies the above conditions, by BMT .

As is clear from the above and the Introduction, the above IVP and the assumptions
on A are motivated by our underlying interest in particle-spin-vector motion in storage
rings. In the application to particle-spin-vector motion in storage rings, S is a column vector
of components of the spin S and A(θ, φ) ≡ AJ(θ, φ) represents the rotation rate vector
Ω(θ, J, φ) of the T–BMT equation [BEH]. Note that A(θ, φ) is 2π-periodic in θ because we
deal with storage rings and A(θ, φ) is 2π-periodic in the d components of φ since the latter
are angle variables. Moreover A is skew-symmetric by its origin in the T–BMT equation,
thus preserving the norm of S. We suppress the J , except for a few occasions where we need
it, since we work mainly on a fixed-J torus. The set BMT includes standard particle-spin-
vector motion but need not, and is only restricted by the above mentioned constraints on
A, in keeping with our wish to investigate the properties of any system defined by (2.2) and
(2.3).

Since the system (2.2),(2.3) is periodic in θ the 1-turn map it defines is identical with
the Poincaré map (PM) which will be studied and generalized in Section 2.2. The PM
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is convenient for studying the behavior of solutions of (2.2),(2.3) [AP, HK2]. To derive a
convenient representation for the PM we solve (2.2), resulting in

φ(θ) = φ0 + ωθ , (2.4)

whence (2.3) reads as

dS

dθ
= A(θ, φ0 + ωθ)S , S(0) = S0 ∈ R3 . (2.5)

Since A is continuous and (2.5) is linear in S the general solution of (2.5) can be written
as

S(θ) = Φ(θ;φ0)S0 , (2.6)

where the function Φ : R× Rd → SO(3) is of class C1 and satisfies

∂θΦ(θ;φ0) = A(θ, φ0 + ωθ)Φ(θ;φ0) , Φ(0;φ0) = I3×3 , (2.7)

and where I3×3 is the 3 × 3 unit matrix [Am, Ha]. Since the values of A are real skew–
symmetric 3 × 3 matrices, Φ is SO(3)-valued, i.e., Φ(θ;φ0) ∈ SO(3) where SO(3) is the
set of real 3 × 3–matrices R for which RtR = I3×3 and det(R) = 1. Furthermore Φ(θ, φ) is
2π-periodic in the components of φ. Using (2.4) and (2.6), the solution of the IVP (2.2),(2.3)
can now be written

(
φ(θ)
S(θ)

)
= ϕ(θ;φ0, S0) , (2.8)

where the function ϕ : Rd+4 → Rd+3) is of class C1 and is defined by

ϕ(θ;φ, S) :=

(
φ+ ωθ
Φ(θ;φ)S

)
. (2.9)

2.2 Deriving the particle-spin-vector 1-turn map from the continuous-
time formalism. Defining the general 1-turn map

The 1-turn map of the DS of Section 2.1 is the PM ϕ(2π; ·) on Rd+3 whence it reads, by
(2.9), as

ϕ(2π;φ, S) =

(
P̂ [ω](φ)
Φ(2π;φ)S

)
, (2.10)

where P̂ [ω] : Rd → Rd being defined by P̂ [ω](φ) := φ + 2πω. With this the study of the
non-autonomous continuous-time Dynamical System (DS) of (2.2),(2.3) has been replaced
by a study of an autonomous discrete-time DS given by the PM (2.10).

We now have to generalize the 1-turn map (2.10). In fact not every A used in practice
belongs to BMT . For example if thin-lens Siberian snakes are involved, as in Section 3.3
below, then A 6∈ BMT . Thus, instead of generalizing BMT and as it is quite common, we
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generalize the 1-turn map (2.10) by replacing Φ(2π; ·) by an arbitrary continuous function
Â : Rd → SO(3) which is 2π-periodic in each of its d arguments. This more general 1-turn
map can capture the situations mentioned above, e.g., when thin-lens Siberian snakes are
involved.

It is less important to also generalize the particle maps P̂ [ω] but it is nevertheless con-
venient because most notions and results of this work are very general. Thus it would be
an unnecessary restriction, in particular for future theoretical work on beam polarization,
to confine ourselves to the above translation maps. Before generalizing P̂[ω] we make some
comments on P̂[ω]. We first note that it is a homeomorphism on Rd, i.e., P̂[ω] ∈ Homeo(Rd)
which means that it is continuous and invertible and that the inverse is continuous. In fact
P̂[ω] is continuous and it has the continuous inverse P̂ [−ω]. For the notion of “homeomor-
phism” see also Appendix A.4. We will see in the following section that the P̂[ω] correspond
to certain homeomorphisms on the d-torus thus our task of generalizing P̂[ω] is to generalize
them to all all functions on Rd which correspond to homeomorphisms on the d-torus. The
key insight which solves this problem is the peculiar property that, for fixed but arbitrary
N ∈ Zd, P̂[ω](φ + 2πN) = P̂[ω](φ) + 2πN as can be easily checked. Thus P̂ [ω] belongs
to the set, Fund, of functions f̂ ∈ C(Rd,Rd) with the property that, for fixed but arbitrary
N ∈ Zd, there exists a Ñ ∈ Zd such that f̂(φ + 2πN) = f̂(φ) + 2πÑ . We will see in the
following section (see Theorems 2.5d and 2.6a) that the f̂ in Fund correspond to the contin-
uous functions on the d-torus whence we look for an appropriate subset of Fund. In fact in
the next section (see Theorems 2.5e and 2.6b) we will show that Mapd, defined by

Mapd := {ĵ ∈ Homeo(Rd) : ĵ, ĵ−1 ∈ Fund} ⊂ Fund , (2.11)

is the set of those functions on Rd which correspond to the homeomorphisms on the d-torus.
Thus we have generalized the P̂ [ω] to the ĵ in Mapd. Clearly every P̂[ω] belongs to Mapd

since, by the above P̂[ω] is an homeomorphism for which P̂[ω] and P̂[ω]−1 = P̂ [−ω] belong
to Fund. All physical applications we have in mind have ĵ = P̂ [ω] and so in this case ĵ is
just a shorthand.

With the above generalizations of Φ(2π; ·) to Â and P̂[ω] to ĵ we have generalized the
1-turn map ϕ(2π; ·) in (2.10) to the 1-turn map P̂[ĵ, Â] defined by

P̂ [ĵ, Â](φ, S) :=

(
ĵ(φ)

Â(φ)S

)
, (2.12)

where Â ∈ C(Rd, SO(3)) is 2π-periodic in its arguments and where ĵ ∈ Mapb. Whenever
appropriate we abbreviate P̂[ĵ, Â] by P̂. Clearly P̂ is a homeomorphism on Rd ×R3 since it
is continuous and its inverse P̂−1 is continuous, because the latter reads as

P̂[ĵ, Â]−1(φ, S) =

(
ĵ−1(φ)

Ât(ĵ−1(φ))S

)
, (2.13)

as can be easily checked. Note also that (2.10) is a special case of (2.12) since ϕ(2π; ·) =
P̂[P̂ [ω],Φ(2π; ·)].

It is very common in polarized beam physics to use the angle variable φ and so the struc-
ture of the 1-turn map (2.12) is well-known in the Beam Polarization community, especially
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in the case where ĵ = P̂[ω]. In the following section we will see how (2.12) can be expressed
in terms of the torus variable z to be defined below. In fact in this work, and in our follow-
up work, we use so many topological properties that it is natural and convenient to express
most of our results in terms of z. However this is no restriction because φ and z are of the
same expressive power. In fact it is a simple exercise to express any of our results in terms
of φ. For the particle spin-vector motion this can be done by means of Theorems 2.5 and
2.6 below and for the field motion this can be done by means of Remark 1 in Chapter 3.
An example of the latter are the statement and proof of the Uniqueness Theorem in Section
8.2 which involve the topological notions of topological transitivity and path-connectedness.
Both notions are most easily defined in terms of z but it is possible to prove and state the
Uniqueness Theorem in terms of φ (see [He2]). In fact this theorem was introduced in [Yo1]
in terms of φ. Note also that the results in [BEH] are expressed in terms of φ.

A reader familiar with the torus variable z can imagine (2.12) on the d-torus and safely
move to Section 2.4 on a first reading.

2.3 Expressing the general particle-spin-vector 1-turn map in terms
of Td

To express the 1-turn map P̂[ĵ, Â] in (2.12) in terms of z we first consider the case of most
interest, ĵ = P̂ [ω]. Then (2.12) gives

(
φ′

S ′

)
:= P̂(φ, S) =

(
φ+ 2πω

Â(φ)S

)
, (2.14)

where ω ∈ Rd, φ ∈ Rd and Â ∈ C(Rd, SO(3)) is 2π-periodic in its arguments. Recall from
the remarks after (2.12) that P̂ ∈ Homeo(Rd × R3). Clearly, since Â is 2π-periodic in its
arguments it is uniquely defined by its values for φ in (−π, π]d.

As mentioned at the beginning of Section 2.1, it is common in Dynamical Systems Theory
to take the torus to be Rd/Zd. Here we take the more geometrical and equally common
approach and define it as the subset of R2d given by:

Definition 2.1 (d-torus Td)
The 1-torus is defined by T := {(z1, z2)

t : z21 + z22 = 1} ⊂ R2. The d-torus is defined as the
d-fold product Td of T, i.e.,

Td := {(z1, z2, · · · , z2d)
t : z22i−1 + z22i = 1, i = 1, · · · , d} ⊂ R2d. (2.15)

For more details on d-tori, see [wiki2] and the remarks after Theorem 2.6 below. ✷

Because continuity is central to our work we define a metric on Td given by

Definition 2.2 (Metric on Td)
The metric µd on Td is the function µd : T

d × Td → [0,∞), defined by

µd(z1, z2, · · · , z2d; u1, u2, · · · , u2d) :=
√
(z1 − u1)2 + (z2 − u2)2 + · · · (z2d − u2d)2 . (2.16)

Note that the rhs of (2.16) is known from the Euclidean metric on R2d whence µd is a metric
since it is a restriction of the Euclidean metric on R2d. ✷
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We now introduce a 1-turn map on Td × R3 which we will show is essentially equivalent
to the 1-turn map (2.14) on Rd × R3. For z ∈ Td, S ∈ R3, we define

(
z′

S ′

)
:=

(
exp(2πJω)z

Â(Arg(z))S

)
, (2.17)

where Arg is defined in Definition 2.3 below and where the 2d× 2d-matrix Jω is defined by

Jω(z1, z2, · · · , z2d)
t := (u1, u2, · · · , u2d)

t ,

(
u2i−1

u2i

)
:=

(
0 −ωi

ωi 0

)(
z2i−1

z2i

)
,

i.e., z′ = (z′1, z
′
2, · · · , z

′
2d)

t with

(
z′2i−1

z′2i

)
=

(
cos 2πωi − sin 2πωi

sin 2πωi cos 2πωi

)(
z2i−1

z2i

)
.

Definition 2.3 (Arg)
We define the function Arg : Td → Rd by

Arg(z) := Θ , (2.18)

where Θ = (Θ1, · · · ,Θd)
t with Θi ∈ (−π, π] being uniquely defined by (cosΘi, sinΘi) =

(z2i−1, z2i). ✷

Arg is continuous for every z such that no Θi = π and has a 2π jump discontinuity in Θi at
(z2i−1, z2i) = (1, 0). However, since Â is 2π-periodic in its arguments and continuous, A is in
C(Td, SO(3)) where A(z) := Â(Arg(z)). To see this, let’s examine d = 1 as follows. Consider
u and v in T such that Arg(u) = π− δ and Arg(v) = −π+ δ then Â(Arg(u))− Â(Arg(v)) =
Â(π− δ)− Â(−π+ δ) = Â(π− δ)− Â(π+ δ) which is small by continuity if δ is small. (For
the full proof see Theorem 2.5c below)

To show the relation between (2.14) and (2.17) we need the function πd:

Definition 2.4 (πd)
We define the function πd : R

d → Td by

πd(φ) := (cosφ1, sinφ1, ..., cosφd, sinφd)
t = exp(Jφ)(1, 0, 1, 0, · · · , 1, 0)

t . (2.19)

Clearly z = πd(Arg(z)) whence πd is surjective and Arg is injective, i.e., one-one. Conversely,
for every φ ∈ Rd and since πd is 2π-periodic in its arguments, there exists an N(φ) ∈ Zd

such that φ + 2πN(φ) = Arg(πd(φ)). In Theorem 2.5a below we will also show that πd is
continuous. ✷

With the function πd we can show the following relation between (2.14) and (2.17):
Claim:
Let φ and S be given so that φ′ and S ′ are defined by (2.14). Let also z = πd(φ) and S = S
in (2.17). Then z′ = πd(φ

′) and S ′ = S ′.

Proof of Claim: We prove the claim in the case d = 1. The proof for general d is a straight
forward extension and done in Theorem 2.5e below. First,

z′ =

(
cos 2πω − sin 2πω
sin 2πω cos 2πω

)(
cosφ
sinφ

)
=

(
cos(φ+ 2πω)
sin(φ+ 2πω)

)
= π1(φ+ 2πω) = π1(φ

′).
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Second, we note that if z = πd(φ) then Arg(z) = Θ where Θ is uniquely defined by
(cos(Θ1), sin(Θ1)) = (cos(φ1), sin(φ1)). Thus S

′ = Â(Θ)S = Â(φ)S = S ′. QED

In particular if (φ(n), S(n)) and (z(n),S(n)) denote the n-turn iterates of (φ′, S ′) and (z′,S ′)
iterates, defined by (2.14) and (2.17) with z0 = πd(φ

0) and S0 = S0, then, by the above
claim, (z(n),S(n)) = (πd(φ

(n)), S(n)). In Theorem 2.5e below we will prove the above claim
in the general case, i.e., for arbitrary d and by generalizing P̂ [ω] to ĵ.

To generalize (2.17) from the case ĵ = P̂[ω] in (2.12), we rewrite (2.17) in terms of πd by
noting that z = πd(Arg(z)) so we compute, by (2.17),(2.19),

z′ = exp(2πJω)z = exp(2πJω)πd(Arg(z)) = exp(2πJω)πd(Θ)

= exp(2πJω) exp(JΘ)(1, 0, 1, 0, · · · , 1, 0)
t

= exp(J2πω+Θ)(1, 0, 1, 0, · · · , 1, 0)
t = πd(Θ + 2πω) = πd(Arg(z) + 2πω) , (2.20)

where Θ = Arg(z) whence (2.17) can be written as

(
z′

S ′

)
:=

(
πd(Arg(z) + 2πω)

Â(Arg(z))S

)
=

(
(πd ◦ P̂[ω] ◦ Arg)(z)

((Â ◦Arg)(z))S

)
which is readily generalized, via replacing P̂[ω] by ĵ, to

(
z′

S ′

)
:=

(
(πd ◦ ĵ ◦ Arg)(z)

((Â ◦ Arg)(z))S

)
. (2.21)

We will show in Theorem 2.5e below that πd ◦ ĵ ◦Arg belongs to Homeo(Td) and that Â◦Arg

belongs to C(Td, SO(3)) whence (2.21) can be written as

(
z′

S ′

)
= P(z, S)[j, A] where the

function P[j, A] : Td × R3 → Td × R3 is defined by

P[j, A](z, S) :=

(
j(z)
A(z)S

)
, (2.22)

with j ∈ Homeo(Td) and A ∈ C(Td, SO(3)). Clearly P[j, A] is a homeomorphism on Td×R3,
i.e., P[j, A] ∈ Homeo(Rd ×R3) since it is continuous and its inverse P−1[j, A] is continuous,
because the latter reads as

P[j, A]−1(z, S) :=

(
j−1(z)

At(j−1(z))S

)
, (2.23)

as can be easily checked. Whenever appropriate we abbreviate P[j, A] by P. With (2.22)
we are ready to express the 1-turn map P̂[ĵ, Â] in (2.12) in terms of z by mapping it to the
1-turn map P[j, A] as will be shown in Theorem 2.5e below.

Theorems 2.5e and 2.6b below show the main features of P[j, A] and of its relation to
P̂[ĵ, Â] and they demonstrate that φ and z are of the same expressive power for the particle
spin-vector dynamics (for the field dynamics this is demonstrated in Remark 1 of Chapter 3
below).

For our work here, it is convenient to prove continuity with the metric topology τd from
µd of Definition 2.2. The topology τd is simply the collection of open sets where B ⊂ Td is
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open iff for all z ∈ B there exists an open µd-ball B
′ around z such that B′ ⊂ B. Thus,

by the open-set definition of continuity, an f : Td → Td is continuous iff f−1(B) is open
whenever B is open. This generalizes to continuity for functions f : Td → X where X is a
topological space as discussed in Appendix A.4. It turns out that τd = τ find where the “final

topology” τ find is defined in terms of πd. In fact by this topology a subset B ⊂ Td is open,

i.e., B ∈ τ find iff the inverse image π−1
d (B) is an open in Rd w.r.t. the natural topology τRd

of Rd. The topology τ find is very convenient in the proof of Theorem 2.5b below.

Theorem 2.5 a) τd = τ find . Moreover πd is continuous, i.e., πd ∈ C(Rd,Td).

b) Let X be a topological space and let F ∈ C(Rd, X) be 2π-periodic in its arguments. Then
F = F ◦ Arg ◦ πd and f ∈ C(Td, X) where f(z) := F (Arg(z)). Also f(πd(φ)) = F (φ).
Moreover if g ∈ C(Td, X) such that g(πd(φ)) = F (φ) then f = g. Furthermore if G ∈
C(Rd, X) is 2π-periodic in its arguments and F (Arg(z)) = G(Arg(z)) then F = G.

If conversely h ∈ C(Td, X), then H ∈ C(Rd, X) is 2π-periodic in its arguments where
H(φ) := h(πd(φ)). Furthermore H(Arg(z)) = h(z).

c) (Baby Lift Theorem for πd) Let F ∈ C(Rk,Td). Then there exists a f̂ ∈ C(Rk,Rd) such that
F = π◦ f̂ . Moreover f̂ is unique up to a constant in the following sense: if f̂1, f̂2 ∈ C(Rk,Rd)
and πd ◦ f̂1 = F = πd ◦ f̂2 then there exists a constant N ∈ Zd such that f̂1(φ) = f̂2(φ)+2πN .
Remark: We will apply the Baby Lift Theorem in the present chapter to the case k = d and
in Chapter 6 to the case k = 1.

d) Fund is equal to the set of functions f̂ in C(Rd,Rd) for which πd ◦ f̂ are 2π-periodic in
their arguments. Moreover Mapd is the set of ĵ ∈ Homeo(Rd) for which πd ◦ ĵ and πd ◦ ĵ

−1

are 2π-periodic in their arguments. Furthermore if f̂ ∈ Fund then πd ◦ f̂ ◦ Arg belongs to
C(Td,Td).
e) Let Â ∈ C(Rd, SO(3)) be 2π-periodic in its arguments and let ĵ ∈ Mapd, i.e., ĵ ∈
Homeo(Rd) with πd◦ĵ and πd◦ĵ

−1 being 2π-periodic in their arguments. Then j := πd◦ĵ◦Arg
belongs to Homeo(Td) and A := Â ◦ Arg belongs to C(Td, SO(3)).

Moreover the claim after Definition 2.4 generalizes to the following claim: If z = πd(φ)

and S = S then z′ = πd(φ
′) and S ′ = S ′ where

(
φ′

S ′

)
:= P̂ [ĵ, Â](φ, S) =

(
ĵ(φ)

Â(φ)S

)
and

where

(
z′

S ′

)
:= P[j, A](z,S) =

(
j(z)
A(z)S

)
.

Remark: The above claim means, in the language of Dynamical Systems Theory, that P̂[ĵ, Â]
and P[j, A] are equivariant as well as that ĵ and j are equivariant, see for example [HK1].
The notion of equivariance will be very important in our follow-up work.

Proof of Theorem 2.5: The claims are proved in Appendix C.1. ✷

We now make some comments on Theorems 2.5b and 2.5c. We use Theorem 2.5b re-
peatedly in this work (for example in the proofs of Theorems 2.5d,2.5e and 2.6 below). The
situation of Theorem 2.5b is nicely summarized by the commuting diagram in Figure 1 if
we add that Arg : Td → Rd and note that Arg(πd(φ)) = Θ and πd(Arg(z)) = z. That the
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diagram “commutes” means that F = f ◦ πd. Standard readings of the diagram are given
F , there exists an f which “completes” the diagram and given f , there exists an F which
“completes” the diagram. We also use Theorem 2.5c repeatedly in this work (for example
in Theorem 6.3 below).

X Td

Rd

f

F

πd

✛

❄

✟
✟

✟
✟

✟
✟

✟
✟

✟
✟

✟✟✙

Figure 1: Commutative diagram for Theorem 2.5b

Theorem 2.5e above shows how every P̂ [ĵ, Â] is mapped to a unique P[j, A] and that
both are equivariant. Part b) of the following theorem answers a remaining question: how
many P̂[ĵ, Â] are mapped to a fixed but arbitrary P[j, A] and are there any?

Theorem 2.6 a) Let f ∈ C(Td,Td). Then there exists a f̂ ∈ Fund, i.e., f̂ ∈ C(Rd,Rd) such
that πd◦f̂ is 2π-periodic in its arguments and with the property that f = πd◦f̂◦Arg. Moreover
f̂ is uniquely determined by f up to a constant in the following sense: if f̂1, f̂2 ∈ Fund and
such that πd ◦ f̂1 ◦ Arg = f = πd ◦ f̂2 ◦ Arg then there exists a constant N ∈ Zd such that
f̂1(φ) = f̂2(φ) + 2πN .
Remark: Thus, and by Theorem 2.5d, f̂ 7→ πd ◦ f̂ ◦ Arg maps Fund onto C(Td,Td).
b) Let j ∈ Homeo(Td). Then there exists a ĵ ∈ Mapd such that ĵ is related to j as in
Theorem 2.5e, i.e., j = πd ◦ ĵ ◦ Arg. Also if ĵ ∈ Mapd and j = πd ◦ ĵ ◦ Arg and if N ∈ Zd

then the function ĝ ∈ C(Rd,Rd), defined by ĝ(φ) := ĵ(φ)+2πN belongs to Mapd and satisfies
j = πd ◦ ĝ ◦Arg. Conversely ĵ is uniquely determined by j up to a constant in the following
sense: if ĵ1, ĵ2 ∈ Mapd such that πd ◦ ĵ1 ◦Arg = j = πd ◦ ĵ2 ◦Arg then there exists a constant
N ∈ Zd such that ĵ1(φ) = ĵ2(φ) + 2πN .

Let A ∈ C(Td, SO(3)). Then there exists an Â ∈ C(Rd, SO(3)) which is 2π-periodic in
its arguments and is related to A as in Theorem 2.5e, i.e., A = Â ◦ Arg. Moreover Â is
uniquely determined by A. Remark: Thus ĵ 7→ πd ◦ ĵ ◦ Arg maps Mapd onto Homeo(Td).
Also Â 7→ Â ◦ Arg maps the periodic Â ∈ C(Rd, SO(3)) bijectively onto C(Td, SO(3)).

Proof of Theorem 2.6: The claims are proved in Appendix C.2. ✷

We first make some comments on the important case ĵ = P̂[ω]. Then the homeomorphism
j in Theorem 2.5e reads as πd ◦ P̂ [ω] ◦ Arg which we denote by P[ω], i.e., we define P[ω] ∈
Homeo(Td) by

P[ω] := πd ◦ P̂ [ω] ◦ Arg . (2.24)

Note that

P[ω](z) = πd(P̂ [ω](Arg(z))) = πd(P̂[ω](Θ)) = πd(Θ + 2πω) = πd(φ+ 2πω) , (2.25)
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with Θ := Arg(z) and φ ∈ Rd such that πd(φ) = z and where in the fourth equality we used
that πd is 2π-periodic in its arguments. It is easy to show, for n ∈ Z and by (2.25), that

P[ω]n = P[nω] . (2.26)

Note that (2.26) justifies the terminology “torus translation” for P[ω]. It also follows from
(2.26) that P[−ω] is the inverse of P[ω] whence P[ω] and its inverse are continuous which
confirms that P[ω] is a homeomorphism. It is amusing to see, by Theorem 2.6b, that the
1-turn maps of the form P̂[ω+2πN ] with N ∈ Zd belong to Mapd and that they are the only
ones in Mapd which are related to P[ω] as in Theorem 2.5e, i.e., P[ω] = πd◦P̂ [ω+2πN ]◦Arg.
Note also that with (2.24) the generalization from P[ω] to j comes from the generalization
from P̂ [ω] to ĵ. Whence, by the remarks after (2.10), the generalization from P[ω] to j is a
matter of convenience and a decision w.r.t. future theoretical work on beam polarization.

We now make some comments on the topology τd = τ find of Td. It is easy to show that

τ find is the largest topology on Td for which πd is continuous. For the notion of final topology,
see for example [wiki1] and Appendix A.5. Note that, in an older terminology, πd is called an
“identification” and τ find is called the “identification topology” w.r.t. πd [Du, Hu]. For the

topology τ find the open-set definition of continuity is very convenient so we use this approach
in the proof of Theorem 2.5b above and in analogous computations of this work. Thus in this
work we don’t use the “ǫ− δ” definition of continuity which is given in terms of the metric
µd. In other words µd is unimportant in our computations. For the open-set definition of
continuity, see for example Appendix A.4. Note that our choice of Td and its topology is very
common in Theoretical Physics and Mathematics because τd makes Td a smooth submanifold
of R2d. Since on Td always the topology τd is used, one also calls it the“natural” topology. We
will introduce in Section 2.4 the important notion of topological transitivity for j. We will
also use the fact that Td is path-connected (see, e.g., the proof of the Uniqueness Theorem
in Section 8.2). These notions involve Td and its topology and they make the use of Td

very natural. Nevertheless the use of Td is justified rather by convenience than by necessity
so we could confine ourselves to Rd as pointed out in great detail in this section. However
the above mentioned topological notions, when expressed in terms of Rd, are inconvenient
and unnatural (imagine to formulate the path-connectedness of Td in terms of Rd!). In our
follow-up work we will use even more notions which involve Td and its topology. Of course
there are other important definitions of the d-torus, e.g., Rd/Zd [wiki2] and all these d-tori
are equipped with a “natural” topology which makes them homeomorphic to Td. For the
notion of “homeomorphic” see Appendix A.4. The choice of the particular d-torus to be
used is a matter of convenience, i.e., it depends on the application in mind. Another popular
definition exists for the case d = 2, which is the “doughnut”, e.g., the doughnut of major
radius 2 and minor radius 1, i.e., {(x, y, z) ∈ R3 : (x2 + y2 + z2 + 3)2 = 16(x2 + y2)} and
which is equipped with the subspace topology from R3 [wiki2]. Note that the doughnut is
homeomorphic to T2.

To show that the ĵ are more general than the P̂[ω] and that the j are more general than
the P[ω] we first make some comments on Fund and Mapd so let f̂ ∈ Fund and ĵ ∈ Mapd. By
the definition of Fund and for every N ∈ Zd, a unique Ñ ∈ Zd exists such that f̂(φ+2πN) =
f̂(φ) + 2πÑ . Also if N1, Ñ1, N2, Ñ2 ∈ Zd and f̂(φ + 2πN1) = f̂(φ) + 2πÑ1, f̂(φ + 2πN2) =
f̂(φ)+2πÑ2 then f̂(φ+2πN1+2πN2) = f̂(φ+2πN1)+2πÑ2 = f̂(φ)+2πÑ1+2πÑ2 whence
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the dependence of Ñ on N is linear so that a matrixM ∈ Zd×d exists such that f̂(φ+2πN) =
f̂(φ) + 2πMN . Since the latter equality holds for every N ∈ Zd, the matrix M is uniquely
determined by f̂ . With M we define the function ĝ ∈ C(Rd,Rd) by ĝ(φ) =: f̂(φ)−Mφ and
immediately oberve that ĝ is 2π-periodic in its arguments. It follows that Fund is equal to
the set of functions f̂ : Rd → Rd of the form f̂(φ) =Mφ+ ĝ(φ) where M ∈ Zd×d and where
ĝ is 2π-periodic in its arguments and belongs to C(Rd,Rd). We can now discuss ĵ since it
belongs to the subset Mapd of Fund whence, by the above, ĵ(φ) =Mφ+ĝ(φ) whereM ∈ Zd×d

and where ĝ ∈ C(Rd,Rd) is 2π-periodic in its arguments. Moreover since ĵ ∈ Mapd and by
(2.11), also ĵ−1 belongs to Fund. Thus M has an inverse M−1 and M−1 belongs to Zd×d as
can be easily checked as well as ĵ−1(φ) = M−1φ + ĥ(φ) where ĥ ∈ C(Rd,Rd) is 2π-periodic
in its arguments. Clearly P̂[ω] is the special case of ĵ for which ĝ(φ) = ω and for which M
is the unit d × d-matrix. Choosing M to be the negative of the unit matrix we arrive at
the function ĵ0 ∈ C(Rd,Rd), defined by ĵ0(φ) := −φ. We see that ĵ−1

0 = ĵ0 whence ĵ0 has a
continuous inverse so that ĵ0 ∈ Homeo(Rd). Moreover πd ◦ ĵ0 and πd ◦ ĵ

−1
0 are 2π-periodic in

their arguments whence, by Theorem 2.5d, ĵ0 ∈ Mapd. Thus, and since ĵ0 is different from
every P̂[ω], we see that the ĵ are more general than the P̂[ω]. Of course, by Theorems 2.5e
and 2.6b this implies that the j are more general than the P[ω].

2.4 The set SOS(d, j) of spin-orbit systems

At the core of this work, in Chapters 4-8, the key technique is to transform, for fixed but
arbitrary j ∈ Homeo(Td), every A ∈ C(Td, SO(3)) into a certain set of A′ ∈ C(Td, SO(3)).
Thus the transformation theory, introduced in Chapter 4, defines a set of transformation
rules, each of which is labelled by a j ∈ Homeo(Td). It is thus convenient to define

SOS(d, j) := {(j, A) : A ∈ C(Td, SO(3))} , (2.27)

where j ∈ Homeo(Td) and so the transformation theory of this work is based on a transfor-
mation rule on each SOS(d, j).

We call every pair (j, A) in SOS(d, j) a “spin-orbit system”. We call A the “1-turn spin
transfer matrix function” of a spin-orbit system (j, A). In the special case j = P[ω] we
call ω the “orbital tune vector” of a spin-orbit system (P[ω], A). Recalling Section 2.3, the
homeomorphism P[j, A] in (2.22) is defined for every (j, A) in SOS(d, j) and we call P[j, A]
the “1-turn particle-spin-vector map of (j, A)”.

It follows from Sections 2.2 and 2.3 that the set of spin-orbit systems which are derived
from the continuous-time non-autonomous DS (2.2),(2.3) are of the form (j, A) where j =
P[ω] and A(z) = Φ(2π; Arg(z)). We denote this set of spin-orbit systems by SOSCT (d, ω).
Clearly

SOSCT (d, ω) ⊂ SOS(d,P[ω]) , (2.28)

and it will be shown after (2.29) that the inclusion in (2.28) is proper, i.e., that SOSCT (d, ω) 6=
SOS(d,P[ω]). All physical applications we have in mind have j = P[ω] and so in this case
j is just a shorthand. However, since for most notions and results of this work a general j is
perfectly applicable, we do not confine ourselves to j = P[ω].
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As is clear from Section 2.2, we are interested in SOS(d, j) rather than SOSCT (d, ω)
because we want to capture situations where thin-lens magnets are involved as in Section 3.3
below. In particular we expect that SOSCT (d, ω) 6= SOS(d,P[ω]). This is an analogue of
the following question from beam dynamics: given a symplectic map, can it be generated as
the 1-turn map of a Hamiltonian system? We do not deal with this question. Returning to
the question if SOSCT (d, ω) 6= SOS(d,P[ω]), one may try to show this inequality by proving
that the spin-orbit system (P[1/2], A2S) in Section 3.3 does not belong to SOSCT (1, 1/2).
In fact (P[1/2], A2S) is derived from the continuous-time formalism with an A involving
thin-lens Siberian snakes which cannot be captured, via Section 2.1, i.e., A 6∈ BMT so
chances are that (P[1/2], A2S) does not belong to SOSCT (1, 1/2). However, we can address
our question much more easily as follows so let ω ∈ R and m ∈ Z and let Â ∈ C(R, SO(3))
be defined by

Â(φ) :=




cosmφ − sinmφ 0
sinmφ cosmφ 0

0 0 1


 . (2.29)

Clearly Â is 2π-periodic in φ whence, by Theorem 2.5e, A ∈ C(T, SO(3)) where A(z) :=
Â(Arg(z)) so that (P[ω], A) ∈ SOS(1,P[ω]). It was shown in [He2, Section 7.2], by using the
“quaternion formalism” of SO(3) and simple tools from Algebraic Topology, that (P[ω], A) ∈
SOSCT (1,P[ω]) iff m is even. Note that this argumentation uses the mathematical analogy
of the z-φ correspondence of Chapter 2 with an r-ρ correspondence between r ∈ SO(3) and a
“quaternion” variable ρ (for more details, see [He2]). Thus for m odd we have a very simple
example showing that the inclusion (2.28) is proper.

Note that in the case m = 0, the function A in (2.29) is constant and has the following
I3×3 and this case plays an important role on so-called spin-orbit resonances (see Chapter 7
below). The function A in (2.29) also plays the role of a so-called transfer field, e.g., in the
proof of Theorem 7.3f.

2.5 The particle-spin-vector trajectories of the spin-orbit systems

We now discuss the DS defined by (2.22) by computing the n-th iterate P[j, A]n of P[j, A].
We call P[j, A]n the “n-turn particle-spin-vector map of (j, A)”. If z0 ∈ Td and S0 ∈ R3 we
define the functions Z : Z → Td and S : Z → R3 by

(
Z(n)
S(n)

)
:= P[j, A]n(z0, S0) . (2.30)

We call Z a “particle trajectory of (j, A)” and S a “spin-vector trajectory of (j, A)”. Also
we call (Z, S) a “particle-spin-vector trajectory of (j, A)”. Clearly, by (2.22),(2.30),

(
Z(n+ 1)
S(n+ 1)

)
= P[j, A]

(
Z(n)
S(n)

)
=

(
j(Z(n))

A(Z(n))S(n)

)
, (2.31)

whence

Z(n) = jn(z0) . (2.32)
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It follows from (2.31),(2.32) that

S(n+ 1) = A(Z(n))S(n) = A(jn(z0))S(n) , (2.33)

and S(−n) = At(j−n(z0))S(−n + 1) whence

S(n) = A(jn−1(z0)) · · ·A(j(z0))A(z0)S0 , (n = 1, 2, ...) (2.34)

S(n) = At(jn(z0)) · · ·A
t(j−1(z0))S0 , (n = −1,−2, ...) ,

where we also used the fact that At(z)A(z) = I3×3. It follows from (2.35) that

S(n) = Ψ[j, A](n; z0)S0 , (2.35)

where the function Ψ[j, A] : Z× Td → SO(3) is defined by

Ψ[j, A](0; z) := I3×3 ,

Ψ[j, A](n; z) := A(jn−1(z)) · · ·A(j(z))A(z) , (n = 1, 2, ...) ,

Ψ[j, A](n; z) := At(jn(z)) · · ·At(j−1(z)) , (n = −1,−2, ...) .

(2.36)

We call Ψ[j, A] the “spin transfer matrix function” of (j, A) and we call Ψ[j, A](n; ·) the
“n-turn spin transfer matrix function” of (j, A). Clearly

Ψ[j, A](1; z) = A(z) , (2.37)

which justifies calling A the 1-turn spin transfer matrix function. We use the standard
topology on Z (see Appendix A.3) whence the function Ψ[j, A] is continuous since it is
continuous in the second argument. It follows from (2.32),(2.35) that

(
Z(n)
S(n)

)
=

(
jn(z0)

Ψ[j, A](n; z0)S0

)
,

whence, by (2.30),

P[j, A]n(z, S) =

(
jn(z)

Ψ[j, A](n; z)S

)
. (2.38)

The behavior of the spin-vector trajectories in (2.33) depends on the values of A reached
by the particle motion Z(n) in its argument, which in turn depends on j. In the case
j = P[ω] the argument Z(n) of A in (2.33) will remain in a confined subset of the torus for
some values of ω and for other values it will cover the torus densely. To be more precise we
define resonance. We say χ ∈ Rn is resonant if there exists a non-zero integer vector k ∈ Zn

such that k · χ = 0 and nonresonant if not resonant. If j = P[ω] and (1, ω) is nonresonant
then the argument Z(n) of A in (2.33) covers the torus densely and since A is continuous all
values of A affect the spin-vector trajectory whereas if (1, ω) is resonant the values of A are
only sampled by its values on a sub-torus. The spin-orbit system (P[ω], A) is said to be “off
orbital resonance” if (1, ω) is nonresonant and “on orbital resonance” if (1, ω) is resonant.
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Thus spin-vector trajectories may exhibit significantly different qualitative behaviors on and
off orbital resonance. We will now generalize the notion “off orbital resonance”. One says
that j ∈ Homeo(Td) is “topologically transitive” if a z0 ∈ Td exists such that the set
B := {jn(z0) : n ∈ Z} is dense in Td, i.e., B = Td where B denotes the topological closure of
B, see Appendix A.3. An important special case is when j = P[ω]: then j is topologically
transitive iff (1, ω) is nonresonant.

Since P[j, A]n+m = P[j, A]n ◦ P[j, A]m we get from (2.38)

Ψ[j, A](n +m; z) = Ψ[j, A](n; jm(z)) Ψ[j, A](m; z) . (2.39)

Since Ψ[j, A] is continuous and SO(3)-valued and due to (2.39) it is common in Dynamical
Systems Theory to call Ψ[j, A] an “SO(3)-cocycle” over the homeomorphism j. While this
aspect does not play a role in this work, it inspires to use the terminologies “almost cobound-
ary” and “coboundary” in Chapter 7. The cocycle aspect of Ψ[j, A] is of great interest if one
studies the existence problem of the ISF in terms of the so-called “algebraic hull” (for more
details on the algebraic hull, see the remarks at the end of Chapter 5 below). For literature
on cocycles, see, e.g., [KR, Zi1] and Chapter 1 in [HK1].

3 Polarization-field trajectories and invariant polariza-

tion fields

In this chapter we introduce the notions of polarization field, invariant polarization field,
spin field and invariant spin field and we present their most basic properties.

3.1 Generalities

High precision measurements of the spin-dependent properties of the interactions of colliding
particles in storage rings depend on the equilibrium spin polarization being maximized. This,
in turn, is facilitated by an understanding of the meaning of the term equilibrium, both as
it applies to the value of the polarization and to its direction at each point in phase space.
We will return to these matters in Section 8.1 but continue now with a definition and an
exploration of the effects of maps.

Suppose therefore that (j, A) ∈ SOS(d, j) and that, at time n = 0, a spin vector Sz0

has been assigned to every point z0 = πd(φ0) of the “particle torus” and consider their
evolution according to (2.35). Let Sz0 denote the spin-vector trajectory with the initial
value S0 = Sz0(0). We define the field trajectory S = S(n, z) by S(n, jn(z)) = Sz(n) where
n and z vary over Z and Td respectively. Clearly S(n, ·) is the distribution of spins which
started at n = 0 with the assignments Sz0 and evolved under the dynamics of (2.35). Since
(2.35) gives us Sz(n+ 1) = A(jn(z))Sz(n), we have

S(n + 1, z) = A

(
j−1(z)

)
S

(
n, j−1(z)

)
. (3.1)

Definition 3.1 (Polarization-field trajectory)
Let (j, A) ∈ SOS(d, j). We call a function S ∈ C(Z×Td,R3) a “polarization-field trajectory
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of (j, A)”, if it satisfies the evolution equation (3.1). Clearly S(n, ·) ∈ C(Td,R3) and we call
S(0, ·) the “initial value of S”. A polarization-field trajectory S is also called a “spin-field
trajectory” if |S| = 1. ✷

It follows from the remarks before Definition 3.1 that if S is a polarization-field trajectory
and if Z is a particle trajectory of (j, A) then (Z, S) is a particle-spin-vector trajectory of
(j, A) where S(n) := S(n, Z(n)). Every such trajectory we call a “characteristic particle-spin-
vector trajectory”. Thus the particle-spin motion can be viewed as a characteristic motion
of the field motion and this plays a key role in the spin-vector tracking of the stroboscopic
averaging method [EH, HH] (for more details on stroboscopic averaging, see Section 7.2).
For an application of the characteristic motion in the present work, see Section 4.2.

At (2.22) we defined the function P[j, A] for transporting particles and their spin vectors.
We now define the 1-turn field map, i.e., the function P̃[j, A] : C(Td,R3) → C(Td,R3) for the
field evolution by

P̃[j, A](f) := (Af) ◦ j−1 , (3.2)

i.e., (P̃[j, A](f))(z) := A(j−1(z))f(j−1(z)) where f ∈ C(Td,R3). To show that P̃[j, A] is a
bijection we note, by (3.2) and for (j, A) ∈ SOS(d, j) and (j′, A′) ∈ SOS(d, j′), that

P̃[j′, A′] ◦ P̃[j, A] = P̃[j′ ◦ j, A′′] , (3.3)

where A′′ ∈ C(Td, SO(3)) is defined by A′′ := (A′ ◦ j)A, whence

P̃[j, A] = P̃[j, Ad,0] ◦ P̃ [idTd , A] , (3.4)

where Ad,0 ∈ C(Td, SO(3)) is defined by Ad,0(z) := I3×3. Thus P̃ [j, A] is a bijection since it
has the inverse, P̃ [j, A]−1, given by

P̃[j, A]−1 = P̃ [idTd , At] ◦ P̃ [j−1, Ad,0] = P̃[j−1, At ◦ j−1] . (3.5)

Amusingly, (3.3),(3.4),(3.5) would even hold if one would replace P̃ by P as can be easily
checked.

With (3.2) the evolution equation (3.1) can be written as S(n + 1, ·) = P̃[j, A](S(n, ·))
whence, for every polarization-field trajectory S,

S(n, ·) = P̃ [j, A]n(S(0, ·)) . (3.6)

We now compute n-th iterate P̃ [j, A]n of P̃[j, A] which we call the “n-turn field map” of
(j, A). In fact, by (2.36), (3.2) and via induction in n,

P̃[j, A]n(f) =

(
Ψ[j, A](n; ·)f

)
◦ j−n , (3.7)

i.e., (P̃ [j, A]n(f))(z) = Ψ[j, A](n; j−n(z))f(j−n(z)).
In Section 2.2 we demonstrated, in case of the particle spin-vector dynamics, that φ and

z are of the same expressive power. In fact this is also the case for field dynamics as the
following remark shows.

Remark:
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(1) Let, as in Theorem 2.5e, Â ∈ C(Rd, SO(3)) be 2π-periodic in its arguments and ĵ ∈
Mapd, i.e., ĵ ∈ Homeo(Rd) such that πd ◦ ĵ and πd ◦ ĵ−1 are 2π-periodic in their

arguments. We thus define the function
˜̂
P[ĵ, Â] : Cper(R

d,R3) → Cper(R
d,R3) for the

field evolution in the φ variable by

˜̂
P[ĵ, Â](f̂) := (Âf̂) ◦ ĵ−1 , (3.8)

i.e., (
˜̂
P[ĵ, Â](f̂))(z) := Â(ĵ−1(φ))f̂(ĵ−1(φ)) where f̂ ∈ Cper(R

d,R3) and where Cper(R
d,R3)

denotes the set of functions in C(Rd,R3) which are 2π-periodic in their arguments.
Then, by the first part of Theorem 2.5e, j := πd ◦ ĵ ◦ Arg belongs to Homeo(Td) and
A := Â ◦Arg belongs to C(Td, SO(3)). In analogy to the second part of Theorem 2.5e,
we arrive at the following claim:
If f̂ ∈ Cper(R

d,R3) is defined by f̂ := f ◦ πd with f ∈ C(Td,R3) then f̂ ′ = f ′ ◦ πd
where f ′ ∈ C(Td,R3) and f̂ ∈ Cper(R

d,R3) are defined by f ′ := P̃ [j, A](f) and

f̂ ′ :=
˜̂
P[ĵ, Â](f̂).

The claim means, in the language of Dynamical Systems Theory, that
˜̂
P[ĵ, Â] and

P̃[j, A] are equivariant, see for example [HK1].

Proof of the claim: We compute, by (3.2), (3.8) and Definition 2.4, f̂ ′ ◦ ĵ ◦ Arg =
(Âf̂)◦Arg = (A◦πd)(f ◦πd)◦Arg = Af and f ′◦πd◦ ĵ◦Arg = f ′◦j = (Af)◦j−1◦j = Af
whence f̂ ′◦ĵ◦Arg = f ′◦πd◦ĵ◦Arg. Thus, and since f̂ ′◦ĵ and f ′◦πd◦ĵ are 2π-periodic in
their arguments and continuous, we conclude from Theorem 2.5b that f̂ ′◦ ĵ = f ′◦πd◦ ĵ
whence, and since ĵ is a bijection, we indeed get f̂ ′ = f ′ ◦ πd.

Clearly
˜̂
P[ĵ, Â] is the “field” version of P̂ [ĵ, Â] and it would thus be easy to define the

notion of polarization-field trajectory in terms of the angle variable φ (however in this
work we focus on the variable z). ✷

In our follow-up work we will take a deeper look into polarization fields by generalizing the
spin vector variable and thus generalizing the notion of polarization field.

3.2 Invariant polarization fields and invariant spin fields

We first need a definition.

Definition 3.2 (Invariant polarization field, ISF)
Let (j, A) ∈ SOS(d, j). A function f ∈ C(Td,R3) is called an “invariant polarization field
of (j, A)” if it satisfies

f ◦ j = Af . (3.9)

Note, by (3.2),(3.9), that an f ∈ C(Td,R3) is an invariant polarization field of (j, A) iff

f = P̃[j, A](f) . (3.10)

Thus an f ∈ C(Td,R3) with |f | = 1 is an ISF of (j, A) iff (3.10) holds. An invariant
polarization field f is called an “invariant spin field (ISF)” if |f | = 1. Thus an f ∈ C(Td,R3)
with |f | = 1 is an ISF of (j, A) iff (3.10) holds. We denote the set of invariant spin fields of
(j, A) by ISF (j, A). ✷
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We now take a closer look at invariant polarization fields and we first recall from (3.1)
that if S is a polarization-field trajectory of (j, A) then

S(n + 1, j(z)) = A(z)S(n, z) , (3.11)

whence if S is also time-independent then

S(n, j(z)) = S(n + 1, j(z)) = A(z)S(n, z) . (3.12)

It follows from (3.11) and (3.12) and Definitions 3.1,3.2 and by induction in n that if S is a
polarization-field trajectory of (j, A) then S is time-independent iff its initial value S(0, ·) is
an invariant polarization field of (j, A).

Invariant polarization fields play an important role in polarized beam physics since they
can be used to estimate the maximum attainable polarization of a bunch as we explain
in Section 8.1, and since they are closely tied to the notions of spin tune and spin-orbit
resonance (see Chapter 7). In fact as indicated in the Introduction invariant polarization
fields are central to this work. This view will be confirmed in our follow-up work where we
will generalize the notion of invariant polarization field.

We now make some comments on the question of the existence of the ISF for spin-orbit
systems in SOS(d, j). It should be clear that the constraints involved in the definition of
the ISF are nontrivial. However, if a spin-orbit system (j, A) has an ISF f then −f is also
an ISF of (j, A). So since f 6= −f , if (j, A) has a finite number of ISF’s, then this number is
even. The important subcase where (j, A) has exactly two ISF’s is dealt with in Chapter 8.

It is also known [BV1] and to be examined in the following section, that spin-orbit
systems exist which are on orbital resonance and which have no continuous ISF of the kind
that we treat here. At the same time there are some indications, mainly from numerical
computations on ISF’s, that practically relevant spin-orbit systems which have no ISF are
“rare”. Thus we state the following conjecture, which we call the “ISF-conjecture”: If (j, A)
is a spin-orbit system such that j is topologically transitive then (j, A) has an ISF. Note that
a special case of this conjecture is: If a spin-orbit system (P[ω], A) is off orbital resonance,
then it has an ISF.

The ISF-conjecture is, at least to our knowledge, unresolved. The question of the ex-
istence of the ISF is widely considered important both as a theoretical matter and as it
relates to the practical matter of deciding whether a beam can have stable, non-vanishing
polarization. Our follow-up work will present a new framework for discussing it.

Remark:

(2) Since we work in the framework of topological dynamical systems, A, j are continuous
functions and we therefore require our fields to be continuous, in particular the invari-
ant polarization fields. Thus every polarization-field trajectory S fulfills two different
conditions: the “dynamical” condition (3.1) and the “regularity” condition that S is
continuous. However, in contrast to the dynamical condition, the regularity condi-
tion is a matter of choice. While in this work, and in [He2], we choose continuity as
the regularity property, this property can basically vary between the extremes “Borel
measurable” and “of class C∞”. ✷
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Since the ISF-conjecture deals with topologically transitive j we state the following the-
orem whose part b) considers this situation.

Theorem 3.3 a) Let j ∈ Homeo(Td) be topologically transitive and let g ∈ C(Td,R) satisfy,
for all z ∈ Td,

g(j(z)) = g(z) . (3.13)

Then g is constant, i.e., g(z) is independent of z.
b) Let (j, A) ∈ SOS(d, j) where j is topologically transitive. If f is an invariant polarization
field of (j, A) then |f | is constant, i.e., |f(z)| is independent of z. Also (j, A) has an ISF iff
it has an invariant polarization field which is not identically zero.

Proof of Theorem 3.3a: We pick a z0 ∈ Td such that the set B := {jn(z0) : n ∈ Z} is dense
in Td, i.e., B = Td and we define g0 := g(z0). It follows from (3.13) that B ⊂ C := {z ∈ Td :
g(z) = g0}. On the other hand, the singleton {g0} is a closed subset of R whence, because g
is continuous, C is a closed subset of Td. Therefore Td = B ⊂ C = C so that Td = C. Thus,
by the definition of C, we conclude that g(z) = g0 for all z ∈ Td which proves the claim.
Note that C being closed means that its complement, say C ′, is open, i.e., C ′ ∈ τd. ✷

Proof of Theorem 3.3b: Let f be an invariant polarization field of (j, A). Then, by Definition
3.2, f ∈ C(Td,R3) and

|f(j(z))| = |f(z)| . (3.14)

Defining g ∈ C(Td,R) by g(z) := |f(z)| it follows from (3.14) that g satisfies (3.13). It thus
follows from Theorem 3.3a that |f(z)| is independent of z.

To prove the second claim, let f be an invariant polarization field of (j, A) which is not
identically zero. Clearly by the first claim |f | is constant and takes a nonzero value because
|f | is not identically zero. Thus we define h ∈ C(Td,R3) by h := f/|f | whence, by Definition
3.2, h is an ISF of (j, A). Conversely every ISF of (j, A) is an invariant polarization field of
(j, A) which is not identically zero. ✷

We will apply Theorem 3.3a in the proof of Theorem 7.6 below. Moreover, Theorem
3.3a is of practical importance as will be explained in Section 7.2 when we discuss the com-
puter code SPRINT. In Section 8.1 below we apply Theorem 3.3b and explain its practical
importance.

In the special case when j = P[ω] with (1, ω) nonresonant one can prove Theorem 3.3
alternatively by the machinery of Appendix B (see also [He2]). With Theorem 3.3b, the ISF
conjecture is equivalent to the following statement: If j is topologically transitive then (j, A)
has an invariant polarization field which is not identically zero. Note also that Theorem 3.3b
will be generalized in our follow-up work.

A less formal picture surrounding Theorem 3.3b is as follows. When j is topologically
transitive, the whole of Td can effectively be reached from any starting position z0 by repeated
application of j. Moreover, by a corresponding repeated application of A, f(z0) generates
f(z) at effectively all points on Td. So the f(z) on Td are all “connected”. Also, since A
is SO(3)-valued all the |f(z)| are the same. On the other hand, if j is not transitive, the
f(z) at different z need not be connected. For example the f(z) at adjacent z could have
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opposite signs. We will encounter this situation in the following section but we first need
the following remark on the notion of n-turn ISF.

Remark:

(3) Let (j, A) ∈ SOS(d, j) and let n be an integer. Then j−n = (jn)−1 whence, by (3.7),

P̃[j, A]n(f) =

(
Ψ[j, A](n; ·)f

)
◦ (jn)−1 so that, by (3.2),

P̃[j, A]n = P̃

[
jn,Ψ[j, A](n; ·)

]
. (3.15)

Thus the n-turn field map of the spin-orbit system (j, A) is equal to the 1-turn field map
of the spin-orbit system (jn,Ψ[j, A](n; ·)). In particular if f is an ISF of (j, A) then,
by Definition 3.2, P̃[j, A]f = f whence P̃[j, A]nf = f so that, by (3.15), f is an ISF of
(jn,Ψ[j, A](n; ·)). An ISF of (jn,Ψ[j, A](n; ·)) is sometimes called an “n-turn ISF” of
(j, A), see, e.g., [HBEV3]. Thus every ISF of (j, A) is an n-turn ISF of (j, A) but the
converse is not true (see, e.g., the spin-orbit system (P[1/2], A2S) in Section 3.3 below).
It also follows from the above that, when jn = idTd (e.g., if j = P[ω] with ω ∈ Qd),
every ISF of (j, A) has a rather simple form if n 6= 0. In fact if f is an ISF of (j, A)
and if jn = idTd then f is an n-turn ISF of (j, A), i.e., an ISF of (idTd,Ψ[j, A](n; ·))
whence, by (3.9), f(z) = Ψ[j, A](n; z)f(z), i.e., f(z) is an eigenvector in R3 so that the
ISF is the solution of infinitely many eigenvalue problems for the eigenvalue 1. Thus
if jn = idTd with n 6= 0, the existence problem of the ISF of (j, A) is rather simple and
in Section 3.3 below we will use this fact in a situation where j2 = idTd . Note that
in the case n = 0 the eigenvalue problems read as f(z) = f(z) so in this case they
carry no interesting information. The above also suggests the following approach to
the ISF conjecture: If (1, ω) is nonresonant then in order to find an ISF for (P[ω], A)
one approximates this spin-orbit system by a spin-orbit system (P[χ], A) where χ ∈ Qd

approximates ω and where existence problem of the ISF of (P[χ], A) is rather simple
due to the above. Note also that it can be easily shown, in analogy to (3.15), that
P[j, A]n = P[jn,Ψ[j, A](n; ·)]. ✷

3.3 The 2-snake model

In this section we consider a model describing the spin-orbit system of a flat storage ring
which has two thin-lens Siberian Snakes with mutually perpendicular axes of spin rotation
placed at θ = 0 and θ = π. With this layout, the spin tune, ν0, on the design orbit, of
the ring is 1/2. Here we are interested in the situation where, in the absence of snakes, the
spin motion is dominated by the effect of a single harmonic in the Fourier expansion of the
radial component of the Ω(θ, J, φ(θ)), mentioned in the Introduction, and due to vertical
betatron motion. This case is often called the “single resonance model”. The combination
of the single resonance model and two snakes considered in this section has been studied
extensively. See for example [BV1, Vo] and the references therein. The interest in this model
stems from the effect on the polarization of the so-called “snake resonances”. These occur
at vertical betatron tunes of 1/2, 1/6, 5/6, 1/10, 3/10 . . . Note that the term snake resonance

23



is a misnomer since it does not refer to the proper definition of spin-orbit resonance given in
(7.23). Our main interest here is in the fact that at snake resonance, there is no ISF of the
kind that we define in this paper. We have already mentioned this situation in Section 7.2.
For further background material see [BV1].

Here we focus on the simplest case, namely that with vertical betatron tune, ω = 1/2,
and we denote the resulting spin-orbit system by (P[1/2], A2S). Of course a real bunch is not
stable at ω = 1/2 but this does not play a role in the present section. In this section we will
prove that (P[1/2], A2S) has no ISF and, as a byproduct, we will construct a “discontinuous”
ISF k̂, i.e., a normalized and piecewise continuous solution of (3.9) (see Remark 4 below).

We first define (P[1/2], A2S). For this we define the function A2S ∈ C(T, SO(3)), for
ǫ ∈ (R \ Z) with [BV1, Vo] by

A2S(z) :=




1− 2c2(φ) 2b(φ)c(φ) 2a(φ)c(φ)
2b(φ)c(φ) 1− 2b2(φ) −2a(φ)b(φ)
−2a(φ)c(φ) 2a(φ)b(φ) 2a2(φ)− 1


 , (3.16)

where φ ∈ Rd such that πd(φ) = z and where the functions a, b, c ∈ C(R,R) are defined by

a(φ) := −2 sin2(πǫ/2) sin(φ) cos(φ) , b(φ) := −2 sin(πǫ/2) cos(πǫ/2) cos(φ) ,

c(φ) := 2 sin2(πǫ/2) cos2(φ)− 1 . (3.17)

Due to Theorem 2.5b, A2S is well-defined by (3.16) and continuous since the functions a, b, c
are 2π-periodic and continuous. Note also that

a2 + b2 + c2 = 1 , (3.18)

and that we exclude ǫ from being an integer because in that case (P[1/2], A2S) would have
an ISF [He1].

It follows from (2.25),(2.26) that P[1/2]2 = P[1] = idT whence the existence problem of
the ISF of (P[1/2], A2S) can be solved along the lines of Remark 3 above, i.e., by solving

the eigenvalue problem h(z) = Ψ

[
P[1/2], A2S

]
(2; z)h(z) at every z. Note that P[1/2]2 =

idT means that a particle returns to the same z over two turns. We thus will prove that
(P[1/2], A2S) has no ISF as follows. In the first step we show, by solving the eigenvalue

problem h(z) = Ψ

[
P[1/2], A2S

]
(2; z)h(z) at every z, that (P[1/2], A2S) has just two 2-turn

ISF’s namely k and −k defined below. Thus, recalling Remark 3, if (P[1/2], A2S) has an
ISF then this ISF is also a 2-turn ISF of (P[1/2], A2S) whence it must be equal to k or −k.
Therefore in the second step we will show that neither k nor −k is an ISF of (P[1/2], A2S)
which will finish the proof.

To perform the first step we recall from Remark 3 that a function h ∈ C(T,R3) is a 2-turn
ISF of (P[1/2], A2S) iff it satisfies, for every z ∈ T,

h(z) = Ψ

[
P[1/2], A2S

]
(2; z)h(z) , (3.19)

|h(z)| = 1 . (3.20)

24



To address the eigenvalue problem (3.19) we need to compute the 2–turn spin transfer
matrix function Ψ[P[1/2], A2S](2; ·). In fact, by (3.16) and (3.17),

A2S(P[1/2](z)) = A2S(πd(φ+ π)) =




1− 2c2(φ) −2b(φ)c(φ) 2a(φ)c(φ)
−2b(φ)c(φ) 1− 2b2(φ) 2a(φ)b(φ)
−2a(φ)c(φ) −2a(φ)b(φ) 2a2(φ)− 1


 ,(3.21)

where z = πd(φ) and where in the first equality we used (2.25). We conclude from (2.36),
(3.16) and (3.21) that the 2–turn spin transfer matrix function reads as

Ψ

[
P[1/2], A2S

]
(2; z) = A2S(P[1/2](z))A2S(z)

=




1− 8c2(φ) + 8c4(φ) 4b(φ)c(φ)(1− 2c2(φ)) 4a(φ)c(φ)(1− 2c2(φ))
−4b(φ)c(φ)(1− 2c2(φ)) 1− 8b2(φ)c2(φ) −8a(φ)b(φ)c2(φ)
−4a(φ)c(φ)(1− 2c2(φ)) −8a(φ)b(φ)c2(φ) 1− 8a2(φ)c2(φ)


 , (3.22)

where z = πd(φ). Since ǫ is not an integer, | sin(πǫ/2)| equals neither 0 or 1, and so we define
the 2π-periodic function K ∈ C(R,R3) by

K(φ) :=
cos(πǫ/2)

| cos(πǫ/2)|
√
1− sin2(πǫ/2) cos2(φ)

(
0, sin(πǫ/2) sin(φ),− cos(πǫ/2)

)
. (3.23)

By Theorem 2.5b and since K is continuous and 2π-periodic, a unique function k ∈ C(T,R3)
exists such that

K = k ◦ π1 . (3.24)

It is easy to show that (3.19) and (3.20) are fullfilled for h = k, i.e.,

k(z) = Ψ[P[1/2], A2S](2; z)k(z) , (3.25)

|k(z)| = 1 . (3.26)

Thus indeed k and −k are 2-turn ISF’s of (P[1/2], A2S).
To complete the first step of our proof we need to show that k and −k are the only 2-turn

ISF’s of (P[1/2], A2S) so let h ∈ C(T,R3) be an arbitrary 2-turn ISF of (P[1/2], A2S), i.e., let
h satisfy (3.19) and (3.20). To show that either h = k or h = −k let R 6= I3×3 be a matrix
in SO(3). Then R has a real eigenvector v ∈ R3 with eigenvalue 1 and such that |v| = 1
whence r ∈ SO(3) exists such that v = r(0, 0, 1)t. Thus rtRr(0, 0, 1)t = (0, 0, 1)t whence,
by Theorem 6.2a in Chapter 6 below, rtRr ∈ SO(2) so that a ν ∈ [0, 1) exists such that
R = r exp(2πνJ )rt. This implies, since R 6= I3×3, that ν 6= 0. Thus if w,w′ ∈ R3 are real
eigenvectors of rtRr with the eigenvalue 1 and |w| = |w′| = 1 then |w · w′| = 1 whence if
v, v′ ∈ R3 are real eigenvectors of R with the eigenvalue 1 and |v| = |v′| = 1 then |v · v′| = 1.

Defining the set

M := {z ∈ T : Ψ[P[1/2], A2S](2; z) = I3×3} , (3.27)

we observe that, if z ∈ (T \ M), then Ψ[P[1/2], A2S](2; z) 6= I3×3. Thus, and since by
(3.19), (3.20), (3.25) and (3.26), h(z), k(z) are real eigenvectors of Ψ[P[1/2], A2S](2; z) with
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eigenvalue 1 and |h(z)| = |k(z)| = 1 we conclude that, if z ∈ (T \M), then λ(z) = 1 where
the function λ : T → R is defined by λ(z) := |h(z) · k(z)|. To show that λ(z) = 1 for all
z ∈ T we only have to show that λ is a constant function. We thus compute, by (3.17) and
(3.22),

M = {π1(φ) : φ ∈ R, c(φ)(c2(φ)− 1) = 0} = {π1(φ) : φ ∈ R, cos2(φ) =
1

2 sin2(πǫ/2)
} ,

(3.28)

whence M consists of only finitely many points. Since λ(z) = 1 on T \M and since M has
only finitely many points we conclude that λ is a continuous function with only finitely many
values. Since T is path-connected and λ is continuous we use the same argument as in the
proof of Theorem 8.1b and conclude that the range of λ is an interval whence λ is constant
so that λ(z) = |h(z) · k(z)| = 1 holds for every z ∈ T. Thus, and since |h(z)| = |k(z)| = 1,
either h = k or h = −k. So we have shown that the only 2-turn ISF’s are h = k and h = −k.
This completes the first step of our proof.

In the second step we now show that neither k nor −k is an ISF so we compute, by (3.16)
and (3.23),

A2S(π1(φ))K(φ) = −K(φ+ π) , (3.29)

whence, by (2.25) and (3.24), A2S(z)k(z) = −k(P[1/2](z)) so that, by (3.2),

P̃[P[1/2], A2S](k) = −k , (3.30)

which implies, by Definition 3.2, that k is not an ISF of (P[1/2], A2S). Thus −k is not an ISF
of (P[1/2], A2S) either. Therefore the only two 2-turn ISF’s of (P[1/2], A2S) are not ISF’s of
(P[1/2], A2S). This completes the second and final step of our proof. We thus conclude that
(P[1/2], A2S) has no ISF.

Remark:

(4) While (P[1/2], A2S) has no ISF, it is easy to construct a normalized, piecewise contin-
uous solution of (3.9) for the spin-orbit system (P[1/2], A2S) (see also [BV2]). In fact
defining K̂ : R → R3 by

K̂(φ) :=

{
K(φ) if φ ∈

⋃
n∈Z[2πn, 2πn+ π)

−K(φ) if φ ∈
⋃

n∈Z[2πn+ π, 2πn+ 2π) ,
(3.31)

we are led, by Section 2.2, to define the function k̂ : T → R3 by k̂(z) := K̂(Arg(z)).
It is a simple exercise to show that k̂ is a normalized piecewise continuous solution of
(3.9) for the spin-orbit system (P[1/2], A2S). Of course, k̂ is not an ISF of (P[1/2], A2S)
since (P[1/2], A2S) has no ISF. In fact it is an easy exercise to show, by (3.23) and
(3.31), that k̂ is discontinuous at z = π1(0) and z = π1(π). This is an example of a
consequence of a lack of topological transitivity of j mentioned just after Theorem 3.3.

As mentioned in Remark 2 above, since A, j are continuous we require that invariant
fields be continuous. However this requirement is a matter of choice. In fact if one
would impose the weaker condition of Borel measurability then k̂ would be an ISF. In
fact, as mentioned in Section 7.2 below, the requirement of continuity was relaxed in
[BV1]. ✷
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For more details on (P[1/2], A2S), see Appendix B.6 below.

4 Transforming spin-orbit systems and the partition of

SOS(d, j)

Transformations of spin-orbit systems are important since they underly the important no-
tions of IFF and spin tune as illustrated in Chapters 5,6,7. Thus in this chapter, in order
to provide the basic machinery needed in Chapters 5,6,7, we introduce the transformation
of any (j, A) ∈ SOS(d, j) under any T ∈ C(Td, SO(3)), i.e., we state a transformation
formula which is well-known in the Beam Polarization community in the rigorous terms of
the formalism developed in the previous chapters. In fact (j, A) is transformed into (j, A′)
where A′ is given by (4.2) below, i.e., A′(z) := T t(j(z))A(z)T (z). Thanks to our formalism,
we find that the above transformations partition every SOS(d, j) into “equivalence classes”
where two spin-orbits systems are “equivalent”, i.e., belong to the same class, if they are
connected by one of these transformations. The dynamics of equivalent spin-orbit systems
can be considered as essentially the same.

A central idea in Dynamical Systems Theory is, for a given dynamical system, to find an
“equivalent” one which is simpler to analyze. The particular notion of equivalence mentioned
above and used in this chapter is an example and thus it is of interest to find transformations
T which simplify a given (j, A). More precisely we want to find a spin-orbit system (j, A′),
where A′(z) := T t(j(z))A(z)T (z), such that the function S ′(n) := T t(Z(n))S(n) is as simple
as possible.

We use the transpose of T as a matter of convention (this convention has the side effect
that under certain conditions on T , the third column, not the third row, of T is an ISF -
see the IFF Theorem in Chapter 6). Also note that if T ∈ C(Td, SO(3)) then T t = T−1 ∈
C(Td, SO(3)).

In Section 4.1 we make precise our transformation law and define the corresponding par-
tition of SOS(d, j). In addition we relate in Section 4.1 the particle-spin-vector trajectories
of equivalent spin-orbit systems by relating P[j, A] and P[j, A′] etc. Analogously we relate in
Section 4.2 the polarization-field trajectories of equivalent spin-orbit systems. In Section 4.3
we put Sections 4.1 and 4.2 in a more general “tranformation theoretical context” a context
we will not consider in this work. In Chapter 5 we use the transformation law of the present
chapter by considering spin-orbit systems (j, A) which have an H-normal form, that is (j, A)
is equivalent to (j, A′) where, for all z ∈ Td, A′(z) ∈ H with H being a subgroup of SO(3)
w.r.t. matrix multiplication. The spin-orbit system (j, A′) is considered as “simple” if A′ is
H-valued where H is a subgroup of SO(3) which is “small” (for more details of this philos-
ophy, see Chapter 5). This is the case of the subgroups SO(2) and Gν which we consider in
Chapters 6 and 7.
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4.1 The transformation of spin-orbit systems and of particle-spin-
vector trajectories

Consider (j, A) ∈ SOS(d, j) and let (Z, S) be a particle-spin-vector trajectory of (j, A), i.e.,
let (2.31) hold so that S is a spin-vector trajectory of (j, A) and thus S(n+1) = A(Z(n))S(n).
For arbitrary T ∈ C(Td, SO(3)), the function S ′ : Z → R3, defined by

S ′(n) := T t(Z(n))S(n) , (4.1)

satisfies S ′(n + 1) = T t(Z(n + 1))A(Z(n))T (Z(n))S ′(n). So (Z, S ′) is a particle-spin-vector
trajectory of a new spin-orbit system, namely of (j, A′) ∈ SOS(d, j) which is defined by

A′(z) := T t(j(z))A(z)T (z) . (4.2)

Eq. (4.2) gives rise to a partition of SOS(d, j) as we formalize in the next two definitions.

Definition 4.1 (Transformation of spin-orbit systems, transfer field)
Let (j, A) and (j, A′) be in SOS(d, j). Then a T in C(Td, SO(3)) is called a “transfer field
from (j, A) to (j, A′)” iff (4.2) holds. We also say that “(j, A′) is the transform of (j, A) under
T”. We denote the collection of all transfer fields from (j, A) to (j, A′) by T F(A,A′; d, j).
Note that if T ∈ T F(A,A′; d, j) then T t ∈ T F(A′, A; d, j), i.e., (j, A) is the transform of
(j, A′) under T t. ✷

It follows from the remarks before Definition 4.1 that if T is any transfer field from (j, A)
to (j, A′) and if (Z, S) is a particle-spin-vector trajectory of (j, A) then (Z, S ′) is a particle-
spin-vector trajectory of (j, A′) where S ′ is defined by (4.1), i.e., S ′(n) = T t(Z(n))S(n).

Following Appendix A.2 we make the definition:

Definition 4.2 Let (j, A) and (j, A′) be in SOS(d, j). Then we write (j, A) ∼ (j, A′) and
say that (j, A) and (j, A′) are “equivalent” iff (j, A′) is a transform of (j, A) under some
T ∈ C(Td, SO(3)). The relation ∼ is reflexive, symmetric, and transitive and thus is an
equivalence relation on SOS(d, j), see Remark 0 below. Let (j, A) := {(j, A′) : (j, A′) ∼
(j, A)}, i.e., the equivalence class of (j, A) under ∼. As outlined in Appendix A.2, the sets
(j, A) partition SOS(d, j). ✷

Two spin-orbit systems which are equivalent share many important properties, e.g., the
existence or nonexistence of an ISF (see Remark 3 below). We will see other properties
shared by equivalent spin-orbit systems throughout this work and in our follow-up work.
Thus the dynamics of equivalent spin-orbit systems can be considered as essentially the
same. Therefore if (j, A) can be transformed into a “simple” (j, A′) then we consider the
particle-spin-vector motions, the polarization field motions and the invariant polarization
fields of all spin-orbit systems in (j, A) as “simple”. Of course, for checking those shared
properties it can be convenient to check them for a “simple” element of (j, A) (see Chapters
5,6 and 7).

We now study how the transformation formula (4.2) affects P[j, A] and Ψ[j, A]. Under
the transformation (j, A) −→ (j, A′), given by (4.2), P[j, A] becomes P[j, A′] and the latter
is given by

P[j, A′] = P[idTd , T ]−1 ◦ P[j, A] ◦ P[idTd , T ] , (4.3)
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where T is any transfer field from (j, A) to (j, A′). Eq. (4.3) is easily checked since, by (2.22),

P[j, A](z, S) =

(
j(z)
A(z)S

)
and P[j, A′](z, S) =

(
j(z)
A′(z)S

)
as well as P[idTd , T ](z, S) =

(
z

T (z)S

)
. Amusingly, even the converse holds, i.e., (4.3) implies (4.2). Of course (4.3)

also implies

P[j, A′]n = P[idTd , T ]−1 ◦ P[j, A]n ◦ P[idTd , T ] , (4.4)

Finally under the transformation (j, A) −→ (j, A′), given by (4.2), Ψ[j, A] becomes
Ψ[j, A′] and the latter is given by

Ψ[j, A′](n; z) = T t(jn(z))Ψ[j, A](n; z)T (z) , (4.5)

where T is any transfer field from (j, A) to (j, A′). Eq. (4.5) is easily checked via induction in
n and by (2.39) and (4.2). Recall from Section 2.5 that Ψ[j, A] is a cocycle in the terminology
of Dynamical Systems Theory and in this terminology the equality (4.5) means that the
cocycles Ψ[j, A] and Ψ[j, A′] are “cohomologous”. For this notion, see, e.g., [He2, KR, Zi1]
and Chapter 1 in [HK1]. The transformation behavior displayed in (4.1), (4.3),(4.5) will be
generalized in our follow-up work by generalizing the spin vector variable.

We now make some comments on Definitions 4.1 and 4.2. First of all T F(A,A′; d, j) 6= ∅
iff (j, A′) is a transform of (j, A) as in (4.2). In the case, where j = P[ω], the equiva-
lence relation ∼ on SOS(d, j) has more than one equivalence class whence not every set
T F(A,A′; d, j) is nonempty. In fact it is shown after Remark 6 in Chapter 7 that the equiv-
alence relation ∼ on SOS(d, j) has infinitely many equivalence classes in the case where
j = P[ω]. It is likely that this holds not only in the case j = P[ω]. Finally the following
remark shows that ∼, defined in Definition 4.2, is an equivalence relation.

Remark:

(0) We here make some comments on the relation ∼ defined in Definition 4.2. First of
all ∼ is reflexive since the constant I3×3-valued function on Td is a transfer field from
(j, A) to (j, A). Secondly ∼ is symmetric since if T is a transfer field from (j, A)
to (j, A′) then T t is a transfer field from (j, A′) to (j, A) (note that (4.2) implies
A(z) = T (j(z))A′(z)T t(z)). Thirdly ∼ is transitive since if T is a transfer field from
(j, A) to (j, A′) and T ′ is a transfer field from (j, A′) to (j, A′′) then TT ′ is a transfer
field from (j, A) to (j, A′′). This completes the proof that ∼ is an equivalence relation
on SOS(d, j) (see also [wiki4]). ✷

4.2 Transforming polarization-field trajectories

We now study how the transformation formula (4.2) affects P̃ [j, A] and we will also find,
correspondingly to (4.1), transformation formulas for polarization field trajectories and in-
variant polarization fields.
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First of all under the transformation (j, A) −→ (j, A′), given by (4.2), P̃ [j, A] becomes
P̃[j, A′] and the latter is given by

P̃ [j, A′] = P̃[idTd , T ]−1 ◦ P̃ [j, A] ◦ P̃ [idTd, T ] , (4.6)

where T is any transfer field from (j, A) to (j, A′). Eq. (4.6) is easily checked by (3.3),(4.2).
Of course (4.6) implies that

P̃[j, A′]n = P̃ [idTd, T ]−1 ◦ P̃ [j, A]n ◦ P̃ [idTd, T ] .?? (4.7)

We now transform polarization-field trajectories. Recall from the remarks after Definition
4.1 that if T is a transfer field from (j, A) to (j, A′) and if (Z, S) is a particle-spin-vector
trajectory of (j, A) then (Z, S ′) is a particle-spin-vector trajectory of (j, A′) where S is defined
by (4.1), i.e., S ′(n) := T t(Z(n))S(n). We now apply this transformation to the characteristic
particle-spin-vector trajectories so let S be a polarization-field trajectory of (j, A). Defining
S(n) := S(n, Z(n)) we recall from the remarks after Definition 3.1 that (Z, S) is a particle-
spin-vector trajectory of (j, A) whence S ′(n) := T t(Z(n))S(n, Z(n)) is a particle-spin-vector
trajectory of (j, A′). This suggests that S ′, defined by

S ′(n, z) := T t(z)S(n, z) , (4.8)

is a polarization-field trajectory of (j, A′) which is easily checked by (3.1),(4.2).
With (4.8), and by the remarks after (3.12), we have the following transformation formula

of invariant polarization fields:

f ′(z) = T t(z)f(z) , (4.9)

where f is an invariant polarization field of (j, A) and f ′ is an invariant polarization field of
(j, A′) with T being any transfer field from (j, A) to (j, A′). For an application of (4.9), see
the proof of the IFF Theorem in Chapter 6.

The transformation behavior displayed in (4.6),(4.8),(4.9) will be generalized in our
follow-up work where it will be derived from an SO(3)-gauge transformation.

Remarks:

(1) The transformation formulas (4.1),(4.3),(4.5) and (4.6),(4.8),(4.9) are no strangers to
the polarized-beam community. In fact when researchers deal with the topics of spin
tune, spin frequency, spin resonances, resonance strengths etc. then they often ap-
peal more or less directly to these transformation formulas. In those applications the
aim, typically, is to transform (j, A) to a “simple” (j, A′). In the present work these
transformation formulas are applied to the notions of IFF and spin tune in Chapters
6,7.

(2) Let (Z, S) be a particle-spin-vector trajectory of a spin-orbit system (j, A). Then the
transformation formula (4.1) could be generalized to

S ′(n) := Rt(n, Z(n))S(n) , (4.10)
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where R : Z×Td → SO(3) is an arbitrary continuous function generalizing the notion
of transfer field. However in general (Z, S ′), with S ′ from (4.10), is not a particle-
spin-vector trajectory of any spin-orbit system. This is evident in the case where
j = P[ω] as follows. If Z is a particle trajectory of (P[ω], A) with Z(0) = πd(φ0)
then, by Appendix B.1, the equations of motion for the spin-vector trajectory S read
as S(n + 1) = A(πd(φ0 + 2πnω))S(n). In the language of Appendix B.1, the matrix
elements of A(πd(φ0 + 2πnω)) are quasiperiodic functions of n. Also, the equations of
motion for the spin-vector trajectory S ′ in (4.10) read as S ′(n+1) = Rt(n+1, πd(φ0+
2π(n+1)ω))A(πd(φ0+2πnω))R(n, πd(φ0+2πnω))S ′(n). However, and using again the
language of Appendix B.1, in general the matrix elements of Rt(n+ 1, πd(φ0 + 2π(n+
1)ω))A(πd(φ0+2πnω))R(n, πd(φ0+2πnω)) are not quasiperiodic functions of n. Thus
in general (Z, S ′), with S ′ from (4.10), is not a particle-spin-vector trajectory of any
spin-orbit system.

(3) It is clear that (4.8) maps the polarization-field trajectories of (j, A) bijectively onto
the set of polarization-field trajectories of (j, A′). It is equally clear that (4.9) maps
the set of invariant polarization fields of (j, A) bijectively onto the set of invariant
polarization fields of (j, A′) and that it maps ISF (j, A) bijectively onto ISF (j, A′).
In particular, ∼-related spin-orbit systems have the same number of ISF’s. ✷

4.3 Remarks on conjugate 1-turn particle-spin-vector maps and

structure preserving homeomorphisms

Note that Homeo(Td × R3) forms a group, where the group multiplication is understood to
be the composition of functions. Thus, since P[j, A] ∈ Homeo(Td×R3), it follows from (4.3)
and Definition 4.2 and Appendix A.6 that if (j, A) ∼ (j, A′) then P[j, A] and P[j, A′] are
conjugate elements of the group Homeo(Td × R3), i.e., a T ∈ Homeo(Td × R3) exists such
that P[j, A′] = T −1 ◦ P[j, A] ◦ T . In fact T = P[idTd , T ] with T ∈ T F(A,A′; d, j) is an
example. We call a T ∈ Homeo(Td×R3) “structure preserving for a SOS(d, j)” if, for every
(j, A) ∈ SOS(d, j), the homeomorphism T −1 ◦P[j, A] ◦ T in Homeo(Td ×R3) is of the form
P[j, A′] for some (j, A′) ∈ SOS(d, j). As we discovered in Section 4.1, every P[idTd , T ] with
T ∈ C(Td, SO(3)) is structure preserving for SOS(d, j) (for every j ∈ Homeo(Td)). Thus
the natural question arises: Which T ∈ Homeo(Td×R3) are structure preserving for a given
SOS(d, j)? While this question from Dynamical-Systems Theory will not be fully addressed
in this work we now give a brief glimpse. Let (j, A) ∈ SOS(d, j) and (j, A′) ∈ SOS(d, j)
and let T ∈ Homeo(Td × R3). Writing T in terms of components T = (Tpart, Tv), where
Tpart ∈ C(Td,Td) and Tv ∈ C(Td × R3,R3), we compute

(T ◦ P[j, A′])(z, S) = T (j(z), A′(z)S) = (Tpart(j(z)), Tv(j(z), A
′(z)S)) ,

(P[j, A] ◦ T )(z, S) = P[j, A](Tpart(z), Tv(z, S))

= (j(Tpart(z)), A(Tpart(z))Tv(z, S)) ,

whence P[j, A′] = T −1 ◦ P[j, A] ◦ T iff

Tpart(j(z)) = j(Tpart(z)) , (4.11)

Tv(j(z), A
′(z)S) = A(Tpart(z))Tv(z, S) . (4.12)
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The system of equations (4.11),(4.12) plays a central role when one addresses the afore-
mentioned questions. Of course in the special case T = P[idTd , T ] with T ∈ C(Td, SO(3))
we see that Tpart = idTd and Tv(z, S)) = T (z)S so that in that case we recover the fact
from Section 4.1 that P[j, A′] = T −1 ◦ P[j, A] ◦ T iff T ∈ T F(A,A′; d, j). We finally men-
tion that there are structure preserving T ∈ Homeo(Td × R3) which are different from any
P[idTd , T ]. To give a simple example, we define T ∈ Homeo(Td × R3) by T = (Tpart, Tv)

where Tpart(z) = z, Tv(z, S) = T (z)Ĵ S with T ∈ C(Td, SO(3)) and Ĵ :=




1 0 0
0 1 0
0 0 −1


.

Note that T ∈ Homeo(Td × R3) because its inverse is the continuous function T inv which
is defined by T inv := (T inv

part, T
inv
v ), where T inv

part(z) := z, T inv
v (z, S) := Ĵ T t(z)S. One easily

sees that T is structure preserving and is different from any P[idTd , T ]. The latter follows
from the fact that Ĵ has determinant −1. Note that (4.11),(4.12) read for this example as
j(z) = j(z), T (j(z))ĴA′(z)S = A(z)T (z)Ĵ S.

5 H-normal forms and the subsets CBH(d, j) of SOS(d, j)

In Chapter 4 we introduced the fundamental transformation formula (4.2) which partitions
every SOS(d, j) into equivalence classes (j, A). Clearly the spin-orbit systems in an equiva-
lence class are related by a transformation and the underlying motivation is to find a simple
spin-orbit system in every (j, A). Dictated by the notions of IFF and spin tune and sug-
gested by our formalism, our way to address this search goes by formulating the notion of
“H-normal form” of (j, A). Precisely, (j, A′) is an H-normal form of (j, A) if (j, A′) ∈ (j, A)
and if A′ is H-valued, i.e., A′(z) ∈ H for all z ∈ Td where H is a subgroup of SO(3).
Thus we introduce the notation CBH(d, j) for the collection of all (j, A) in SOS(d, j) which
have an H-normal form. As explained in Section 4.1, the dynamics of equivalent spin-orbit
systems can be considered as essentially the same whence the spirit here is that if H is
“small” then the dynamics of all spin-orbit systems in (j, A) are considered as “simple” (see
also the remarks after Remark 3). More precisely, if (j, A) ∈ CBH(d, j) and H is “small”
then the particle-spin-vector trajectories of (j, A) are “simple” and the particle-spin-vector
trajectories of (j, A′) ∈ (j, A) are even manifestly “simple” if A′ is H-valued. In fact in
Chapter 6, for the purpose of studying the IFF, we will consider the case of H = SO(2)
which is substantially smaller than SO(3) and in Chapter 7 for the purpose of studying the
spin tune and spin-orbit resonance, we will consider the case of H = Gν ⊂ SO(2) which is
even smaller than SO(2). However in the present chapter we focus on the general H . Note
that the notion of H-normal form is different from the usual definition of normal form for
spin [Yo2] but it is inspired by the SO(2)-normal forms studied in [Yo1].

Definition 5.1 (H-normal form, CBH(d, j))
Consider a subgroup, H, of SO(3) and let (j, A) be in SOS(d, j). Then we call a (j, A′)
in SOS(d, j) an “H-normal form of (j, A)” if A′ is H-valued and (j, A) ∼ (j, A′), i.e.,
(j, A′) ∈ (j, A). We denote by CBH(d, j) the set of all spin-orbit systems in SOS(d, j) which
have an H-normal form. Thus (j, A) ∈ CBH(d, j) iff T ∈ C(Td, SO(3)) exists such that

T t(j(z))A(z)T (z) ∈ H , (5.1)
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holds for every z ∈ Td. The acronym CB will be explained in Remark 4 of Chapter 7. Clearly
CBH(d, j) is the union of all (j, A) for which A is H-valued.

We also define

T FH(j, A) :=

{
T ∈ C(Td, SO(3)) : (∀ z ∈ Td) T t(j(z))A(z)T (z) ∈ H

}
. (5.2)

Thus (j, A) ∈ CBH(d, j) iff T FH(j, A) is nonempty. Note that the elements of T FH(j, A)
are the transfer fields from (j, A) to those (j, A′) for which A′ is H-valued. ✷

In our follow-up work we will take a deeper look into the notion of H-normal form.
We now make some remarks on Definition 5.1.

Remarks:

(1) Definition 5.1 gives us another property shared by equivalent spin-orbit systems since
it implies that if (j, A) belongs to CBH(d, j) then every spin-orbit system in (j, A)
belongs to CBH(d, j). Thus every CBH(d, j) is a union of equivalence classes of our
partition of SOS(d, j).

(2) Let (j, A) be in SOS(d, j) and let H ′ and H be subgroups of SO(3) such that H ⊂ H ′.
Then, by Definition 5.1, T FH(j, A) ⊂ T FH′(j, A). We will use this fact in the proof
of Theorem 7.5 and it will also give us (5.3). In fact, by Definition 5.1, if (j, A) ∈
CBH(d, j) then T FH is nonempty whence T FH′ is nonempty so that, by Definition
5.1, (j, A) ∈ CBH′(d, j). Thus

CBH(d, j) ⊂ CBH′(d, j) . (5.3)

This fact implies that the “larger H” the more likely it is that a given (j, A) belongs to
CBH(d, j). Also, (5.3) is true under more general conditions than H ⊂ H ′ as explained
after Remark 3 below.

(3) Let (j, A) be in SOS(d, j), let H be a subgroup of SO(3) and r ∈ SO(3). Then it is an
easy exercise to show, by Definition 5.1, that T F rHrt(j, A) = {Trt : T ∈ T FH(j, A)}.
Thus, and by applying Definition 5.1 once more, CBrHrt(d, j) = CBH(d, j). ✷

To relate H-normal forms for different H the following definition is useful, so let H and
H ′ be subsets of SO(3). We write H ✂H ′ if an r ∈ SO(3) exists such that rHrt ⊂ H ′. For
the notation rHrt see Appendix A.6. If H,H ′ are subgroups of SO(3) then H ✂H ′ iff H is
conjugate to a subgroup of H ′. Recalling Appendix A.2, ✂ is a relation on the set of subsets
of SO(3) and it is easy to show that ✂ is reflexive and transitive but not symmetric. Thus
✂ is a preorder [wiki3] but not an equivalence relation.

If H ⊂ H ′ then rHrt ⊂ H ′ with r = I3×3 whence H✂H ′. Thus the relation ✂ is as least
as fine as ⊂ (in fact ✂ is finer than ⊂, see Remark 3 in Chapter 6). If H,H ′ are subgroups of
SO(3) such that H ✂H ′ then an r ∈ SO(3) exists such that rHrt ⊂ H ′ whence, by Remark
2 above, CBrHrt(d, j) ⊂ CBH′(d, j) so that, by Remark 3 above, CBH(d, j) ⊂ CBH′(d, j).
Thus (5.3) holds whenever H,H ′ are subgroups of SO(3) such that H✂H ′ (this strengthens
Remark 2). Therefore, via ✂, spin-orbit tori are sorted in terms of their normal forms since
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according to our philosophy mentioned at the beginning of this chapter, the smaller H is, the
simpler is the behavior of the (j, A) which belong to CBH(d, j) and the less it is likely that
a given spin-orbit system has an H-normal form. Conversely, the “larger H” is w.r.t. ✂ the
more likely it is that a given spin-orbit system has an H-normal form. In the extreme case
H = SO(3) the subgroup H is so large that every spin-orbit system (j, A) has an H-normal
form but H gives no evidence if the dynamics of (j, A) is “simple”, i.e., if (j, A) can be
transformed to a “simple” spin-orbit system. In the other extreme case, considered in great
detail in Chapter 7, H is the group consisting only of I3×3 and is thus so small that the
spin-orbit systems of a (j, A), where A is H-valued, have static spin-motions. Also, in the
latter extreme case, it is very unlikely that a given spin-orbit system has an H-normal form
(for example if j = P[ω] this only happens if (j, A) is on spin-orbit resonance, see Section
7.2).

This ordering aspect of ✂ brings into play the notion of “algebraic hull” from Dynamical
Systems Theory. In fact the algebraic hull of (j, A) is, roughly speaking, the smallest (w.r.t.
✂) subgroup H of SO(3) for which (j, A) has an H-normal form. The notion of the algebraic
hull is of great interest for the existence problem of the ISF, see Remark 1 in Chapter 6.
However the use of the algebraic hull is beyond the scope of this work (for details, see, e.g.,
[Fe, Section 6],[HK1, Section 9]).

It is also a simple exercise to show that if H and H ′ are conjugate subgroups of SO(3)
then H ′ ✂H and H ✂H ′ whence, by (5.3),

CBH′(d, j) = CBH(d, j) . (5.4)

The relation ✂ is well-known in Mathematics even beyond Dynamical Systems Theory (see,
e.g., [Ka]) and will also be an important tool in our follow-up work.

6 SO(2)-normal forms and the IFF Theorem

In this chapter we consider H-normal forms in the special case H = SO(2) where SO(2) ⊂
SO(3) is defined by

SO(2) := {exp(xJ ) : x ∈ R} = {exp(xJ ) : x ∈ [0, 2π)} , (6.5)

and where the matrix J is defined by

J :=




0 −1 0
1 0 0
0 0 0


 , (6.6)

whence

exp(xJ ) =




cos(x) − sin(x) 0
sin(x) cos(x) 0

0 0 1


 . (6.7)

The second equality in (6.5) follows from (6.7) and it is also easy to check, by (6.5), that
SO(2) is a group w.r.t. matrix multiplication whence is a subgroup of SO(3).
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We will see that the notion of SO(2)-normal form is not new and is connected with the
notion of the ISF via the IFF Theorem, Theorem 6.2c. For reasons that will become clear
below, we first define:

Definition 6.1 (Invariant frame field)
Let (j, A) ∈ SOS(d, j). We call every element of T FSO(2)(j, A) an “Invariant Frame
Field (IFF) of (j, A)”. Clearly, by Definition 5.1, T FSO(2)(j, A) is nonempty iff (j, A) ∈
CBSO(2)(d, j). ✷

Moreover, for any subgroup H 6= SO(2) of SO(3), we will view the elements of T FH(j, A)
as generalized IFF’s of (j, A). Definition 6.1 sets the stage for

Theorem 6.2 a) A matrix r in SO(3) belongs to SO(2) iff r(0, 0, 1)t = (0, 0, 1)t. Moreover
the set SO(2) can be written as follows:

SO(2) =

{


a b 0
−b a 0
0 0 1


 ∈ R3×3 : |a|2 + |b|2 = 1

}

=

{


a b 0
c d 0
0 0 1


 : a, b, c, d ∈ R

}
∩ SO(3) . (6.8)

b) Let (j, A) ∈ SOS(d, j) and let A be SO(2)-valued. Then the constant function on Td with
value (0, 0, 1)t is an ISF of (j, A).
c) (IFF Theorem) Let (j, A) ∈ SOS(d, j). Then T is an IFF of (j, A) iff T ∈ C(Td, SO(3))
and the third column of T is an ISF of (j, A). In other words, a T ∈ C(Td, SO(3)) belongs
to T FSO(2)(j, A) iff f(z) := T (z)(0, 0, 1)t satisfies (3.9).

Proof of Theorem 6.2a: To prove (6.8) we note that if r ∈ SO(2) then, by (6.5),(6.7), r
belongs to the set on the rhs of the first equality in (6.8). If conversely r belongs to the set

on the rhs of the first equality in (6.8) then r =




a b 0
−b a 0
0 0 1


 where a, b are real numbers

with a2 + b2 = 1 whence we abbreviate z1 := a − ib and observe that |z1|
2 = 1. Thus there

exists an x ∈ R such that z1 = exp(ix) whence a = cos(x), b = − sin(x) so that r ∈ SO(2).
To prove the second equality in (6.8) let r belong to the set on the lhs of this equality. Then,
by the first equality, r ∈ SO(2) ⊂ SO(3) whence r belongs to the set on the rhs of the
second equality in (6.8). Let conversely r belong to the set on the rhs of the second equality
in (6.8), i.e., r ∈ SO(3) and

r =




a b 0
c d 0
0 0 1


 . (6.9)

Since r ∈ SO(3) it follows from (6.9) that

(
a b
c d

)(
a b
c d

)t

=

(
1 0
0 1

)
and det

(
a b
c d

)
=

1 whence 1 = ad− bc and a2+ b2 = 1 = c2+ d2 so that, by defining z2 := d+ ic and recalling

35



that z1 = a− ib, we get |z1|
2 = 1 = |z2|

2 and |z1−z2|
2 = (a−d)2+(b+ c)2 = 0. Thus z1 = z2

whence c = −b and d = a so that r belongs to the set on the lhs of the equality. Thus the
second equality in (6.8) is valid, too, which completes the proof of (6.8).

To prove the first claim let r ∈ SO(2) whence, by (6.5),(6.7), r(0, 0, 1)t = (0, 0, 1)t.
Conversely, let r be in SO(3) and r(0, 0, 1)t = (0, 0, 1)t. Then rt(0, 0, 1)t = (0, 0, 1)t whence
the third column and third row of r are equal to (0, 0, 1)t so that r belongs to the set on the
rhs of the second equality in (6.8). Thus, by (6.8), r ∈ SO(2). ✷

Proof of Theorem 6.2b: The claim readily follows from Definition 3.2 and Theorem 6.2a. ✷

Proof of Theorem 6.2c: “⇒”: Let T ∈ T FSO(2)(j, A). Then, by Definition 5.1, T is a transfer
field from (j, A) to (j, A′) where A′ is SO(2)-valued. Also, by Theorem 6.2b, (0, 0, 1)t is an
ISF of (j, A′). Of course, by Remark 0 in Chapter 4, T t is a transfer field from (j, A′) to
(j, A) whence, by the transformation formula (4.9) of invariant polarization fields and since
(0, 0, 1)t is an ISF of (j, A′), we conclude that T (0, 0, 1)t is an ISF of (j, A).

“⇐”: Let T ∈ C(Td, SO(3)) and let T (0, 0, 1)t be an ISF of (j, A) whence, by Definition
3.2, A(z)T (z)(0, 0, 1)t = T (j(z))(0, 0, 1)t so that T t(j(z))A(z)T (z)(0, 0, 1)t = (0, 0, 1)t. Thus,
by Theorem 6.2a, T t(j(z))A(z)T (z) ∈ SO(2). It now follows from Definition 5.1 that T ∈
T FSO(2)(j, A). ✷

Theorem 6.2c connects the concepts of normal form and invariant field since, by Theorem
6.2c, IFF’s are those continuous T ’s whose third columns are ISF’s. In fact this is to be
expected given the definition of the IFF in the continuous-time formalism in [BEH]. There,
we begin with the ISF at each point in phase space, and then construct the IFF by attaching
two unit vectors to the ISF at each point so as to form a local orthonormal coordinate system
for spin at each point in phase space. Spin vector motion within the IFF is then a simple
precession around the ISF. Here, in constrast, we come from the opposite direction by noting
that by definition spin vector motion w.r.t. an element of T ∈ T FSO(2)(j, A) as obtained by
a transformation of the kind in (4.1) (say), is a simple precession around the third axis. We
then discover that the third axis must be an ISF. We will apply Theorem 6.2c in Chapter
7. Moreover, since the spin vector motion within the IFF is a simple precession around the
ISF, Theorem 6.2c is of practical importance as will be explained in Section 7.2 when we
discuss the computer code SPRINT.

Remark:

(1) By the IFF Theorem and Definition 6.1, every (j, A) in CBSO(2)(d, j) has an ISF. This
fact makes the notion of the algebraic hull (recall Chapter 5) an interesting tool for
addressing the existence problem of the ISF. In fact it implies that if the algebraic hull
of (j, A) is less or equal to SO(2) w.r.t. ✂ then (j, A) has an ISF. ✷

We now demonstrate that, in terms of our philosophy mentioned at the beginning of
Chapter 5, the subgroup SO(2) of SO(3) is “small” because the dynamics of the spin-orbit
systems in CBSO(2)(d, j) are “simple”. We will accomplish this by showing that the dynamics
of (j, A) is manifestly “simple” when A is SO(2)-valued. For that matter we need part b)
of the following theorem which is an implication of the Baby Lift Theorem, Theorem 2.5c,
above.
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Theorem 6.3 Let A ∈ C(Td, SO(3)) be SO(2)-valued. Let us define the function f : Td → T

by f(z) := (A11(z), A21(z))
t where A11(z) and A21(z) denote the (11)- and (21)-matrix ele-

ments of A(z) (note that f is T-valued because of Definition 2.1 and (6.5),(6.7)). Then the
following hold.

a) The functions f and f ◦ πd are continuous, i.e., f ∈ C(Td,T) and (f ◦ πd) ∈ C(Rd,T) and
f ◦ πd is 2π-periodic in its arguments. Moreover let

f ◦ πd = π1 ◦ β , (6.10)

where β ∈ C(Rd,R) (note that such an β exists due to the Baby Lift Theorem, Theorem
2.5c). Then

A(z)(1, 0, 0)t =

(
π1(β(φ))

0

)
, (6.11)

where z = πd(φ). Also A(z) = exp(J β(Arg(z)) and

A(z) = exp(J β(φ)) , (6.12)

where z = πd(φ).
b) A function α ∈ C(Td,R) and an N ∈ Zd exist such that

A(z) = exp(J [N · φ+ 2πα(z)]) , (6.13)

where z = πd(φ). Furthermore N is unique and α is unique up to a constant in the following
sense: if α̃ ∈ C(Td,R) and Ñ ∈ Zd satisfy A(z) = exp(J [Ñ · φ+ 2πα̃(z)]) then Ñ = N and
an n ∈ Z exists such that α̃(z) = α(z) + n.

Proof of Theorem 6.3a: We first note that f is continuous since A is continuous. It thus
follows from Theorem 2.5b that f ◦πd belongs to C(R

d,T) and is 2π-periodic in its arguments.
Let β ∈ C(Rd,R) satisfy (6.10) whence

(A11(πd(φ)), A21(πd(φ)))
t = f(πd(φ)) = π1(β(φ)) = (cos(β(φ)), sin(β(φ)))t , (6.14)

where in the third equality we used Definition 2.4. Since A is SO(2)-valued it follows from
(6.5),(6.7) and (6.14) that

A(πd(φ)) =




A11(πd(φ)) −A21(πd(φ)) 0
A21(πd(φ)) A11(πd(φ)) 0

0 0 1


 =




cos(β(φ)) − sin(β(φ)) 0
sin(β(φ)) cos(β(φ)) 0

0 0 1


 , (6.15)

whence, and by again using (6.14), A(πd(φ))




1
0
0


 =




cos(β(φ))
sin(β(φ))

0


 =

(
π1(β(φ))

0

)

which proves (6.11). Moreover (6.12) follows from (6.7) and (6.15). Defining φ := Arg(z)
we conclude from (6.12) and Definition 2.4 that A(z) = A(πd(Arg(z))) = A(πd(φ)) =
exp(J β(φ)) = exp(J β(Arg(z))) which completes the proof of Theorem 6.3a. ✷
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Proof of Theorem 6.3b: To show (6.13) we first note, by Theorem 6.3a, that a β ∈ C(Rd,R)
exists which satisfies (6.10),(6.11) and (6.12). For fixed but arbitrary M ∈ Zd we define g ∈

C(Rd,R) by g(φ) := β(φ+2πM) whence, by (6.11) and the periodicity of πd,

(
π1(β(φ))

0

)
=

A(πd(φ))(1, 0, 0)
t = A(πd(φ + 2πM))(1, 0, 0)t =

(
π1(β(φ+ 2πM))

0

)
=

(
π1(g(φ))

0

)
so

that π1 ◦ β = π1 ◦ g which implies, by the Baby Lift Theorem, Theorem 2.5c, that an m ∈ Z

exists such that g(φ) = β(φ) + 2πm, i.e.,

β(φ+ 2πM) = β(φ) + 2πm . (6.16)

To show how m in (6.16) depends on M we note that if M1,M2 ∈ Zd, m1, m2 ∈ Z and
β(φ + 2πM1) = β(φ) + 2πm1, β(φ + 2πM2) = β(φ) + 2πm2 then β(φ + 2π(M1 +M2)) =
β(φ+ 2πM1) + 2πm2 = β(φ) + 2π(m1 +m2) whence the dependence of m on M is linear so
that an N ∈ Zd exists such that, for M ∈ Zd,

β(φ+ 2πM) = β(φ) + 2π(M ·N) . (6.17)

To identify α we define the function h ∈ C(Rd,R) by h(φ) := β(φ)−N · φ whence

β(φ) = N · φ+ h(φ) , (6.18)

and we compute, for fixed but arbitrary M ∈ Zd and by (6.17), h(φ + 2πM) = β(φ +
2πM) − N · (φ + 2πM) = β(φ) + 2π(M · N) − N · φ − 2π(M · N) = β(φ) − N · φ = h(φ)
whence h is 2π-periodic in its arguments. Thus following Theorem 2.5b we can define
α : Td → R by α(z) := (1/2π)h(Arg(z)) and obtain that α ∈ C(Td,R) and we compute
2πα(πd(φ)) = h(Arg(πd(φ))) = h(φ) where in the second equality we used Theorem 2.5b
and the periodicity of h whence, by (6.18),

β(φ) = N · φ+ 2πα(πd(φ)) . (6.19)

It follows from (6.12) and (6.19) that A(πd(φ)) = exp(J β(φ)) = exp(J [N ·φ+2πα(πd(φ))])
so that indeed (6.13) holds. To prove the second claim let α̃ ∈ C(Td,R) and Ñ ∈ Zd satisfy
A(z) = exp(J [Ñ · φ + 2πα̃(z)]). Defining β̃ ∈ C(Rd,R) by β̃(φ) := Ñ · φ + 2πα̃(πd(φ)) we
get A(z) = exp(J β̃(φ)) so we compute, by (6.11) and Definition 2.4,

(
π1(β(φ))

0

)
= A(πd(φ))(1, 0, 0)

t = exp(J β̃(φ))(1, 0, 0)t

=




cos(β̃(φ)) − sin(β̃(φ)) 0

sin(β̃(φ)) cos(β̃(φ)) 0
0 0 1






1
0
0


 =




cos(β̃(φ))

sin(β̃(φ))
0


 =

(
π1(β̃(φ))

0

)
,

whence π1 ◦ β = π1 ◦ β̃ so that, by the Baby Lift Theorem, Theorem 2.5c, an m ∈ Z exists
such that β̃(φ) = β(φ)+2πm which implies that Ñ ·φ+2πα̃(πd(φ)) = β̃(φ) = β(φ)+2πm =
N · φ+ 2πα(πd(φ)) + 2πm, i.e.,

(Ñ −N) · φ = 2πα(πd(φ))− 2πα̃(πd(φ)) + 2πm . (6.20)
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Since α ◦ πd and α̃ ◦ πd are 2π-periodic in their arguments, the rhs of (6.20) is 2π-periodic
in all components of φ whence the lhs of (6.20) is 2π-periodic in all components of φ so that
Ñ −N = 0 which implies, by (6.20), that α̃(πd(φ)) = α(πd(φ)) +m completing the proof of
the second claim. ✷

We will now apply Theorem 6.3b which will also be used in Chapter 7 below and whose
practical importance will be explained in Section 7.2 when we discuss the computer code
SPRINT. Thus let A ∈ C(Td, SO(3)) be SO(2)-valued whence A reads as in (6.13). If (Z, S)
is a particle-spin-vector trajectory of (j, A) then, by (2.31) and (6.13), S evolves simply as:

S(n+ 1) = A(Z(n))S(n) = exp

(
J [N · φ(n) + 2πα(Z(n))

)
S(n) , (6.21)

where πd(φ(n)) = Z(n). Note that the spin vector motion in (6.21) is planar, i.e., the
points S(n) lie in a plane parallel to the 1-2-plane. This simple planar motion suggests to
consider the spin-orbit system (j, A) as “simple” and thus the subgroup SO(2) of SO(3) as
“small”. Therefore according to our philosophy, mentioned at the beginning of this chapter,
the dynamics of all spin-orbit systems in CBSO(2)(d, j) is “simple” and the dynamics for (j, A)
with A in (6.13) is not only “simple” but manifestly “simple”.

Remark:

(2) If (j, A) belongs to CBSO(2)(d, j) then (j, A) ∼ (j, A′) where A′ is SO(2)-valued whence,
by Theorem 6.3b, a constant N ′ ∈ Zd and an α′ ∈ C(Td,R) exist such that

A′(z) = exp(J [N ′ · φ+ 2πα′(z)]) , (6.22)

where πd(φ) = z. Of course if (Z, S ′) is a particle-spin-vector trajectory of (j, A′) then,
by (6.21), S ′ is the planar spin vector motion, determined by

S ′(n+ 1) = exp

(
J [N ′ · φ(n) + 2πa′(Z(n))

)
S ′(n) , (6.23)

where πd(φ(n)) = Z(n). If T ∈ T F(A,A′; d, j) and if (Z, S) is a particle-spin-vector
trajectory of (j, A) then, by the transformation formula (4.1), (Z, S) transforms into
the particle-spin-vector trajectory (Z, S ′) of (j, A′) where S ′(n) := T t(Z(n))S(n). Thus
S ′ obeys (6.23). ✷

The following remark gives us further insight into CBSO(2)(d, j) and into the relation ✂.

Remark:

(3) The subgroup SO(2) of SO(3) allows us to show that the relation ✂ is finer than ⊂
and it also demonstrates that ✂ contains more information than ⊂. We thus define
the subgroup ŜO(2) of SO(3)

ŜO(2) :=

{


1 0 0
0 cos(x) − sin(x)
0 sin(x) cos(x)


 : x ∈ R

}
. (6.24)
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It is easy to show that ŜO(2) and SO(2) are conjugate whence ŜO(2) ✂ SO(2) and

SO(2)✂ ŜO(2) so that, by (5.4),

CBŜO(2)(d, j) = CBSO(2)(d, j) . (6.25)

In fact (6.25) captures the intuition that, in terms of our philosophy of “smallness”

of subgroups of SO(3), both ŜO(2) and SO(2) are of the same “size”. While this

is nicely captured by ✂, it is not captured by ⊂ since neither ŜO(2) ⊂ SO(2) nor

SO(2) ⊂ ŜO(2). The latter fact shows that ✂ is finer than ⊂ and that ✂ contains
more information than ⊂. ✷

A question closely related to Theorem 6.2c is: if f ∈ C(Td,R3) with |f | = 1, is there a
T ∈ C(Td, SO(3)) such that f is the third column of T ? In fact it is shown in [He2] by
artificially constructed f that in general such a T does not exist. The above question will
be generalized in our follow-up work.

7 Gν-normal forms and the notions of spin tune and

spin-orbit resonance

In this chapter we continue our study of normal forms by considering H-normal forms in
the special case H = Gν where the subgroup Gν of SO(3) is defined by (7.1), i.e., Gν :=
{exp(2πnνJ ) : n ∈ Z}. Note that the Gν-normal forms are closely related to the SO(2)-
normal forms from the previous chapter since Gν ⊂ SO(2). We will see that the notion of
Gν-normal form is not new and is intimately connected with the notion of spin tune and
spin-orbit resonance. Thus in Section 7.1 this approach will enable us to associate tunes
in addition to ω, namely spin tunes, with our spin-orbit systems. As in other dynamical
systems, tunes can lead to the recognition of resonances and consequent instabilities. Here,
spin tunes will lead to recognition of spin-orbit resonances, see Section 7.2. In the case
of real spin vector motion, where spins are subject to the electric and magnetic fields on
synchro-betatron trajectories, the definition of spin-orbit resonance allows us to predict at
which orbital tunes spin vector motion might be particularly unstable.

7.1 Gν-normal forms and the subset ACB(d, j) of SOS(d, j). Spin
tunes

We first define, for every ν ∈ [0, 1),

Gν := {exp(2πnνJ ) : n ∈ Z} = {exp(2π(nν +m)J ) : m,n ∈ Z} , (7.1)

where the, trivial, second equality highlights the fact that Gν consists of matrices exp(2πµJ )
where µ ∈ [0, 1). It is clear by (6.5) and (7.1) that Gν is a subgroup of SO(2). We will see
by Theorem 7.3c below that if (j, A) ∈ SOS(d, j) has a Gν-normal form, say (j, A′), then A′

is constant, i.e., A′(z) is independent of z (of course A′ is Gν-valued, too). This leads us to
the following definition:
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Definition 7.1 (ACB(d, j))
We denote by ACB(d, j) the set of those (j, A) ∈ SOS(d, j) for which (j, A) contains a (j, A′)
such that A′ is constant, i.e., such that A′(z) is independent of z. ✷

From the remarks before Definition 7.1 it is clear that ACB(d, j) ⊃
⋃

ν∈[0,1) CBGν
(d, j) and

in Theorem 7.3d below we will see that even the reverse inclusion holds. The problem of
deciding whether a given spin-orbit system is in ACB(d, j), i.e., has a Gν-normal form is
fruitful both theoretically and practically. The set ACB(d, j) contains the most important
spin-orbit systems in SOS(d, j) when it comes to applications. See the remarks after Defi-
nition 7.7 too. However it is easy to artificially construct (j, A) ∈ SOS(d, j) which are not
in ACB(d, j). For examples, see Section 3.3 and Theorem 7.6 below.

The following remarks reveal some simple properties of ACB(d, j).

Remarks:

(1) Definition 7.1 gives us another property shared by equivalent spin-orbit systems since
it implies that if (j, A) belongs to ACB(d, j) then every spin-orbit system in (j, A)
belongs to ACB(d, j).

(2) If (j, A) ∈ ACB(d, j) then, by Definition 7.1, a T ∈ C(Td, SO(3)) exists such that
(T t ◦ j)AT = A′ where A′ is constant whence, by (2.36),

Ψ[j, A′](n; z) = (A′)n , (7.2)

so that every n-turn spin transfer matrix function of (j, A′) is a constant function
which implies that (j, A) is equivalent to a spin-orbit system for which every n-turn
spin transfer matrix function is a constant function. On the other hand and recalling
Section 4.1, in the terminology of Dynamical Systems Theory Ψ[j, A] and Ψ[j, A′] are
cohomologous cocycles. Moreover since every Ψ[j, A′](n; ·) is a constant function, it is
common in this terminology (see, e.g., [KR]) to call Ψ[j, A] an “almost coboundary”.
This motivates our acronym ACB in Definition 7.1.

(3) We now reconsider Remark 2 above. If (P[ω], A) ∈ SOS(d,P[ω]) such that A is
constant, then (P[ω], A) ∈ SOSCT (d, ω) since one easily shows that a function A :
Rd+1 → R3×3 exists which is constant and whose constant value is a skew-symmetric
matrix and such that A = exp(2πA). Then we see, by Section 2.2, that

Φ(2π; Arg(z)) = A , (7.3)

whence indeed (P[ω], A) ∈ SOSCT (d, ω). ✷

For Theorem 7.3 below, we need some more notation. We begin by defining, for every
ν ∈ [0, 1) and every positive integer d, the constant function Ad,ν ∈ C(Td, SO(3)) as

Ad,ν(z) := exp(2πνJ ) =




cos(2πν) − sin(2πν) 0
sin(2πν) cos(2πν) 0

0 0 1


 . (7.4)
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Clearly, for every j ∈ Homeo(Td), the spin-orbit system (j, Ad,ν) belongs to ACB(d, j) since
Ad,ν is a constant function. Also, since Ad,ν is constant and by Remark 2 above,

Ψ[j, Ad,ν ](n; z) = exp(2πJ nν) . (7.5)

Due to (7.4) every Ad,ν is Gν-valued whence (j, Ad,ν) ∈ CBGν
(d, j). Since Ad,ν is Gν-valued

and because Gν ⊂ SO(2), it follows that Ad,ν is SO(2)-valued whence, by Theorem 6.2b, the
constant function on Td with value (0, 0, 1)t is an ISF of (j, Ad,ν). Also, by (7.4), G0 = {I3×3}
is the trivial subgroup of SO(3).

While Remark 2 above explains the acronym ACB, the following remark explains the
acronym CB.

Remark:

(4) Let (j, A) ∈ CBG0
(d, j). Thus, by Definition 5.1, a T ∈ C(Td, SO(3)) exists such that

(T t ◦ j)AT = Ad,0 whence, by (4.5),(7.4),

Ψ[j, A](n; z) = T (jn(z))T t(z) . (7.6)

On the other hand and recalling Section 4.1, in the terminology of Dynamical Systems
Theory Ψ[j, A] is a cocycle whence, and by (7.6), it is common in this terminology (see,
e.g., [HK2] and Chapter 1 in [HK1]) to call Ψ[j, A] a “coboundary”. This motivates
our acronym CB in Definition 5.1. We will see in Remark 8 below that the spin-orbit
systems in CBG0

(d,P[ω]) are on a so-called spin-orbit resonance. Moreover (7.6) will
play a role in Section 7.2 below where, in the case n = 1, it becomes (7.29). ✷

Eq. (7.4) and Definition 7.1 lead us naturally to the notion of spin tune. A ν ∈ [0, 1) is said to
be a spin tune for (j, A) ∈ SOS(d, j) if (j, A) is equivalent to (j, A′) with A′(z) = exp(2πνJ ),
i.e., if (j, Ad,ν) belongs to (j, A). We thus arrive at the following definition:

Definition 7.2 (Spin tune)
For every (j, A) ∈ SOS(d, j) we define the set

Ξ(j, A) := {ν ∈ [0, 1) : (j, Ad,ν) ∈ (j, A)} = {ν ∈ [0, 1) : T F(A,Ad,ν , d, j) 6= ∅} , (7.7)

where in the second equality of (7.7) we used Definitions 4.1 and 4.2. We call each element
of Ξ(j, A) a “spin tune” of (j, A). Eq. (7.7) gives us another property shared by equivalent
spin-orbit systems since it implies that if (j, A′) ∈ (j, A) then Ξ(j, A) = Ξ(j, A′). In other
words, equivalent spin-orbit systems have the same spin tunes. In particular in the absence
of spin tunes, i.e., when Ξ(j, A) = ∅ we have Ξ(j, A′) = ∅ for all (j, A′) ∈ (j, A). ✷

In the present section we focus on the mathematical properties of the spin tunes whereas
in the following section we discuss physical aspects. The following is our main theorem about
Gν-normal forms, spin tunes and ACB(d, j). The meaning of Theorem 7.3 is discussed in
great detail below.

Theorem 7.3 a) Let (j, A) ∈ SOS(d, j). Then (j, A) ∈ ACB(d, j) iff a ν ∈ [0, 1) exists
such that (j, Ad,ν) belongs to (j, A).
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b) Let (j, A) ∈ SOS(d, j). Then (j, A) ∈ ACB(d, j) iff (j, A) has spin tunes.

c) Let ν ∈ [0, 1) and A ∈ C(Td, SO(3)) be Gν-valued. Then A is a constant function.

d) Let j ∈ Homeo(Td). Then

ACB(d, j) =
⋃

ν∈[0,1)

CBGν
(d, j) . (7.8)

e) Let T ∈ C(Td, SO(3)) and let (j, A′) ∈ SOS(d, j) be the transform of (j, A) ∈ SOS(d, j)
under T , i.e., T ∈ T F(A,A′; d, j). Then T belongs to

⋃
ν∈[0,1) T FGν

(j, A) iff T is an IFF

of (j, A) and A′ is a constant function.

f) Let (P[ω], A) ∈ SOS(d,P[ω]). If ν is a spin tune of (P[ω], A) then

Ξ(P[ω], A) = [0, 1) ∩

{
εν +m · ω + n : ε ∈ {1,−1}, m ∈ Zd, n ∈ Z

}
. (7.9)

Proof of Theorem 7.3a: If ν ∈ [0, 1) exists such that (j, Ad,ν) belongs to (j, A) then, by
Definition 7.1, (j, A) ∈ ACB(d, j) since Ad,ν is constant. To prove the converse, let (j, A) ∈

ACB(d, j). Then, by Definition 7.1, (j, A) contains a (j, A′) such that A′ is constant with
constant value, say r. By some simple Linear Algebra, a ν ∈ [0, 1) and a W ∈ SO(3) can be
found such that

r =W exp(2πνJ )W t . (7.10)

See, e.g., Lemma 2.1 of [BEH]. Thus, defining the constant function T ∈ C(Td, SO(3))
by T (z) := W we observe by (7.10) and Definition 4.1 that T ∈ T F(A′, Ad,ν , d, j) whence

(j, A′) ∼ (j, Ad,ν) so that (j, A) ∼ (j, Ad,ν) which implies that (j, Ad,ν) belongs to (j, A). ✷

Proof of Theorem 7.3b: The claim is a simple consequence of Definition 7.2 and Theorem
7.3a. ✷

Proof of Theorem 7.3c: Since A is Gν-valued it follows from (7.1) that a function ñ : Td → Z

exists such that A(z) = exp(J 2πνñ(z)) whence

A(z) = exp(J 2πνñ(z)) . (7.11)

Clearly A is SO(2)-valued whence, by Theorem 6.3b, a constant N ∈ Zd and an α ∈ C(Td,R)
exist such that

exp(J 2πνñ(z)) = A(z) = exp(J [N · φ+ 2πα(z)]) , (7.12)

where πd(φ) = z and where in the first equality of (7.12) we used (7.11). It follows from
(6.7) and (7.12) that a function k : Td → Z exists such that

2πνñ(z) + 2πk(z) = N · φ+ 2πα(z) , (7.13)
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where πd(φ) = z. Since πd is 2π-periodic in its d arguments, so are ñ(πd(φ)), k(πd(φ)) and
α(πd(φ)) whence it follows from (7.13) that N · φ is 2π-periodic in the d components of φ so
that N = 0 which implies, by (7.13) and for all z ∈ Td,

νñ(z) + k(z) = α(z) . (7.14)

Since ñ and k are Z-valued, the function νñ+k can take only countably many values whence,
by (7.14), the function α can take only countably many values. “Countably many” values
means no more values than elements of Z. On the other hand since α is continuous and since
its domain, Td, is a path-connected topological space, the range of α is a path-connected
subset of R , i.e., a nonempty interval, say I (for the notion of range see also Appendix
A.1). However since α takes only countably many values, I is a nonempty interval which
contains only countably many points whence I contains just one point which implies that α
is constant. Since α is constant and N = 0 it follows from (7.12) that A is constant. ✷

Proof of Theorem 7.3d: “⊂”: Let (j, A) ∈ ACB(d, j). Then, by Theorem 7.3a, a ν ∈ [0, 1)
exists such that (j, Ad,ν) belongs to (j, A). By a remark after (7.1), Ad,ν is Gν-valued whence,
by Definition 5.1, (j, A) ∈ CBGν

(d, j).
“⊃”: Let ν ∈ [0, 1) and (j, A) ∈ CBGν

(d, j) whence, by Definition 5.1, T FGν
(j, A) is

nonempty. So pick a T ∈ T FGν
(j, A). Then, by Definitions 4.1 and 5.1, T ∈ T F(A,A′; d, j)

where A′ is Gν-valued. Since A
′ is Gν-valued it follows from Theorem 7.3c that A′ is constant

which implies, by Definition 7.1, that (j, A) ∈ ACB(d, j). ✷

Proof of Theorem 7.3e: “⇒”: Let T ∈ T FGν
(j, A). Since Gν is a subgroup of SO(2) we

conclude from Remark 2 in Chapter 5 that T ∈ T FSO(2)(j, A) whence T is an IFF of (j, A).
Also, A′ is Gν-valued whence, by Theorem 7.3c, A′ is constant.
“⇐”: Let T be an IFF of (j, A) and let A′ be constant. Clearly, by Definition 6.1, A′ is
SO(2)-valued whence ν ∈ [0, 1) exists such that A′ = Ad,ν which implies that A′ is Gν-valued
so that T ∈ T FGν

(j, A). ✷ ✷

Proof of Theorem 7.3f: The claim is proved in Appendix B.3. Note that our proof of the

inclusion Ξ(P[ω], A) ⊃ [0, 1) ∩

{
εν +m · ω + n : ε ∈ {1,−1}, m ∈ Zd, n ∈ Z

}
is a simple

consequence of (7.7). In contrast our proof of the converse inclusion needs the technique of
quasiperiodic functions. ✷

Theorems 7.3a and 7.3b are elementary statements about ACB(d, j) which are needed in
the proof of Theorem 7.3d and in Section 7.2 below. Theorem 7.3c played a key role in the
motivation of Definition 7.1 (see the remarks before that definition). Theorem 7.3c is also
used in the proof of Theorem 7.3d. Theorem 7.3d is the insight that every ACB(d, j) can be
understood in terms of normal forms, a fact that is not obvious by Definition 7.1. Theorem
7.3e will lead us to the definition of the uniform IFF below and it will allow us to prove
the Uniform IFF Theorem, Theorem 7.5 below. Theorem 7.3f gives a key insight into the
notion of spin tune and, as we will see in Section 7.2, into the notion of spin-orbit resonance.
Theorem 7.3f also shows that every Ξ(P[ω], A) has only countably many elements which will
allow us to show, after Remark 6 below, that every SOS(d,P[ω]) is partitioned w.r.t. to the
equivalence relation ∼ into infinitely many equivalence classes.

The following remark relates the notions of Gν-normal form and SO(2)-normal form.

Remark:
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(5) Let j ∈ Homeo(Td) and ν ∈ [0, 1). By the remarks after (7.1) we have Gν ⊂ SO(2)
whence, by (5.3),

CBGν
(d, j) ⊂ CBSO(2)(d, j) . (7.15)

In Chapter 6 we found that the dynamics of all spin-orbit systems in CBSO(2)(d, j)
is “simple” whence, by (7.15), the dynamics of all spin-orbit systems in CBGν

(d, j) is
“simple”. Moreover, in the language of Chapter 6 and by the fact that Ad,ν is Gν-
valued (whence SO(2)-valued), the dynamics of (j, Ad,ν) is even manifestly “simple”.
It also follows from (7.15) and Theorem 7.3d that

ACB(d, j) ⊂ CBSO(2)(d, j) . (7.16)

Then, by Definition 6.1, every (j, A) ∈ ACB(d, j) has an IFF whence, by Remark 1 in
Chapter 6, every (j, A) ∈ ACB(d, j) has an ISF. ✷

We saw in Chapter 6 that the IFF is important for understanding the concept of the SO(2)-
normal form. Analogously we will now see that the uniform IFF, defined below, is important
for understanding the concept of the Gν-normal form.

Definition 7.4 (Uniform invariant frame field)
Let (j, A) ∈ SOS(d, j). We call every element of every T FGν

(j, A) a “Uniform Frame Field
(uniform IFF) of (j, A)”. Note, by (7.1), that

⋃
ν∈[0,1) T FGν

(j, A) is the set of uniform

IFF’s of (j, A). ✷

In analogy to the IFF Theorem, Theorem 6.2c, we now get:

Theorem 7.5 (Uniform IFF Theorem) Let (j, A) ∈ SOS(d, j). Then T is a uniform IFF
of (j, A) iff the following hold: T is an IFF of (j, A) and it is a transfer field from (j, A) to
some (j, A′) such that A′ is a constant function.
Remark: Thus, and by Theorem 6.2c, T is a uniform IFF of (j, A) iff the following hold:
the third column of T is an ISF of (j, A) and T is a transfer field from (j, A) to some (j, A′)
such that A′ is a constant function. We will also see in (7.21) that A′ is of the form Ad,ν.

Proof of Theorem 7.5 “⇒”: Let T be a uniform IFF of (j, A), i.e., let T ∈ T FGν
(j, A). We

recall from the remarks after (7.1) that Gν ⊂ SO(2) whence, by Remark 2 in Chapter 5,
T ∈ T FSO(2)(j, A) so that, by Definition 6.1, T is an IFF of (j, A). Of course T is a transfer
field from (j, A) to some spin-orbit system, say (j, A′) whence T ∈ T F(A,A′; d, j) so that,
and since T ∈ T FGν

(j, A), we conclude from Theorem 7.3e that A′ is a constant function.
“⇐”: Let T ∈ T F(A,A′; d, j) where A′ is a constant function. Then, by Theorem 7.3e,
T ∈

⋃
ν∈[0,1) T FGν

(j, A) whence T is a uniform IFF of (j, A). ✷

Because of Theorem 7.5, the uniform IFF is the discrete-time analogue of the so-called
uniform invariant frame field introduced in the continuous-time formalism of [BEH]. The
concept of the uniform IFF is of great importance and we use it in this work at several places,
for example in the proof of Theorem 7.3f (see Appendix B.3) and in the proof of (7.28) (see
Appendix B.5). The concept of the uniform IFF is also of practical importance as will be
explained in Section 7.2 when we discuss the computer code SPRINT.

45



It is useful to characterize the set of uniform IFF’s of (j, A) in terms of the Ad,ν leading
us to (7.21) as follows. Thus let (j, A) ∈ SOS(d, j) and T be a uniform IFF of (j, A).
Therefore, by Definition 7.4, there exists a ν ∈ [0, 1) such that T ∈ T FGν

(j, A) whence, by
Definition 5.1, A′, defined by A′(z) := T t(j(z))A(z)T (z) is Gν-valued so that, by Theorem
7.3c, the function A′ is constant valued taking the value, say r. Of course r ∈ Gν whence,
by (7.1), r = exp(2πµJ ) where µ ∈ [0, 1) is the fractional part of Nν where N is a constant
integer. Note, by Definition 7.2 and Theorem 7.3f, that µ is a spin tune of (j, A) but ν
in general is not. Clearly the function A′ is constant valued taking the value exp(2πµJ )
whence, by (7.4), A′ = Ad,µ. We thus have shown that if T is a uniform IFF of (j, A) then
there exists a µ ∈ [0, 1) so that T t(j(z))A(z)T (z) = Ad,µ(z), i.e., T is a transfer field from
(j, A) to (j, Ad,µ) whence

⋃

ν∈[0,1)

T FGν
(j, A) ⊂

⋃

µ∈[0,1)

T F(A,Ad,µ; d, j) =
⋃

ν∈[0,1)

T F(A,Ad,ν ; d, j) , (7.17)

where the equality in (7.17) is a trivial reparametrization. To show the reverse inclusion let
T ∈ T F(A,Ad,ν ; d, j) for some ν ∈ [0, 1). Clearly Ad,ν is Gν-valued whence, by Definition
5.1, T ∈ T FGν

(j, A) so that
⋃

ν∈[0,1) T FGν
(j, A) ⊃

⋃
ν∈[0,1) T F(A,Ad,ν ; d, j) which implies,

by (7.17),

⋃

ν∈[0,1)

T FGν
(j, A) =

⋃

ν∈[0,1)

T F(A,Ad,ν ; d, j) . (7.18)

To show the second equality of (7.21) we first note, by (7.7), that Ξ(j, A) ⊂ [0, 1) whence

⋃

ν∈[0,1)

T F(A,Ad,ν ; d, j) ⊃
⋃

ν∈Ξ(j,A)

T F(A,Ad,ν ; d, j) . (7.19)

To show the reverse inclusion let T ∈ T F(A,Ad,ν ; d, j) where ν ∈ [0, 1) whence T F(A,Ad,ν ; d, j)
is nonempty so that, by (7.7), ν ∈ Ξ(j, A) which implies that

⋃
ν∈[0,1) T F(A,Ad,ν ; d, j) ⊂⋃

ν∈Ξ(j,A) T F(A,Ad,ν ; d, j). Thus, by (7.19),

⋃

ν∈[0,1)

T F(A,Ad,ν ; d, j) =
⋃

ν∈Ξ(j,A)

T F(A,Ad,ν ; d, j) . (7.20)

It follows from (7.17),(7.20) and Definition 7.4 that indeed the set of uniform IFF’s of (j, A)
satisfies

⋃

ν∈[0,1)

T FGν
(j, A) =

⋃

ν∈[0,1)

T F(A,Ad,ν ; d, j) =
⋃

ν∈Ξ(j,A)

T F(A,Ad,ν ; d, j) . (7.21)

It follows from the first equality in (7.21) that the set of uniform IFF’s of (j, A) is equal to
the set of all transfer fields from (j, A) to the spin-orbit systems (j, Ad,ν).

The following remark is an important application of (7.21).

Remark:
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(6) Let (j, A) ∈ SOS(d, j). We first consider the case that (j, A) has a uniform IFF, say
T . Then, by (7.21), a ν ∈ Ξ(j, A) exists such that T is a transfer field from (j, A) to
(j, Ad,ν). Also, since Ξ(j, A) is nonempty and by Theorem 7.3b, (j, A) ∈ ACB(d, j).
We now consider the case where Ξ(j, A) is nonempty so we pick a ν ∈ Ξ(j, A). Then,
by (7.7), (7.21), a transfer field from (j, A) to (j, Ad,ν) exists and it is a uniform IFF of
(j, A). Thus, and by Theorem 7.3b, if (j, A) ∈ ACB(d, j) then (j, A) has a uniform IFF.
Summarizing both cases we observe that (j, A) has a uniform IFF iff (j, A) ∈ ACB(d, j).
Thus, by Theorem 7.3b, (j, A) has a uniform IFF iff it has spin tunes. ✷

As mentioned in Section 4.3, in this work we do not fully address how the SOS(d, j) are
partitioned w.r.t. to the equivalence relation ∼. Nevertheless Theorem 7.3f sheds light on
this issue. In fact if j is of the form P[ω] then it is easy to show that SOS(d, j) is partitioned
into uncountably many equivalence classes as follows.

To prove this claim we first of all note that SOS(d,P[ω]) has uncountably many elements
since ν is a continuous parameter whence there are uncountably many Ad,ν , i.e., the spin-
orbit systems (P[ω], Ad,ν) form an uncountable subset, say B, of SOS(d,P[ω]) (note that ω is

fixed but ν varies over [0, 1)). Note also that both B and (P[ω], Ad,ν) have uncountably many

elements but, as will be shown below, B ∩ (P[ω], Ad,ν) has only countably many elements.

In fact in our proof the sets B ∩ (P[ω], Ad,ν) for each ν will play a key role and we already

note here that they form a partition of B since the (P[ω], Ad,ν), being equivalence classes,

are mutually disjoint. In particular, if (P[ω], Ad,ν) and (P[ω], Ad,µ) are different then they
are disjoint and belong to different equivalence classes of the equivalence relation ∼. The
crucial question now is: how many of the sets B ∩ (P[ω], Ad,ν) are different? In other words
how common is it that two spin-orbit systems in B are equivalent? This is where Theorem
7.3 engages. In fact, by Theorem 7.3f, each set Ξ(P[ω], Ad,ν) contains only countably many

elements. On the other hand if ν, µ ∈ [0, 1) then, by (7.7), (P[ω], Ad,µ) ∈ (P[ω], Ad,ν) iff

µ ∈ Ξ(P[ω], Ad,ν). Thus every set of the form B ∩ (P[ω], Ad,ν) contains only countably

many elements of B. Thus we need uncountably many of the sets B ∩ (P[ω], Ad,ν) to

overlap B whence the B ∩ (P[ω], Ad,ν) form an uncountable partition of B. Since different

B ∩ (P[ω], Ad,ν) are contained in different equivalence classes we thus have shown that there

are uncountably many equivalence classes of the form (P[ω], Ad,ν). Thus, as was to be
shown, SOS(d,P[ω]) is partitioned into uncountably many equivalence classes w.r.t. to the
equivalence relation ∼.

To put that into context we note, by Definition 5.1, that every CBGν
(d,P[ω]) is a union of

equivalence classes w.r.t. ∼ whence, by Theorem 7.3d, ACB(d,P[ω]) is a union of equivalence
classes, too. Thus we just have shown that ACB(d,P[ω]) is partitioned into uncountably
many equivalence classes w.r.t. ∼. To get a little further insight into this we now ask
the natural question: are there spin-orbit systems in SOS(d,P[ω]) which do not belong
to ACB(d,P[ω]), i.e., is SOS(d,P[ω]) 6= ACB(d,P[ω])? In other words do there exists
equivalence classes w.r.t. ∼ which are disjoint toACB(d,P[ω])? In fact the following theorem
shows that this in indeed the case if (1, ω) is nonresonant.

Theorem 7.6 Let (P[ω], A) ∈ SOS(d,P[ω]) be off orbital resonance, i.e., let (1, ω) be
nonresonant and let A ∈ C(Td, SO(3)) be defined by

A(z) = exp(J (N · φ)) , (7.22)
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where N ∈ Zd and πd(φ) = z. Then (P[ω], A) has an ISF and an IFF. Moreover (P[ω], A)
has spin tunes iff N = 0.
Remark: Thus (P[ω], A) ∈ ACB(d,P[ω]) iff N = 0. Also (P[ω], A) has a uniform IFF iff
N = 0.

Proof of Theorem 7.6: The claims are proved in Appendix C.3. ✷

Theorem 7.6 shows that if (1, ω) is nonresonant then SOS(d,P[ω]) 6= ACB(d,P[ω]), i.e.,
that there is at least one equivalence class in SOS(d,P[ω]) which is disjoint to ACB(d,P[ω]).
In fact one can even show there are infinitely many equivalence classes in SOS(d,P[ω])
which are disjoint to ACB(d,P[ω]) (see [He2, Chapter 8] where Theorem 7.6 is substantially
generalized). Theorem 7.6 also shows, if (1, ω) is nonresonant and since A is SO(2)-valued,
that (P[ω], A) ∈ CBSO(2)(d,P[ω]) whence CBSO(2)(d,P[ω]) 6= ACB(d,P[ω]). For more details
on the special case where d = 1, see Appendix B.6 below.

7.2 Physical aspects of spin tunes. Spin-orbit resonances

Definitions 7.1 and 7.2 and Theorem 7.3 lead us naturally to the notion of spin-orbit reso-
nance.

Definition 7.7 (Spin-orbit resonance)
We say that (P[ω], A) is “on spin-orbit resonance” if it has a spin tune and if for every spin
tune ν of (P[ω], A) one can find m ∈ Zd, n ∈ Z such that

ν = m · ω + n . (7.23)

We say that (P[ω], A) is “off spin-orbit resonance” iff (P[ω], A) ∈ ACB(d,P[ω]) and if
(P[ω], A) is not on spin-orbit resonance. Note that a spin-orbit system (j, A) which has no
spin tunes is neither on nor off spin-orbit resonance. Moreover (j, A) is neither on nor off
spin-orbit resonance when j is not a torus translation, i.e., not of the form P[ω]. ✷

In [BEH] spin-orbit systems with spin tunes belong to the class of “well tuned” systems
and most of the systems with no spin tunes are said to be “ill-tuned”.

In [He2] the spin tune and spin-orbit resonances defined here are called spin tune of
the first kind and spin-orbit resonances of the first kind respectively since [He2] finds it
convenient to distinguish between two kind of spin tune. That distinction is not needed
here.

Remarks:

(7) By Theorem 7.3f and Definition 7.7 a spin-orbit system of the form (P[ω], A) is on spin-
orbit resonance iff (7.23) holds for just one choice of m ∈ Zd, n ∈ Z, ν ∈ Ξ(P[ω], A).
Thus a single spin tune ν of (P[ω], A) is sufficient to determine if this spin-orbit system
is on spin-orbit resonance. Note also, by Theorem 7.3f and Definition 7.7, that a spin-
orbit system (P[ω], A) is on spin-orbit resonance iff 0 ∈ Ξ(P[ω], A).

(8) Let (P[ω], A) ∈ SOS(d,P[ω]). It can be easily shown, by using (7.7) and Remark 6
above, that (P[ω], A) ∈ CBG0

(d,P[ω]) iff 0 ∈ Ξ(P[ω], A). Thus, by Remark 7, (P[ω], A)
is on spin-orbit resonance iff (P[ω], A) ∈ CBG0

(d,P[ω]). We will use this fact in the
proof of Theorem 7.8b below. ✷
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If one considers a family (jJ , AJ)J∈Λ of spin-orbit systems (see the Introduction and
Chapter 8) and if every (jJ , AJ) has a spin tune, say νJ , then νJ is called an amplitude
dependent spin tune (ADST). Recall from Remark 6 above that if TJ is a uniform IFF of
(jJ , AJ) then T

t
J(j(z))AJ(z)TJ (z) = Ad,νJ (z) = exp(2πνJJ ).

As stated at the beginning of this chapter spin-orbit resonance can lead to a large an-
gular spread of the ISF and that can lead to unacceptably low equilibrium polarization as
explained in Chapter 8. The large angular spread also means that if a particle beam oc-
cupies a large volume of phase space at injection while the spins all point in roughly the
same direction, the polarization of the beam can be very unstable while the spin precess
around their individual ISF’s. See [Ho] for an example of this. See [Ho],[Ma],[Vo],[Yo1] for
formalisms and calculations which have demonstrated the potential for a large spread of the
ISF near spin-orbit resonances. For detailed further comments see Section X in [BEH].

Moreover, since the ADST can vary with orbital amplitude J , particles at one amplitude
can be close to spin-orbit resonance while particles as nearby amplitudes need not be. Man-
ifestations of this are beautifully demonstrated in [Ho, Vo, BHV00, HV] where the value of
a rigorous definition of spin tune is made crystal clear. Note that as shown in those works,
spin-orbit resonances tend to be rather repelling than attractive. The rigorous definition
of spin tune and of spin-orbit resonance also will lead us in Chapter 8 to the Uniqueness
Theorem for the ISF [Yo1, DK73]. In summary, a rigorous definition, as in Definitions 7.2
and 7.7, is very important for a detailed understanding of real spin vector motion.

As explained in Section X of [BEH] and in [BV1], as well as in other literature, a real
spin-orbit system (P[ω], A) on orbital resonance normally has no spin tune. One exception
is the so-called single resonance model underlying the model with two Siberian snakes in
Section 3.3. Nevertheless, such a system can, but need not, have an ISF of the continuous
kind defined here. An example of a spin-orbit system on orbital resonance which has no ISF,
and thus no spin tune, is studied in Section 3.3. We recall from Remark 3 in Chapter 3 that,
if the d components of ω are rational numbers, then it is easy to calculate an ISF f by finding
the real eigenvector f(z) of the matrix Ψ[P[ω], A](n; z) for the number of turns n for which
the particle returns to its starting position z. The discontinuous “ISF” of [BV1] can also be
calculated in this way (and this is also done in our example in Section 3.3). Recall also from
the ISF conjecture in Chapter 3 that we expect an ISF to exist off orbital resonance.

The ISF and the ADST for real spin vector motion off orbital resonance in storage
rings can be computed in a number of ways [Be],[Fo],[HH],[Ho],[Ma],[Vo],[Yo3]. Here we
describe two of them and we start with a method of computing the ADST, implemented
in the computer code SPRINT [He2, Ho, Vo] (as an alternative method, SPRINT offers
an implementation of the SODOM-2 algorithm). The calculations proceed in two steps
[BEH00, BHV98, Ho, Vo]. For simplicity we consider a fixed but arbitrary action value J and
assume that the spin-orbit system belongs to ACB(d,P[ω]) and is off orbital resonance and
off spin-orbit resonance. As we will see in Chapter 8, by the Uniqueness Theorem, Theorem
8.1b, the given spin-orbit system (P[ω], A) has only two ISF’s, say f and −f . Of course f
and −f in general are unknown and in fact one only attempts to compute a discretization of
them. In the first step, f is computed at some point z on the torus at some point θ on a ring
using stroboscopic averaging [EH, HH] giving us f(z). Since (P[ω], A) ∈ ACB(d,P[ω]) it
follows from Remark 5 above that an IFF, say T , exists and, due to Theorem 6.2c, the third
column of T is either f or −f and here T (z) is constructed by a simple orthonormalization
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procedure in which f(z) is the third column is T (z). The axis represented by the second
column of T (z) could, for example, be chosen so as to have no component along the direction
of the beam. In the next step the spin value f(z) is tracked forwards turn by turn, according
to (3.9), resulting in the discretization f(z), f(P[ω](z)), f(P[ω]2(z)), ..., f(P[ω]N(z)) of f
for some large integer N . Accordingly T (z), T (P[ω](z)), T (P[ω]2(z)), ..., T (P[ω]N(z)) are
constructed at the end of each turn according to the chosen prescription. Then, the average
spin precession angle around the ISF w.r.t. this IFF is computed for a very large number
of turns N . In fact since T is an IFF, by Remark 2 in Chapter 6, an N ∈ Zd and an
α ∈ C(Td,R) exist such that

T t(P[ω]n+1(z))A(P[ω]n(z))T (P[ω]n(z)) = exp

(
J [N · (φ+ 2πnω) + 2πα(P[ω]n(z))]

)
,

(7.24)

where πd(φ) = z and n = 0, ..., N . Note that, for every φ ∈ Rd with πd(φ) = z, the rhs of
(7.24) is the same (recall Section 2.3) whence (7.24) is independent of the choice of φ and
thus well-defined. One can show [He2, Vo], by using Theorem 3.3a above, that the average
< α > of α, given by

< α >:=
1

(2π)d

∫

[0,2π]d
α(πd(φ))dφ , (7.25)

is a spin tune of (P[ω], A). On the other hand, (7.24), gives us α(z), α(P[ω](z)),
α(P[ω]2(z)), ..., α(P[ω]N(z)) which allows one to approximate the average of α. This delivers
an ADST for the given J but the member of the set Ξ(P[ω], A) that emerges will depend on
the convention used to choose the first and second axes of T .

Another practical way to compute spin tunes is by using the spectrum of the spin vector
motion as follows. For simplicity we consider a fixed but arbitrary action value J and assume
that the spin-orbit system belongs to ACB(d,P[ω]). Then let (P[ω], A) have a particle-spin-
vector trajectory (Z, S) and let Sj(n) denotes the j-th component of S(n). The discrete

Fourier transform (DFT) of Sj(0), ..., Sj(N) is defined by Ŝj where

Ŝj(n) :=
1

N + 1

N∑

k=0

Sj(k) exp(−
2πink

N + 1
) , (7.26)

and where n = 0, ..., N . We define, for λ ∈ [0, 1) and nonnegative integer N ,

aN (Sj, λ) := (N + 1)−1
N∑

n=0

Sj(n) exp(−2πinλ) . (7.27)

Since, by Remark 6 above, (P[ω], A) has a uniform IFF it can be easily shown (see Appendix
B.5) that aN (Sj, λ) converges as N → ∞ and we denote the limit of aN(Sj , λ) by a(Sj, λ)
and we define the “ “Cesàro spectrum” Λ(Sj) of Sj by Λ(Sj) := {λ ∈ [0, 1) : a(Sj , λ) 6= 0}.
From (7.26) and (7.27) it is clear that a(Sj , λ) can be approximated by using standard DFT
software. Then spin tunes are contained in the Cesàro spectrum since, as shown in Appendix
B.5 (by using the fact that (P[ω], A) has a uniform IFF),

Λ(Sj) ⊂ Ξ(P[ω], A) ∪ {l · ω + n : l ∈ Zd, n ∈ Z} . (7.28)
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Moreover, the Cesàro spectrum can contain many of the spin tunes in Ξ(P[ω], A). Theorem
9.1c in the continuous-time formalism of [BEH] reaches the same conclusions. With this
we have a direct relationship between the set Ξ(P[ω], A) appearing in Theorem 7.3 and
a “measurable” quantity, namely the Cesàro spectrum. This way of getting ADST’s has
been essential for interpreting spin vector motion near to resonance with oscillating external
magnetic fields [Ba]. For more details on the notion of Cesàro spectrum, see Appendix B.

In analogy with Theorem 6.2c we now state:

Theorem 7.8 a) Let (j, A) ∈ SOS(d, j) and T ∈ C(Td, SO(3)). Then T satisfies

T ◦ j = AT , (7.29)

iff it belongs to T FG0
(j, A).

Remark: If T ∈ C(Td, SO(3)) satisfies (7.29) then, by Definition 7.4, T is a uniform IFF of
(j, A).
b) (Spin-Orbit Resonance Theorem) Let (P[ω], A) ∈ SOS(d,P[ω]). Then (P[ω], A) is on
spin-orbit resonance iff T FG0

(P[ω], A) is nonempty.

Proof of Theorem 7.8a: By Definition 5.1, T ∈ T FG0
(j, A) iff T t(j(z))A(z)T (z) ∈ G0

whence, by (7.1), T ∈ T FG0
(j, A) iff T t(j(z))A(z)T (z) = I3×3 which proves the claim. ✷

Proof of Theorem 7.8b: By Remark 8, (P[ω], A) is on spin-orbit resonance iff (P[ω], A) ∈
CBG0

(d,P[ω]). The claim now follows from Definition 5.1. ✷

We will use Theorem 7.8 in the proof of the Uniqueness Theorem, Theorem 8.1b. More-
over, Theorem 7.8a and Theorem 6.2c are the special cases H = G0 resp. H = SO(2) of
a theorem which is valid for every subgroup H of SO(3). This will be addressed in our
follow-up work.

8 Polarization

In this chapter we tie together the concepts of polarization field and polarization.

8.1 Estimating the polarization

Consider a family (jJ , AJ)J∈Λ of spin-orbit systems where (jJ , AJ) ∈ SOS(d, jJ) and Λ ⊂ Rd

is the set of action values.
We note (see also [BH, BV1]) that, for every J ∈ Λ, we have a so-called “local polariza-

tion”, say Sloc,J , which by definition is a polarization-field trajectory of (jJ , AJ) satisfying

|Sloc,J | ≤ 1 . (8.1)

The associated polarization on the torus J at time n is then given by

PJ(n) := (
1

2π
)d
∣∣∣∣
∫

[0,2π]d
dφSloc,J(n, πd(φ))

∣∣∣∣ . (8.2)

We will see below how PJ can be estimated by (8.5) which makes PJ a convenient tool for
analyzing the bunch polarization. In the so-called “spin equilibrium” the polarization-field
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trajectory Sloc,J is, by the definition of the spin equilibrium, time-independent for every J
whence its initial value, Sloc,J(0, ·) is an invariant polarization field of (jJ , AJ). Thus for the
spin equilibrium we get

PJ(n) = PJ(0) = (
1

2π
)d
∣∣∣∣
∫

[0,2π]d
dφSloc,J(0, πd(φ))

∣∣∣∣ . (8.3)

Let jJ be topologically transitive. Then, by Theorem 3.3b, |Sloc,J(0, z)| is independent of z
and, if Sloc,J(0, ·) is not the zero function, then |Sloc,J(0, z)| > 0 and Sloc,J(0, ·)/|Sloc,J(0, ·)|
is an ISF of (jJ , AJ) whence, by (8.1),(8.3),

PJ(n) = PJ(0) = (
1

2π
)d
∣∣∣∣
∫

[0,2π]d
dφ|Sloc,J(0, πd(φ))|

Sloc,J(0, πd(φ))

|Sloc,J(0, πd(φ))|

∣∣∣∣

≤ (
1

2π
)d
∣∣∣∣
∫

[0,2π]d
dφ

Sloc,J(0, πd(φ))

|Sloc,J(0, πd(φ))|

∣∣∣∣ , (8.4)

so that

PJ(n) = PJ(0) ≤ PJ,max , (8.5)

where

PJ,max := (
1

2π
)d sup

{∣∣∣∣
∫

[0,2π]d
dφf(πd(φ))

∣∣∣∣ : f ∈ ISF (jJ , AJ)

}
. (8.6)

Of course (8.5) also holds if Sloc,J(0, ·) is the zero function because in that case PJ(n) =
PJ(0) = 0. Thus (8.5) holds for the spin equilibrium if jJ is topologically transitive and
(jJ , AJ) has an ISF. We conclude from (8.5) that the ISF’s provide an upper bound for PJ

and this is one reason why they are so important in practice. One can simplify (8.6) in
the important case where the spin-orbit system (jJ , AJ) in (8.6) has exactly two ISF’s, say
fJ ,−fJ . Then (8.6) simplifies to

PJ,max = (
1

2π
)d
∣∣∣∣
∫

[0,2π]d
dφfJ(πd(φ))

∣∣∣∣ . (8.7)

Clearly PJ,max is small if the range of fJ is spread out. In Section 8.2 we will see how the
Uniqueness Theorem leads to the situation underlying (8.7).

Of course PJ can also be used for an estimation of the bunch polarization which is given
by

P (n) = (
1

2π
)d
∣∣∣∣
∫

Λ

dJρeq(J)

∫

[0,2π]d
dφSloc,J(n, πd(φ))

∣∣∣∣ , (8.8)

where ( 1
2π
)dρeq is the equilibrium particle phase-space density. We will take a closer look

at (8.8) in our follow-up work. With (8.8) the bunch polarization for the combined beam
equilibrium and spin equilibrium reads as

P (n) = P (0) = (
1

2π
)d
∣∣∣∣
∫

Λ

dJρeq(J)

∫

[0,2π]d
dφSloc,J(0, πd(φ))

∣∣∣∣ . (8.9)
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Let the conditions underlying (8.5) hold for almost all J , i.e., let a set M ⊂ Λ exist which
has Lebesgue measure zero and such that, for every J ∈ (Λ \ M), the spin-orbit system
(jJ , AJ) has an ISF and jJ is topologically transitive. Then, by (8.3),(8.5),(8.9), we have for
the spin equilibrium

P (n) = P (0) ≤ (
1

2π
)d
∫

Λ

dJρeq(J)

∣∣∣∣
∫

[0,2π]d
dφSloc,J(0, πd(φ))

∣∣∣∣

=

∫

Λ

dJρeq(J)PJ(0) ≤

∫

Λ

dJρeq(J)PJ,max . (8.10)

Note that we assume that ρeq(J) and PJ,max depend on J regularly enough to ensure that
the integrals in (8.8), (8.9) and (8.10) are meaningful. Using (8.7) one can simplify (8.10) in
the case where, for every J ∈ (Λ \M), the spin-orbit system (jJ , AJ) has two ISF’s fJ ,−fJ
and no others. Then (8.10) simplifies, thanks to (8.7), to

P (n) = P (0) ≤ (
1

2π
)d
∫

Λ

dJρeq(J)

∣∣∣∣
∫

[0,2π]d
dφfJ(πd(φ))

∣∣∣∣ , (8.11)

where we also assume that the functional dependences of ρeq(J) and fJ on J are regular
enough to ensure that the integrals in (8.11) are meaningful. For more details on estimating
the bunch polarization, also for non-equilibrium spin fields, see [Ho, Vo].

8.2 The Uniqueness Theorem of invariant spin fields

We saw in (8.5) and (8.7), how in a situation where only two ISF’s exist, the invariant spin
fields govern the estimation of PJ . In this section we will see that this situation is very
common off spin-orbit resonance.

Let (j, A) ∈ ACB(d, j). Then, by Remark 5 in Chapter 7, (j, A) has an ISF and so
it natural to ask about the impact of the set Ξ(j, A) on ISF (j, A). In fact, if j = P[ω]
and (P[ω], A) is off orbital resonance, this question is partially answered by part b) of the
following theorem.

Theorem 8.1 a) Let (j, A) ∈ SOS(d, j) and let f and g be invariant polarization fields of
(j, A). Then h ∈ C(Td,R3), defined by h(z) := f(z)× g(z), is an invariant polarization field
of (j, A) where × denotes the vector product.

b) (The Uniqueness Theorem) Let (P[ω], A) ∈ ACB(d,P[ω]) be off orbital resonance, i.e.,
let (1, ω) be nonresonant. Also, let (P[ω], A) be off spin-orbit resonance. Then (P[ω], A) has
an ISF, say F , and F and −F are the only ISF’s of (P[ω], A).

Proof of Theorem 8.1a: Since f and g are invariant polarization fields of (j, A) it follows
from Definition 3.2 that f ◦ j = Af and g ◦ j = Ag whence

h(j(z)) = (f(j(z))× g(j(z))) = (A(z)f(z)× A(z)g(z)) = A(z)(f(z)× g(z)) = A(z)h(z) ,

so that, by Definition 3.2, h is an invariant polarization field of (j, A). ✷
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Proof of Theorem 8.1b: Let (P[ω], A) ∈ ACB(d,P[ω]) be off orbital resonance. The claim to
be proved is equivalent to its contrapositive which is the following claim: If the total number
of ISF’s of (P[ω], A) is not 2, then (P[ω], A) is not off spin-orbit resonance. Now, we know
from Remark 5 in Chapter 7 that (P[ω], A) has an ISF whence, by Section 3.2, it has at least
two ISF’s so that if the number of ISF’s differs from 2, there are more than two ISF’s. Also,
since (P[ω], A) ∈ ACB(d,P[ω]) we know from Theorem 7.3b that (P[ω], A) has spin tunes.
Then if the system is not off spin-orbit resonance, it must be on spin-orbit resonance. Thus
the above claim we have to prove is equivalent to the following claim: If the total number
of ISF’s of (P[ω], A) is larger than two, then (P[ω], A) is on spin-orbit resonance.

In fact we will now prove the latter claim. So let (P[ω], A) have more than two ISF’s.
Recalling Section 3.2, we then conclude that (P[ω], A) has ISF’s, say f and g, such that
g 6= f and g 6= −f . Note that f,−f and g are three different ISF’s of (P[ω], A). We define
h ∈ C(Td,R3) by h(z) := f(z) × g(z) and observe, by Theorem 8.1a, that h is an invariant
polarization field of (P[ω], A). On the other hand, since (P[ω], A) is off orbital resonance,
P[ω] is topologically transitive whence, by Theorem 3.3b, |h| is constant, i.e., |h(z)| =: λ
is independent of z. We first consider the case where λ = 0, i.e., where f × g is the zero
function. Then a function ĥ : Td → R exists such that g = ĥf whence g ·f = ĥ|f |2 = ĥ which
implies that ĥ is continuous. On the other hand 1 = |g| = |ĥf | = |ĥ| whence ĥ can take
values only in {1,−1} whence, since ĥ is continuous and Td is path-connected, ĥ is constant.
Thus either g = f or g = −f which is a contradiction. So the case where λ = 0 cannot
occur. Thus λ > 0. Since h is an invariant polarization field of (P[ω], A) and since the real
number λ is positive we define k ∈ C(Td,R3) by k(z) := h(z)/λ = h(z)/|h(z)| and observe,
by using Definition 3.2, that k is an invariant polarization field of (P[ω], A). Of course
|k(z)| = |h(z)|/|h(z)| = 1 whence k is an ISF of (P[ω], A). We also define l ∈ C(Td,R3) by
l(z) := k(z)× f(z) and observe, by Theorem 8.1a, that l is an invariant polarization field of
(P[ω], A). Of course f(z) · k(z) = (f(z) · h(z))/|h(z)| = f(z) · (f(z) × g(z))/λ = 0 whence,
for every z ∈ Td,

0 = l(z) · k(z) = l(z) · f(z) = f(z) · k(z) . (8.12)

Clearly |l(z)| = |k(z) × f(z)| =
√

|k(z)|2 |f(z)|2 − (k(z) · f(z))2 =
√

1− (k(z) · f(z))2 = 1
which implies that l is an ISF of (P[ω], A) and that

1 = |l(z)| = |k(z)| = |f(z)| . (8.13)

It follows from (8.12) and (8.13) that

[l(z), k(z), f(z)]t[l(z), k(z), f(z)] = I3×3 . (8.14)

Moreover, by (8.13), det([l(z), k(z), f(z)]) = l(z) · (k(z) × f(z)) = |l(z)|2 = 1 whence, by
(8.14), for every z ∈ Td, the 3× 3-matrix [l(z), k(z), f(z)] belongs to SO(3). We thus define
T ∈ C(Td, SO(3)) by T (z) := [l(z), k(z), f(z)]. Since all three columns of T are invariant
polarization fields of (P[ω], A) we have, by Definition 3.2,

A(z)T (z) = A(z)[l(z), k(z), f(z)] = [A(z)l(z), A(z)k(z), A(z)f(z)]

= [l(P[ω](z)), k(P[ω](z)), f(P[ω](z))] = T (P[ω](z)) ,
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whence T ◦ P[ω] = AT so that, by Theorem 7.8a, T belongs to T FG0
(j, A). Thus, by

Theorem 7.8b, (P[ω], A) is on spin-orbit resonance as was to be shown. ✷

The claim of Theorem 8.1b that (P[ω], A) has an ISF is trivial because of Remark 5 in
Chapter 7. Thus the essence of the claim of Theorem 8.1b is that (P[ω], A) has only two
ISF’s. Recall also from Chapter 3 that the set of ISF’s of a spin-orbit system is either infinite
or contains an even number of elements. Note that in this work the term “finite number”
includes the case of zero. Indeed if a spin-orbit system has no ISF then its number of ISF’s
is zero, an even number!

9 Summary and Outlook

In this work we have studied the discrete-time spin-vector motion in storage rings in mathe-
matically rigorous terms as follows. A spin-orbit system is a pair (j, A) where j ∈ Homeo(Td)
is the particle 1-turn map and A ∈ C(Td, SO(3)) with the torus Td introduced in Section
2.3. In the special case j = P[ω], ω is the orbital tune and P[ω] is the corresponding
translation on the torus after one turn. For every spin-orbit system (j, A) in SOS(d, j)
a 1-turn particle-spin-vector map P[j, A] ∈ Homeo(Td × R3) is defined by (2.22), i.e.,
P[j, A](z, S) := (j(z), A(z)S). Also a 1-turn field map P̃[j, A] is a bijection on C(Td,R3)
defined by (3.2), i.e.,

P̃[j, A](f) := (Af) ◦ j−1 .

We note also that the particle-spin-vector maps are just characteristic maps of the field maps.
If f ∈ C(Td,R3) satisfies P̃[j, A](f) = f then f is called an invariant polarization field of
(j, A) and in the subcase |f | = 1 it is called an invariant spin field. A j ∈ Homeo(Td) is called
topologically transitive if a z0 ∈ Td exists such that the topological closure {jn(z0) : n ∈ Z}
of {jn(z0) : n ∈ Z} equals Td. The ISF-conjecture states that a spin-orbit system (j, A) has
an ISF if j is topologically transitive. Note that a special case of this conjecture is: If a
spin-orbit system (P[ω], A) is off orbital resonance, then it has an ISF. If (j, A) ∈ SOS(d, j)
and T ∈ C(Td, SO(3)) then (j, A′) ∈ SOS(d, j) is called the transform of (j, A) under T
where A′ is defined by (4.2), i.e., A′(z) := T t(j(z))A(z)T (z). If H is a subgroup of SO(3)
and (j, A) ∈ SOS(d, j) then (j, A′) in SOS(d, j) is an H-normal form of (j, A) if A′ is H-
valued and (j, A′) is a transform of (j, A). A spin-orbit system has an SO(2)-normal form
iff it has an invariant frame field. Following Chapter 7, a spin-orbit system (j, A) has a
spin tune ν ∈ [0, 1) if (j, A′) with A′(z) = exp(2πνJ ) is a transform of (j, A). We say that
(P[ω], A) is on spin-orbit resonance if it has spin tunes and if for every spin tune ν we can
find m ∈ Zd, n ∈ Z such that ν = m · ω + n. A spin-orbit system has spin tunes iff it
has a Gν-normal form. Moreover a spin-orbit system has an Gν-normal form iff it has an
uniform invariant frame field. A spin-orbit system (P[ω], A) is on spin-orbit resonance iff
it has a G0-normal form. Also we used the notions of quasiperiodicity and Cesàro to study
the impact of the spin tune on the spin-vector motion. The Uniqueness Theorem, Theorem
8.1b, states that, if (P[ω], A) has spin tunes and is off orbital resonance and off spin-orbit
resonance, then it has only two ISF’s and they differ only by a sign. The polarization of
a bunch is defined and its size is estimated in Section 8.1. In the follow-up work we will
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reconsider and generalize the present work by using using concepts from fibre bundle theory
introduced in [He2].
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Appendix

A Conventions and terminology

In this appendix we introduce some terminology and notions of the main text.

A.1 Function, image, inverse image

A “function” f : X → Y is determined by its graph and its codomain. The “graph” of f is
the set {(x, f(x)) : x ∈ X} and the “codomain” of f is Y . The “domain” of f is X and the
“range” of f is the set f(X) := {f(x) : x ∈ X}. More generally, if M is a subset of X then
the “image” of M under f is the set f(M) := {f(x) : x ∈ M}. If M is a subset of Y then
the “inverse image” of M under f is the set f−1(M) := {x ∈ X : f(x) ∈M}.

One calls f a “surjection” or “onto” if its range and codomain are equal. One calls f
“one-one” or an “injection” if f(x) = f(x′) implies that x = x′. One calls f a “bijection” if
it is one-one and a surjection.

If f : X → Y and g : Y → Z are functions then g ◦ f is the function g ◦ f : X → Z
defined by (g ◦ f)(x) := g(f(x)). One calls the operation ◦ the “composition” of functions.
If X is a set then the function idX : X → X is defined by idX(x) := x and is called the
“identity function” on X . If f : X → Y is a bijection then a unique function f−1 : Y → X
exists such that f−1 ◦ f = idX , f ◦ f−1 = idY and it is called the “inverse” of f . Clearly f
is a bijection iff it has an inverse. Note that if f : X → Y is a bijection then f−1 can either
mean the inverse function or the inverse image operation. However it will always be clear
from the context what the meaning is.

Note finally that according to our, very common, definition of a function two functions
with the same graph are different iff they have different codomains. Thus the alternative,
and equally common, way to define a function in terms of its graph (i.e., without invoking
the codomain) is different from our definition.

A.2 Partition, equivalence relation

If X is a set and if P is a set whose elements are disjoint nonempty subsets of X whose
union is X then one calls P a “partition of X”.

If X is a set and B a subset of X ×X then B is called a “relation” on X . The relation
B is called “symmetric” if (x, y) ∈ B implies that (y, x) ∈ B. The relation B is called
“reflexive” if (x, x) ∈ B for all x ∈ X . The relation B is called “transitive” if (x, y) ∈ B and
(y, z) ∈ B implies that (x, z) ∈ B.

A relation on X is called an “equivalence relation on X” if it is symmetric,reflexive, and
transitive. If B is an equivalence relation on X and x ∈ X then the set {y ∈ Y : (x, y) ∈ B}
is called the “equivalence class of x under the equivalence relation B”.

The equivalence classes of B form a partition of X as follows. Clearly the equivalence
classes of B are nonempty sets and overlap X . Moreover by, transitivity, if two equivalence
classes of B have a common element then they are equal. Conversely every partition of X
defines an equivalence relation on X as can be easily checked.
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A.3 Topology, topological space, open set

A collection, τ , of subsets of a set X is called a “topology on X” if τ is closed under arbitrary
unions and finite intersections and if X, ∅ ∈ τ . Any pair (X, τ) is called a “topological space
(over X)”. The elements of τ are called the “open” sets of (X, τ).

The “closed” sets of (X, τ) are the complements of the open sets (X, τ). If M is a subset
of X then its “closure” M̄ is defined as the intersection of all closed supsets of M .

If (X, τ) is a topological space and if X ′ is a subset of X then the “subspace topology” τ ′

of X ′ from X is the collection {X ′ ∩M :M ∈ τ} and the topological space (X ′, τ ′) is called
a “topological subspace” of (X, τ).

If the topology τ is clear from the context then we write X instead of (X, τ). For example
the topology of Rd is obtained from the Euclidean norm and the topology of Zd is discrete,
i.e., every subset of Zd is open.

If (X, τ) is a topological space then σ ⊂ τ is called a “base” of (X, τ) (and of τ) if every
M ∈ τ is a union of elements of σ.

A.4 Continuous function, homeomorphism

Let (X, τ) and (X ′, τ ′) be topological spaces. Then a function f : X → X ′ is called “contin-
uous w.r.t. (X, τ) and (X ′, τ ′)” if for every M ∈ τ ′ the inverse image of M under f belongs
to τ , i.e., f−1(M) ∈ τ . We denote the collection of continuous functions by C(X,X ′). A
function f ∈ C(X,X ′) is called a “homeomorphism” and X,X ′ are called a “homeomor-
phic” if f is a bijection and if its inverse is continuous. We denote the collection of those
homeomorphisms by Homeo(X,X ′) and we also define Homeo(X) := Homeo(X,X). The
topological spaces X and X ′ are called “homeomorphic” if Homeo(X,X ′) is nonempty.

Let F : X → C and FN : X → C be functions where N ∈ Z+. Then the sequence FN is
said to converge uniformly on X to F as N → ∞ if, for all ε > 0 there exists an M ∈ Z+

such that, for all N ∈ Z+ with N ≥ M , supx∈X |FN(x) − F (x)| < ε. Even in the case of
uniform convergence, in general neither F nor the FN are bounded functions. However in the
important situation where all FN are bounded, and since |F (x)| ≤ |FN(x)−F (x)+FN (x)|,
F is bounded too.

A.5 Product topology, Hausdorff space, compact space,

path-connected space, final topology

If (X, τX) and (Y, τY ) are topological spaces then the product topology τ on X×Y is defined
such that the sets M ×N with M ∈ τX , Y ∈ τY form a base of τ . topology from R3×3.

A topological space X is called “Hausdorff” if for every pair of distinct elements x, x′ of
X open sets M,M ′ exists such that x ∈ M,x′ ∈ M ′ and M ∩M ′ = ∅. A topological space
X is called “compact” if for any union of X by open sets of X already the union of finitely
many of those open sets equals X . If X is a topological space and then a subset A of X is
called “compact” if A is, as a topological subspace of X , compact.

A topological space X is called “path-connected” if for elements x, x′ ∈ X a continuous
function f : [0, 1] → X exists such that f(0) = x and f(1) = x′. A subset A of X is
called “path-connected” if A is, as a topological subspace of X , path-connected. One has
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the following intermediate-value theorem: If X, Y are topological spaces such that X is path-
connected and if g : X → Y is a continuous function then the range of g is a path-connected
subset of Y .

Let X be a topological space and let p : X → Y be a surjection where Y is a set. A
natural topology on Y is defined such that a subset B ⊂ Y is open iff the inverse image
p−1(B) ⊂ X is open. One calls the topology on Y the “final topology” w.r.t. p [wiki1].

A.6 Groups

A “group” is a pair (G, ∗) where G is a set and ∗ is a binary operation such that

(G0) (Binary operation) ∀g1,g2∈G (g1 ∗ g2) ∈ G ,

(G1) (Associativity) ∀g1,g2,g3∈G (g1 ∗ g2) ∗ g3 = g1 ∗ (g2 ∗ g3) ,

(G2) (Identity element eG) ∃eG∈G ∀g∈G eG = eG ∗ g = g ∗ eG ,

(G3) (Inverse elements) ∀g1∈G ∃g2∈G eG = g1 ∗ g2 = g2 ∗ g1 .

We will abbreviate (G, ∗) as G when the operation ∗ is clear from the context and we often
write g1 ∗ g2 as g1g2 when the operation ∗ is clear from the context. The inverse element
of a g ∈ G is denoted by g−1. If H is a subset of G and if g, g′ ∈ G then we define
gHg′ := {ghg′ : h ∈ H}. A group G is called “Abelian” if, in addition to G1-G3,

(G4) (Commutativity) ∀g1,g2∈G g1 ∗ g2 = g2 ∗ g1 ,

in which case ∗ is often replaced by +.
A subset G′ of G is called a “subgroup of G” if it is a group w.r.t. to the restriction of

∗ to G′. Two elements g′, g′′ of a group G are called “conjugate” if g ∈ G exists such that
g′′ = gg′g−1. Two subgroups G′, G′′ of a group G are called “conjugate” if g ∈ G exists such
that G′′ = gG′g−1.

The most important groups in our work are SO(3) and its subgroups and, in Appendix
B.4, the Abelian group Zd and its subgroups.

B Quasiperiodic functions and the Cesàro spectrum of

a function

In this appendix we define and apply the notions of quasiperiodic function and Cesàro
spectrum with the main aim of proving two major results of the main text: Theorem 7.3f
and Eq. (7.28). In fact in Appendix B.3 we prove Theorem 7.3f by using, from Appendix B.2,
the Exponential Theorem. The Exponential Theorem is proved by using, from Appendix
B.2, the First Spectral Theorem. The First Spectral Theorem is proved by using, from
Appendix B.2, Fejér’s multivariate theorem. Moreover in Appendix B.5 we prove Eq. (7.28)
by using the First Spectral Theorem and, from Appendix B.4, the Second, Third, and Fourth
Spectral Theorems. In Appendix B.6 we show how pathologies in the Cesàro spectra of the
spin motions can lead to the absence of spin tunes.
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B.1 Defining Quasiperiodic functions and the Cesàro spectrum

Definition B.1 Let f ∈ C(Rd,C) be 2π-periodic in its arguments. If χ ∈ Rd then f is
called a “χ-generator” of the function F : Z → C defined by F (n) = f(2πnχ). A function
F : Z → C is called “χ–quasiperiodic” if it has a χ-generator and it is called “quasiperiodic”
if it has a χ-generator for some χ. Note that, as sets, C = R2 so we equip C with the natural
topology of R2. Note also that we choose the sets R and C such that R ⊂ C.

Note that if f is a χ-generator of the χ–quasiperiodic function F : Z → C then, by
Theorem 2.5b, there exists a unique function h ∈ C(Td,C) such that f = h ◦ πd. Thus we
could have defined quasiperiodicity in terms of h instead of f , however the latter is more
convenient. Again we see that φ and z have the same expressive power. ✷

Remark:

(1) The following facts immediately follow from Definition B.1. Let F and G be χ–
quasiperiodic functions where χ ∈ Rd and let c1, c2 ∈ C. Then the functions c1F + c2G
and FG are χ–quasiperiodic. Moreover if χ̃ ∈ Rk then F is (χ, χ̃)-quasiperiodic
and (χ̃, χ)-quasiperiodic. Furthermore if H is χ̃-quasiperiodic then FH is (χ, χ̃)-
quasiperiodic and (χ̃, χ)-quasiperiodic. ✷

Let Z be the particle trajectory of a spin-orbit system P[ω] with Z(0) = πd(φ0) whence,
by (2.25),(2.26) and the remarks after (2.31), Z(n) = P[ω]n(πd(φ0)) = P[nω](πd(φ0)) =
πd(φ0 + 2πnω) so that, by (2.31), the equations of motion for the spin-vector trajectory
S read as S(n + 1) = A(πd(φ0 + 2πnω))S(n). Thus, and by Definition B.1, the matrix
elements of A(πd(φ0 + 2πnω)) are ω–quasiperiodic functions of n so that the equation of
motion S(n+1) = A(πd(φ0+2πnω))S(n) is ω–quasiperiodic (see also Remark 2 in Chapter
4). This circumstance explains why the concept of quasiperiodicity is relevant for the present
work.

Part c) of the following definition gives us the notion of Cesàro spectrum.

Definition B.2 a) Let f : Rd → C be continuous and 2π–periodic in its arguments. Then
for m ∈ Rd the “m-th Fourier coefficient” of f is defined by

fm :=
1

(2π)d

∫ 2π

0

· · ·

∫ 2π

0

f(φ) exp(−i(m · φ))dφ1 · · ·dφd . (B.1)

b) Let m ∈ Rd, N ∈ Z+ where where Z+ denotes the set of nonnegative integers. We define

Ad
N,m :=

d∏

n=1

N + 1− |mn|

N + 1
, ||m|| := max(|m1|, ..., ||md|) . (B.2)

Let f : Rd → C be continuous and 2π–periodic in its arguments. We define, for N ∈ Z+,
function fN : Rd → C by

fN(φ) :=
∑

m∈Zd

||m||≤N

Ad
N,mfm exp(i(m · φ)) . (B.3)
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c) If F : Z → C is a function and λ ∈ [0, 1), N ∈ Z+, we define

aN (F, λ) :=
1

N + 1

N∑

n=0

F (n) exp(−2πinλ) . (B.4)

We denote by Λtot(F ) the set of those λ ∈ [0, 1) for which aN(F, λ) converges as N → ∞. If
λ ∈ Λtot(F ) we denote the limit of aN(F, λ) by a(F, λ) and we define the “Cesàro spectrum”
Λ(F ) of F by Λ(F ) := {λ ∈ Λtot(F ) : a(F, λ) 6= 0}. ✷

The terminology “Cesàro spectrum” in Definition B.2c is justified by the fact that the
limit a(F, λ) is often called the “Cesàro sum” of the sequence F (n) exp(−2πinλ) where
n = 0, 1, · · · [wiki6]. We now define the simple but important function Ec : Z → C by

Ec(n) := exp(i2πnc) = exp(i2πn⌊c⌋) , (B.5)

where c is an arbitrary real number and where ⌊c⌋ denotes the fractional part of c. Clearly,
by (B.5) and Definition B.1, the function E1/2π is a c-generator of Ec whence Ec is c–
quasiperiodic. We will strengthen this result in Theorem B.4 below. We will use Ec also in
Appendix B.3 where we prove Theorem 7.3f.

B.2 Fejér’s multivariate theorem and the First Spectral Theorem.

The Exponential Theorem

In this section we first present (see Theorem B.3b) Fejér’s multivariate theorem and then
derive from that the First Spectral Theorem (Theorem B.3d) and some other properties.
We then use the First Spectral Theorem to prove the Exponential Theorem, Theorem B.4b,
which allow us, in Appendix B.3, to prove Theorem 7.3f. To study the Cesàro spectrum of
quasiperiodic functions, we define, for χ ∈ Rd,

Yχ := {m · χ+ n : m ∈ Zd, n ∈ Z} . (B.6)

Theorem B.3 a) Let c ∈ R and λ ∈ [0, 1). Then

Λtot(Ec) = [0, 1) , (B.7)

a(Ec, λ) =

{
1 if λ = ⌊c⌋
0 if λ 6= ⌊c⌋ ,

(B.8)

Λ(Ec) = {⌊c⌋} . (B.9)

Let F : Z → C be a function. Then, for N ∈ Z+,

aN (FEc, λ) = aN(F, ⌊λ− c⌋) . (B.10)

If, in addition, Λtot(F ) = [0, 1) then

Λtot(FEc) = [0, 1) , (B.11)

a(FEc, λ) = a(F, ⌊λ− c⌋) , (B.12)

Λ(FEc) = {λ ∈ [0, 1) : ⌊λ− c⌋ ∈ Λ(F )} . (B.13)
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b) (Fejér’s multivariate theorem) Let f : Rd → C be 2π–periodic in its arguments and
continuous. Let also, for N ∈ Z+, the function fN : Rd → C be defined by (B.3), i.e.,
fN(φ) :=

∑
m∈Zd

||m||≤N

Ad
N,mfm exp(i(m · φ)). Then fN is continuous and 2π–periodic in its

arguments. Moreover the sequence fN converges uniformly on Rd to f as N → ∞.
c) Let F : Z → C be a χ–quasiperiodic function where χ ∈ Rd and let f be a χ-generator of
F , i.e., F (n) = f(2πnχ). Defining for N ∈ Z+ the function FN : Z → C by

FN(n) :=
∑

m∈Zd

||m||≤N

Ad
N,mhm exp(i2πn(m · χ)) , (B.14)

where fm is the m-th Fourier coefficient of f , then the sequence FN converges uniformly on
Z to F as N → ∞. Furthermore FN is χ-quasiperiodic and Λtot(F

N) = [0, 1). Moreover,
for λ ∈ [0, 1),

a(FN , λ) =
∑

m∈Zd

||m||≤N

Ad
N,mfma(Em·χ, λ) , (B.15)

as well as Λ(FN) ⊂ Yχ.
d) (First Spectral Theorem) Let F : Z → C be a χ–quasiperiodic function and let Λtot(F ) =
[0, 1). Then Λ(F ) ⊂ Yχ.

Proof of Theorem B.3a: Clearly, for N ∈ Z+, λ ∈ [0, 1) and by (B.4),(B.5),

aN (Ec, λ) =
1

N + 1

N∑

n=0

Ec(n) exp(−2πinλ) = (N + 1)−1
N∑

n=0

exp(2πin(c− λ))

=

{
1 if λ = ⌊c⌋

1
N+1

1−exp(2πi(N+1)(c−λ))
1−exp(2πi(c−λ))

if λ 6= ⌊c⌋ ,
(B.16)

whence

lim
N→∞

aN (Ec, λ) =

{
1 if λ = ⌊c⌋
0 if λ 6= ⌊c⌋ .

(B.17)

It follows from (B.17) and Definition B.2c and for c ∈ R, λ ∈ [0, 1), that (B.7),(B.8),(B.9)
hold.

Let F : Z → C whence, by (B.5) and Definition B.2c,

aN (FEc, λ) =
1

N + 1

N∑

n=0

F (n) exp(2πinc) exp(−2πinλ)

=
1

N + 1

N∑

n=0

F (n) exp(−2πin⌊λ− c⌋) = aN(F, ⌊λ− c⌋) ,

so that (B.10) holds. Let, in addition, Λtot(F ) = [0, 1). It then follows from Definition B.2c
and (B.10) that (B.11),(B.13) and (B.13) hold. ✷
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Proof of Theorem B.3b: That the sequence fN converges uniformly on Rd to f is the
generalization of Fejér’s univariate theorem from d = 1 to arbitrary positive integer d (see
for example [Maa, Sec. III.22],[Ko, Sec. 79]). ✷

Proof of Theorem B.3c: Defining for N ∈ Z+ the function fN : Rd → C by (B.3), it follows
from Theorem B.3b that the sequence fN converges uniformly on Rd to f as N → ∞. It is
clear, by (B.3),(B.14), that FN(n) = fN(2πnχ). By the uniform convergence of fN we have
limN→∞ supφ∈Rd |fN(φ)− f(φ)| = 0 whence 0 = limN→∞ supn∈Z |f

N(2πnχφ)− f(2πnχφ)| =
limN→∞ supn∈Z |F

N(n) − F (n)| so that the sequence FN converges uniformly on Z to F as
N → ∞. Let λ ∈ [0, 1). It follows from (B.4),(B.5),(B.14) and for M,N ∈ Z+ that

aM(FN , λ) =
1

M + 1

M∑

n=0

∑

m∈Zd

||m||≤N

Ad
N,mfm exp(i2πn(m · χ)) exp(−2πinλ)

=
∑

m∈Zd

||m||≤N

Ad
N,mfm

M + 1

M∑

n=0

Em·χ(n) exp(−2πinλ) =
∑

m∈Zd

||m||≤N

Ad
N,mfmaM(Em·χ, λ) . (B.18)

It follows from (B.7) and Definition B.2c that

lim
M→∞

aM(Em·χ, λ) = a(Em·χ, λ) , (B.19)

whence, by (B.18),

lim
M→∞

aM(FN , λ) =
∑

m∈Zd

||m||≤N

Ad
N,mfma(Em·χ, λ) , (B.20)

which implies, by Definition B.2c, that Λtot(F
N) = [0, 1) and that a(FN , λ) satisfies (B.15).

It is also clear, by (B.14), that FN is a finite sum of χ-quasiperiodic functions whence FN is
χ-quasiperiodic. To prove the last claim let µ ∈ Λ(FN), i.e., a(FN , µ) 6= 0 whence, by (B.15),
there exists an m ∈ Zd such that a(Em·χ, µ) 6= 0 so that, by Definition B.2c, µ ∈ Λ(Em·χ).
Thus, by (B.9), µ = ⌊m · χ⌋ whence µ = m · χ+ k with k ∈ Z so that, by (B.6), µ ∈ Yχ. We
thus have shown that indeed Λ(FN) ⊂ Yχ. ✷

Proof of Theorem B.3d: Let λ be in [0, 1). It follows from Theorem B.3c that a sequence of
functions FN : Z → C exists which converges uniformly on Z to F as N → ∞ and such that
Λtot(F

N) = [0, 1), Λ(FN) ⊂ Yχ. Thus and since a(FN , λ) and a(F, λ) exist, we have

|a(FN , λ)− a(F, λ)| = |a(FN − F, λ)|

= | lim
M→∞

1

M + 1

M∑

n=0

(FN(n)− F (n)) exp(−2πiλn)| ≤ sup
n

|FN(n)− F (n)| , (B.21)

where we also used the fact that FN and F are bounded functions. Since FN converges
uniformly on Z to F as N → ∞ we have 0 = limN→∞ supn∈Z |F

N(n) − F (n)| whence, by
(B.21),

lim
N→∞

a(FN , λ) = a(F, λ) . (B.22)
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If µ ∈ [0, 1)\Yχ, then, since Λ(F
N) ⊂ Yχ and Λtot(F

N) = [0, 1), we have that µ ∈ Λtot(F
N)\

Λ(FN). Thus a(FN , µ) = 0 and (B.22) gives a(F, µ) = 0 whence µ ∈ [0, 1) \ Λ(F ). Thus
[0, 1) \ Yχ ⊂ [0, 1) \ Λ(F ) whence Λ(F ) ⊂ Yχ. ✷

We will show in Section B.4 that every quasiperiodic function F : Z → C has the property
Λtot(F ) = [0, 1) and we will apply this in Appendix B.5. We don’t prove this property in
the present section since we don’t want to clutter the present section with the machinery of
Section B.4. Of course the First Spectral Theorem is powerful enough in a situation when
applied to a quasiperiodic functions F for which we know that Λtot(F ) = [0, 1). In fact this
is the case when F = Ec and so we will use the First Spectral Theorem in the proof of the
Exponential Theorem below.
Remark:

(2) Let (P[ω], A) ∈ ACB(d,P[ω]) and ν ∈ Ξ(P[ω], A) (note, by Theorem 7.3b, that such
a ν exists). Let also (Z, S) be a particle-spin-vector trajectory of (P[ω], A) and let Sj

denote the j-th component of S. We here show that Sj is (ω, ν)-quasiperiodic. First of
all, since ν ∈ Ξ(P[ω], A) and by (7.7), a transfer field T from (P[ω], A) to (P[ω], Ad,ν)
exists (note, by (7.21), that T is a uniform IFF of (P[ω], A)). Thus, and by Remark 0
in Chapter 4, T t is a transfer field from (P[ω], Ad,ν) to (P[ω], A) so that, by (4.5),

Ψ[P[ω], A](n;Z(0)) = T

(
P[ω]n(Z(0))

)
Ψ[P[ω], Ad,ν](n;Z(0))T

t(Z(0)) . (B.23)

We now pick a φ0 ∈ Rd such that πd(φ0) = Z(0) and we define the function t : Z →
SO(3) by

t(n) := T (Z(n)) = T (P[ω]n(Z(0)) = T (P[nω](πd(φ0)) = T (πd(φ0 + 2πnω)) , (B.24)

where we used (2.25),(2.26), (2.32). It follows from (B.23),(B.24) that

Ψ[P[ω], A](n;Z(0)) = t(n)Ψ[P[ω], Ad,ν ](n;Z(0))t
t(0) , (B.25)

whence, by (2.35),

S(n) = t(n)Ψ[P[ω], Ad,ν ](n;Z(0))t
t(0)S(0) . (B.26)

We define the function tjk : Z → C as the jk-matrix element of t and the function
Tjk ∈ C(Td,C) as the jk-matrix element of T . Defining the function T̃jk ∈ C(Td,C)
by T̃jk := (Tjk ◦ πd)(φ0 + ·), i.e., T̃jk(φ) = Tjk(πd(φ0 + φ), we obtain from (B.24) that
tjk(n) = T̃jk(2πnω) whence, by Definition B.1, T̃jk is an ω-generator of tjk and so tjk
is ω-quasiperiodic. We define the function ψjk : Z → C as the jk-matrix element of
Ψ[P[ω], Ad,ν ](·;Z(0)) whence, by (7.5), ψjk(n) is the jk-matrix element of exp(2πJ nν)
so that ψjk is ν-quasiperiodic. Since ψjk is ν-quasiperiodic and tjk is ω-quasiperiodic
it follows from (B.26) and Remark 1 above that each Sj is (ω, ν)-quasiperiodic. We
will return to this result in Remark 3 below. ✷

In the remarks after (B.9) we have seen that Ec is c–quasiperiodic. We now strengthen
this result to part a) of the following theorem. The proof of part a) is a simple application
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of quasiperiodicity. In constrast, our proof of part b) needs the First Spectral Theorem,
Theorem B.3d, i.e., involves the notion of Cesàro spectrum. As a matter of fact, part b) is
the part which matters here since it will be used in the proof of Theorem 7.3f (see Appendix
B.3 below).

Theorem B.4 Let c be a real number and let Ec : Z → C be defined by (B.5), i.e., Ec(n) :=
exp(i2πnc). Let also χ ∈ Rd. Then the following hold.
a) If c ∈ Yχ then Ec is χ–quasiperiodic.
Remark: This confirms that Ec is c–quasiperiodic (choose the special case c = χ!).
b) (Exponential Theorem) If Ec is χ–quasiperiodic then c ∈ Yχ.

Proof of Theorem B.4a: If χ ∈ Rd and c ∈ Yχ then, by (B.6), m ∈ Zd, k ∈ Z exist such
that c = m · χ + k whence, by (B.5), Ec(n) = exp(i2πnc) = exp(i2πn(m · χ)) so that, by
Definition B.1, Ec is χ–quasiperiodic. ✷

Proof of Theorem B.4b: Let Ec be χ–quasiperiodic. Recalling from (B.7) that Λtot(Ec) =
[0, 1), we can apply Theorem B.3d and thus obtain Λ(Ec) ⊂ Yχ. It thus follows from (B.9)
that {⌊c⌋} ⊂ Yχ, i.e., that ⌊c⌋ ∈ Yχ whence (recall (B.6)) there exist m ∈ Zd, n ∈ Z such
that ⌊c⌋ = m · χ + n. It follows that c ∈ Yχ. ✷

B.3 Proof of Theorem 7.3f

Let (P[ω], A) ∈ SOS(d,P[ω]) and ν ∈ Ξ(P[ω], A). The claim of Theorem 7.3f is (7.9), i.e.,

Ξ(P[ω], A) = [0, 1) ∩

{
εν +m · ω + n : ε ∈ {1,−1}, m ∈ Zd, n ∈ Z

}
. We first define, for

µ ∈ [0, 1),

Ξ̂[ω, µ,±] := [0, 1) ∩

{
±µ +m · ω + n : m ∈ Zd, n ∈ Z

}
, (B.27)

whence

Ξ̂[ω, µ,+] ∪ Ξ̂[ω, µ,−] = [0, 1) ∩

{
εµ+m · ω + n : ε ∈ {1,−1}, m ∈ Zd, n ∈ Z

}
, (B.28)

so that our task of this section boils down to prove that

Ξ(P[ω], A) = Ξ̂[ω, ν,+] ∪ Ξ̂[ω, ν,−] . (B.29)

We will prove (B.29) by showing ⊃ and ⊂ separately. Our proof of ⊃ is a simple application
of (7.7) while our proof of ⊂ needs the Exponential Theorem of Appendix B.3.

“⊃”: We first show that Ξ(P[ω], A) ⊃ Ξ̂[ω, ν,+] so let µ ∈ Ξ̂[ω, ν,+], i.e., by (B.27) µ =
ν+m ·ω+n where m ∈ Zd, n ∈ Z. Since ν ∈ Ξ(P[ω], A) it follows from (7.7) that a transfer
field T from (P[ω], A) to (P[ω], Ad,ν) exists whence, by Definition 4.1,

(T t ◦ P[ω])AT = Ad,ν . (B.30)
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We define R+ ∈ C(Td, SO(3)) by R+(z) := T (z) exp(−J (m · φ)) where z = πd(φ) whence,
by (2.25),

R+(P[ω](z)) = R+(πd(φ+ 2πω)) = T (πd(φ+ 2πω)) exp(−J [m · (φ+ 2πω)])

= T (P[ω](z)) exp(−J [m · φ]) exp(−J [2π(m · ω)]) ,

so that

Rt
+(P[ω](z)) = exp(J [2π(m · ω)]) exp(J [m · φ])T t(P[ω](z)) . (B.31)

We now show that R+ is a transfer field from (P[ω], A) to (P[ω], Ad,µ) whence we compute,
by (7.4),(B.30),(B.31),

Rt
+(P[ω](z))A(z)R+(z)

= exp(J [2π(m · ω)]) exp(J [m · φ])T t(P[ω](z))A(z)T (z) exp(−J (m · φ))

= exp(J [2π(m · ω)]) exp(J [m · φ])Ad,ν exp(−J (m · φ))

= exp(J [2π(m · ω)]) exp(J [m · φ]) exp(J 2πν) exp(−J (m · φ))

= exp(2πJ [ν +m · ω]) = exp(2πJ [ν +m · ω + n]) = exp(2πJµ) = Ad,µ ,

so that, by Definition 4.1, R+ is a transfer field from (P[ω], A) to (P[ω], Ad,µ) whence, by

(7.7), µ ∈ Ξ(P[ω], A) which implies that indeed Ξ(P[ω], A) ⊃ Ξ̂[ω, ν,+]. To show that
Ξ(P[ω], A) ⊃ Ξ̂[ω, ν,−], let µ ∈ Ξ̂[ω, ν,−], i.e., by (B.27), µ = −ν + m · ω + n where
m ∈ Zd, n ∈ Z. We define R− ∈ C(Td, SO(3)) by R−(z) := T (z) exp(J (m · φ))J ′ where
z = πd(φ) and

J ′ :=




1 0 0
0 −1 0
0 0 −1


 , (B.32)

whence, by (6.6),(6.7),

J ′JJ ′ = −J , J ′ exp(xJ )J ′ = exp(xJ ′JJ ′) = exp(−xJ ) , (B.33)

and, by (2.25),

R−(P[ω](z)) = R−(πd(φ+ 2πω)) = T (πd(φ+ 2πω)) exp(J [m · (φ+ 2πω)])J ′

= T (P[ω](z)) exp(J [m · φ]) exp(J [2π(m · ω)])J ′ ,

so that, by (B.32),

Rt
−(P[ω](z)) = J ′ exp(−J [2π(m · ω)]) exp(−J [m · φ])T t(P[ω](z)) . (B.34)

We now show that R− is a transfer field from (P[ω], A) to (P[ω], Ad,µ) whence we compute,
by (7.4),(B.30),(B.33), (B.34),

Rt
−(P[ω](z))A(z)R−(z)

= J ′ exp(−J [2π(m · ω)]) exp(−J [m · φ])T t(P[ω](z))A(z)T (z) exp(J (m · φ))J ′

= J ′ exp(−J [2π(m · ω)]) exp(−J [m · φ])Ad,ν exp(J (m · φ))J ′

= J ′ exp(−J [2π(m · ω)]) exp(−J [m · φ]) exp(J 2πν) exp(J (m · φ))J ′

= J ′ exp(2πJ [ν −m · ω])J ′ = exp(2πJ [−ν +m · ω])

= exp(2πJ [−ν +m · ω + n]) = exp(2πJ µ) = Ad,µ ,
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so that, by Definition 4.1, R− is a transfer field from (P[ω], A) to (P[ω], Ad,µ) whence, by

(7.7), µ ∈ Ξ(P[ω], A) which implies that indeed Ξ(P[ω], A) ⊃ Ξ̂[ω, ν,−].

“⊂”: Let ν̃ ∈ Ξ(P[ω], A) so we have to show that either ν̃ ∈ Ξ̂[ω, ν,+] or ν̃ ∈ Ξ̂[ω, ν,−].
Since ν, ν̃ ∈ Ξ(P[ω], A) it follows from (7.7) that transfer fields T, T̃ from (P[ω], A) to
(P[ω], Ad,ν), (P[ω], Ad,ν̃) exist whence, by Definition 4.1, we have (B.30) and

(T̃ t ◦ P[ω])AT̃ = Ad,ν̃ . (B.35)

We define the functions t : Z → SO(3) and t̃ : Z → SO(3) by t(n) := T (πd(2πnω)) =
(T ◦ πd)(2πnω) and t̃(n) := T̃ (πd(2πnω)) = (T̃ ◦ πd)(2πnω). We also define the functions
tjk : Z → C and t̃jk : Z → C as the jk-matrix elements of t and t̃ whence, by Remark 2
above, tjk and t̃jk are ω-quasiperiodic. We also define the two functions g± : Z → C by

g±(n) :=

(
t(n)(1,±i, 0)t

)
·

(
t̃(n)(1, i, 0)t

)
=

(
(1,±i, 0)t

)
·

(
tt(n)t̃(n)(1, i, 0)t

)
. (B.36)

Because the matrix elements of t and t̃ are ω-quasiperiodic it follows from (B.36) and Remark
1 above that g+ and g− are ω-quasiperiodic. We now show that the functions g± satisfy
(B.45), i.e., g±(n) = exp(i2πn(±ν + ν̃))g±(0). Once we have shown (B.45) the claim easily
follows. We first take a closer look at t. By (7.4),(B.30) we have

T (P[ω](z)) = A(z)T (z)At
d,ν = A(z)T (z) exp(−2πνJ ) , (B.37)

whence, by (2.25) and for n ∈ Z,

t(n + 1) = T (πd(2π(n+ 1)ω)) = T (P[ω](πd(2πnω)))

= A(πd(2πnω))T (πd(2πnω)) exp(−2πνJ ) = A(πd(2πnω))t(n) exp(−2πνJ ) ,

so that

t(n + 1)(1,±i, 0)t = A(πd(2πnω))t(n) exp(−2πνJ )(1,±i, 0)t . (B.38)

On the other hand, by (6.7),

exp(−2πνJ )(1,±i, 0)t = exp(±i2πν)(1,±i, 0)t , (B.39)

whence, by (B.38), t(n + 1)(1,±i, 0)t = exp(±i2πν)A(πd(φ0 + 2πnω))t(n)(1,±i, 0)t so that

exp(∓i2πν)t̃(n+ 1)(1,±i, 0)t = A(πd(φ0 + 2πnω))t̃(n)(1,±i, 0)t . (B.40)

We now take a closer look at t̃. By (7.4),(B.35) we have

T̃ (P[ω](z)) = A(z)T̃ (z)At
d,ν̃ = A(z)T̃ (z) exp(−2πν̃J ) , (B.41)

whence, by (2.25) and for n ∈ Z,

t̃(n + 1) = T̃ (πd(2π(n+ 1)ω)) = T̃ (P[ω](πd(2πnω)))

= A(πd(2πnω))T̃ (πd(2πnω)) exp(−2πν̃J ) = A(πd(2πnω))t̃(n) exp(−2πν̃J ) ,
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so that

t̃(n+ 1)(1, i, 0)t = A(πd(2πnω))t̃(n) exp(−2πν̃J )(1, i, 0)t . (B.42)

On the other hand, by (6.7),

exp(−2πν̃J )(1, i, 0)t = exp(i2πν̃)(1, i, 0)t , (B.43)

whence, by (B.42), t̃(n + 1)(1, i, 0)t = exp(i2πν̃)A(πd(φ0 + 2πnω))t̃(n)(1, i, 0)t so that

exp(−i2πν̃)t̃(n+ 1)(1, i, 0)t = A(πd(φ0 + 2πnω))t̃(n)(1, i, 0)t . (B.44)

We conclude from (B.36),(B.40),(B.44) that

exp(∓i2πν) exp(−i2πν̃)g±(n+ 1)

= exp(∓i2πν) exp(−i2πν̃)

(
t(n + 1)(1,±i, 0)t

)
·

(
t̃(n+ 1)(1, i, 0)t

)

=

(
A(πd(φ0 + 2πnω))t(n)(1,±i, 0)t

)
·

(
A(πd(φ0 + 2πnω))t̃(n)(1, i, 0)t

)

=

(
t(n)(1,±i, 0)t

)
·

(
At(πd(φ0 + 2πnω))A(πd(φ0 + 2πnω))t̃(n)(1, i, 0)t

)

=

(
t(n)(1,±i, 0)t

)
·

(
t̃(n)(1, i, 0)t

)
= g±(n) ,

so that g±(n+ 1) = exp(i2π(±ν + ν̃))g±(n) which implies that indeed

g±(n) = exp(i2πn(±ν + ν̃))g±(0) . (B.45)

We will now finish the proof by showing, via (B.45), that ν̃ ∈ Ξ̂[ω, ν,−] if g+(0) 6= 0 and
that ν̃ ∈ Ξ̂[ω, ν,+] if g−(0) 6= 0. We first have to show that either g+(0) 6= 0 or g−(0) 6= 0.
In fact, by (B.36),

1

2
(g+(n) + g−(n)) =

(
(1, 0, 0)t

)
·

(
tt(n)t̃(n)(1, i, 0)t

)
,

i

2
(g−(n)− g+(n)) =

(
(0, 1, 0)t

)
·

(
tt(n)t̃(n)(1, i, 0)t

)
,

whence, and since the matrices tt(n)t̃(n) are real,

ℜe{
1

2
(g+(n) + g−(n))} =

(
(1, 0, 0)t

)
·

(
tt(n)t̃(n)(1, 0, 0)t

)
, (B.46)

ℑm{
1

2
(g+(n) + g−(n))} =

(
(1, 0, 0)t

)
·

(
tt(n)t̃(n)(0, 1, 0)t

)
, (B.47)

ℜe{
i

2
(g−(n)− g+(n))} =

(
(0, 1, 0)t

)
·

(
tt(n)t̃(n)(1, 0, 0)t

)
, (B.48)

ℑm{
i

2
(g−(n)− g+(n))} =

(
(0, 1, 0)t

)
·

(
tt(n)t̃(n)(0, 1, 0)t

)
. (B.49)
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It follows from (B.46)-(B.49) that if g+(0) = g−(0) = 0 then the (11)-,(12)-,(21)-,(22)-matrix
elements of tt(0)t̃(0) vanish whence tt(0)t̃(0) has zero determinant which contradicts the fact
that det(tt(0)t̃(0)) = 1 (note that tt(0)t̃(0) ∈ SO(3)!). We conclude that either g+(0) 6= 0 or
g−(0) 6= 0.

We first consider the case when g+(0) 6= 0. Then, by (B.45) and the remarks after
(B.36), g+(n)/g+(0) = exp(i2πn(ν + ν̃)) = Eν+ν̃(n) is an ω-quasiperiodic function of n
where in the second equality we used (B.5). Since this function is exponential we can apply
the Exponential Theorem, Theorem B.4b, giving us that (ν + ν̃) ∈ Yω whence, by (B.6),
ν+ν̃ = m·ω+k with k ∈ Z so that, by (B.29), ν̃ ∈ Ξ̂[ω, ν,−]. We now consider the case when
g−(0) 6= 0. Then, by (B.45) and the remarks after (B.36), g−(n)/g−(0) = exp(i2πn(−ν +
ν̃)) = E−ν+ν̃(n) is an ω-quasiperiodic function of n where in the second equality we used
(B.5). Since this function is exponential we can apply once again the Exponential Theorem
B.4b giving us that (−ν + ν̃) ∈ Yω whence, by (B.6), −ν + ν̃ = m · ω + k with k ∈ Z

so that, by (B.29), ν̃ ∈ Ξ̂[ω, ν,+]. This completes the proof that either ν̃ ∈ Ξ̂[ω, ν,+] or
ν̃ ∈ Ξ̂[ω, ν,−]. Thus the theorem is proven. Note, by (7.21), that T, T̃ , R+, R− are uniform
IFF’s of (P[ω], A). ✷

B.4 The Second, Third and Fourth Spectral Theorems

We here state and prove the Second, Third and Fourth Spectral Theorems which show for
every quasiperiodic function F two facts: Λtot(F ) = [0, 1) and, in the case Λ(F ) = ∅, F = 0.
We will apply the first fact in Appendix B.5 and the second fact in Appendix B.6. These
three theorems correspond to three different cases of χ. In fact the Second Spectral Theorem
considers χ-quasiperiodic functions in the case where the components of χ are rational and
the Third Spectral Theorem considers the case of nonresonant (1, χ) whereas the Fourth
Spectral Theorem is concerned with the remaining case.

We call a function F : Z → C “p–periodic” if p is a positive integer and if, for every n ∈ Z,
F (n + p) = F (n). Part b) of the following Theorem considers χ–quasiperiodic functions in
the case where the components of χ are rational. Part a) is used to prove part b) and to
prove Theorem B.7 below.

Theorem B.5 a) Let p be a positive integer and let the function F : Z → C be p-periodic.
Then Λtot(K) = [0, 1). Furthermore, for n ∈ Z,

F (n) =

p−1∑

r=0

exp(2πirn/p)a(F, r/p) . (B.50)

b) (Second Spectral Theorem) Let χ ∈ Qd and let F : Z → C be χ–quasiperiodic. Let also
p be a positive integer such that pχ belongs to Zd (note that such a p exists). Then F is
p–periodic and Λtot(F ) = [0, 1). If Λ(F ) = ∅ then F = 0.

Proof of Theorem B.5a: Because F is p–periodic, F (0), F (1), ..., F (q−1) are the only values
of F . Let P : C → C be the Lagrange polynomial of F w.r.t. the points exp(2πin/p) in C

[wiki5]. Thus

F (n) = P (exp(2πin/p)) . (B.51)
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Because F is p–periodic, we compute, for n = 0, ..., p− 1 and by (B.51), F (n+ p) = F (n) =
P (exp(2πin/p)) = P (exp(2πi(n+p)/p)) whence (B.51) holds for all integers n. Because P is
a Lagrange polynomial of F w.r.t. p points in C, it has degree p−1 whence P (z) =

∑p−1
r=0 Prz

r

where Pr ∈ C so that, by (B.51), F (n) =
∑p−1

r=0 Pr exp(2πirn/p) so that, by (B.5),

F =

p−1∑

r=0

PrEr/p . (B.52)

Thus F is a finite sum of functions of the form Ec so that, by Theorem B.3a, Λtot(F ) = [0, 1)
and, for every λ ∈ [0, 1) and by (B.52),

a(F, λ) =

p−1∑

r=0

Pra(Er/p, λ) . (B.53)

Moreover, for r = 0, ..., p − 1 and by Theorem B.3a, a(Er/p, λ) =

{
1 if λ = r/p
0 if λ 6= r/p ,

whence, by (B.53) and for j = 0, ..., p− 1,

a(F, j/p) =

p−1∑

r=0

Pra(Er/p, j/p) = Pj , (B.54)

so that, by (B.52), F =
∑p−1

r=0 a(K, r/p)Er/p which implies (B.50) by using (B.5). ✷

Proof of Theorem B.5b: Let f be a χ-generator of the χ-quasiperiodic function F whence
we compute, by Definition B.1 and using that f is 2π-periodic in its arguments, F (n+ p) =
f(2π(n + p)χ) = f(2πnχ) = F (n) so that F is p–periodic. It thus follows from Theorem
B.5a that Λtot(F ) = [0, 1). If Λ(F ) = ∅ then, by Definition B.2c and for λ ∈ [0, 1), we get
a(F, λ) = 0 whence, by (B.50), F = 0. ✷

In part b) of the following theorem, we consider χ–quasiperiodic functions in the case
where (1, χ) is nonresonant. Part a) is used to prove part b) and to prove Theorem B.7
below.

Theorem B.6 a) For N ∈ Z+ let GN : Z → C be bounded, i.e., let each supn∈Z |G
N(n)| be

finite and let the sequence GN converge uniformly on Z as N → ∞ to a function G : Z → C.
Let, for every N ∈ Z+, λ ∈ Λtot(G

N) and a(GN , λ) = 0. Then G is a bounded function
which satisfies λ ∈ Λtot(G) and a(G, λ) = 0.
b) (Third Spectral Theorem) Let χ ∈ Rd such that (1, χ) is nonresonant and let F : Z → C be
χ–quasiperiodic and let f be any χ-generator of F . Then Λtot(F ) = [0, 1) and, for m ∈ Zd,
fm = a(F, ⌊m · χ⌋). Moreover the sequence FN converges uniformly on Z to F as N → ∞
where, for N ∈ Z+, the function FN : Z → C is defined by

FN :=
∑

m∈Zd

||m||≤N

Ad
N,ma(F, ⌊m · χ⌋)Em·χ . (B.55)

If Λ(F ) = ∅ then F = 0.
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Proof of Theorem B.6a: Because the GN are bounded, we recall from Appendix A.4 that G
is bounded. Moreover a(GN , λ) = 0 whence, by Definition B.2c, aM(GN , λ) → 0 asM → ∞,
i.e.,

(∀ε > 0)(∀N ∈ Z+)(∃M [ε,N ] ∈ Z+)(∀M ∈ Z+)

(
(M ≥M [ε,N ]) ⇒ |aM(GN , λ)| < ε/2

)
.

(B.56)

To show that λ ∈ Λtot(G) and that a(G, λ) = 0 we use ideas from [MS, p.259]. Because G
and GN are bounded functions and by defining, for N ∈ Z+, δ

N := supn∈Z |G(n) − GN(n)|
we note that δN is finite (and nonnegative). Moreover because G−GN converges uniformly
to zero, limN→∞ δN = 0, hence

(∀ε > 0)(∃N [ε] ∈ Z+)

(
δN [ε] < ε/2

)
. (B.57)

By Definition B.2c and for all M,N ∈ Z+, we compute

|aM(G, λ)− aM(GN , λ)| = |aM(G−GN , λ)| =
1

M + 1
|

M∑

n=0

(G(n)−GN(n)) exp(−2πinλ)|

≤
1

M + 1

M∑

n=0

|G(n)−GN(n)| ≤
1

M + 1

M∑

n=0

sup
l∈Z

|G(l)−GN(l)| = sup
l∈Z

|G(l)−GN(l)|

= δN . (B.58)

Combining (B.57),(B.58) yields, for all M ∈ Z+, to

(∀ε > 0)

(
|aM(G, λ)− aM(GN [ε], λ)| ≤ δN [ε] < ε/2

)
. (B.59)

From (B.56) and (B.59) it follows that

(∀ε > 0)(∀M ∈ Z+)

(
(M ≥M [ε,N [ε]]) ⇒

((
|aM(GN [ε], λ)| < ε/2

)

&

(
|aM(G, λ)− aM(GN(ε), λ)| < ε/2

)))
. (B.60)

Because |aM(G, λ)| = |aM(G, λ)−aM(GN [ε], λ)+aM(GN [ε], λ)| ≤ |aM(G, λ)−aM(GN [ε], λ)|+
|aM(GN [ε], λ)| it follows from (B.60) that (∀ε > 0)(∀M ≥ M [ε,N [ε]])|aM(G, λ)| < ε. Thus
aM(G, λ) converges to zero as M → ∞, i.e. λ ∈ Λtot(G) and a(G, λ) = 0. ✷

Proof of Theorem B.6b: By using a multivariate ‘map’ version of Weyl’s equidistribution
theorem ([CFS, Chapter 3]), we obtain, for m ∈ Zd, that ⌊m · χ⌋ ∈ Λtot(F ) and that
fm = a(F, ⌊m · χ⌋). Note, for every λ ∈ ([0, 1)∩ Yχ) and by (B.6), that λ = m̃ · χ+ ñ where
m̃ ∈ Zd, ñ ∈ Z so that λ = ⌊λ⌋ = ⌊m̃ ·χ+ ñ⌋ = ⌊m̃ ·χ⌋ whence ([0, 1)∩Yχ) ⊂ Λtot(F ). Thus
to prove that Λtot(F ) = [0, 1) it remains to be shown that ([0, 1) \ Yχ) ⊂ Λtot(F ) so let from
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now on λ ∈ ([0, 1) \ Yχ). We thus define, as in Theorem B.3c and for N ∈ Z+, the function
FN : Z → C by (B.14), i.e.,

FN :=
∑

m∈Zd

||m||≤N

Ad
N,mfmEm·χ =

∑

m∈Zd

||m||≤N

Ad
N,ma(F, ⌊m · χ⌋)Em·χ , (B.61)

whence, by Theorem B.3c, the sequence FN converges uniformly on Z to F as N → ∞.
Also, by Theorem B.3c, FN is χ-quasiperiodic and

Λtot(F
N) = [0, 1) , Λ(FN) ⊂ Yχ , (B.62)

as well as (B.15), i.e., a(FN , λ) =
∑

m∈Zd

||m||≤N

Ad
N,mfma(Em·χ, λ). By (B.61) FN is bounded

since it is a finite sum of bounded functions. By (B.62) and Definition B.2c, a(FN , λ) = 0.
Thus the FN form a sequence of complex valued and bounded functions for which λ ∈
Λtot(F

N) and a(FN , λ) = 0 and which converges uniformly on Z to F as N → ∞. Thus, by
Theorem B.6a, the limit F is a bounded function such that λ ∈ Λtot(F ) and a(F, λ) = 0.
Finally we consider the case where Λ(F ) = ∅ whence, by Definition B.2c and for µ ∈ [0, 1),
we get a(F, µ) = 0 so that, by (B.55) and for N ∈ Z+, F

N = 0 which implies, by the
convergence of FN to F , that F = 0. ✷

In part d) of the following theorem, we consider χ–quasiperiodic functions in the re-
maining case, i.e., the case where neither (1, χ) is nonresonant nor all components of χ are
rational. Parts a)-c) are used to prove part d). We denote by GL(d,Z) the set of those
nonsingular matrices in Zd×d whose inverse belongs to Zd×d. Thus GL(d,Z) is the set of
those matrices Z in Zd×d for which | det(Z)| = 1. We also define, for χ ∈ Rd, the set

Mχ := {m ∈ Zd : m · χ ∈ Z} . (B.63)

Clearly (1, χ) is nonresonant iff Mχ = {0} as can be easily checked. Thus Mχ quantifies how
resonant (1, χ) is.

Theorem B.7 a) Let F be a χ-quasiperiodic function where χ = (χ̃, χ̂) with χ̃ ∈ Qd−s, χ̂ ∈
Rs and 0 < s < d and where (1, χ̂) is nonresonant. Then Λtot(F ) = [0, 1). If Λ(F ) = ∅ then
F = 0.
b) Let χ ∈ Rd and Z ∈ GL(d,Z) and let F : Z → C. If F is χ–quasiperiodic then it is also
(Zχ)–quasiperiodic.
c) Let χ be in Rd \ Qd and let (1, χ) be resonant. Then a Z ∈ GL(d,Z) exists such that
Zχ = (χ̃, χ̂) with (1, χ̂) nonresonant and χ̃ ∈ Qd−s, where 0 < s < d.
d) (Fourth Spectral Theorem) Let F be a χ–quasiperiodic function and let (1, χ) be resonant
and χ ∈ Rd \ Qd. Let Z ∈ GL(d,Z) such that Zχ = (χ̃, χ̂) with (1, χ̂) nonresonant and
χ̃ ∈ Qd−s, where 0 < s < d (note, by Theorem B.7c, that such a Z exists). Then F is
(χ̃, χ̂)-quasiperiodic and Λtot(F ) = [0, 1). If Λ(F ) = ∅ then F = 0.

Proof of Theorem B.7a: Our proof has three parts. In the first part we use Theorem B.6b
to approximate F by a uniformly convergent sequence FN , in the second part we use this
sequence to prove the claim about Λtot(F ) by using Theorem B.6a and in the third part we
consider the case where Λ(F ) = ∅. Let the positive integer p be chosen such that pχ̃ is in
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Zd−s. The fact that the components of χ̃ are rational allows us to express the function F in
terms of the functions Fr : Z → C, defined by Fr(n) := F (pn+ r), where r = 1, ..., p− 1. To
express F in terms of the Fr we define the functions κ : Z → Z+ and κ′ : Z → Z by

κ(n) := p⌊n/p⌋ , κ′(n) := (n− κ(n))/p . (B.64)

Note that κ(n + p) = p⌊(n + p)/p⌋ = p⌊n/p + 1⌋ = p⌊n/p⌋ = κ(n) whence κ is p–periodic.
Also each κ(n) is an integer between 0 and p − 1 whence we compute, for n ∈ Z and by
(B.64),

F (n) = F (n− p⌊n/p⌋ + p⌊n/p⌋) = F (pκ′(n) + κ(n)) = Fκ(n)(κ
′(n)) . (B.65)

To apply Theorem B.6b we will use the fact that (1, χ̂) is nonresonant. We first have to
establish the quasiperiodicity of the Fr so let f ∈ C(Rd,C) be a χ-generator of F , i.e.,
F (n) = f(2πnχ). Then, by the periodicity of f ,

Fr(n) = F (pn+ r) = f(2πχ(pn+ r)) = f(2π(pn+ r)(χ̃, χ̂)) = f(2πrχ̃, 2πχ̂(pn + r))

= gr(2πnpχ̂) , (B.66)

where gr ∈ C(Rs,C) is defined by gr(φ) := f(2πrχ̃, φ+2πrχ̂). Clearly gr is 2π–periodic in its
arguments whence, by (B.66), gr is a pχ̂-generator of Fr so that the latter is pχ̂–quasiperiodic.
Because (1, χ̂) is nonresonant and the integer p is nonzero, (1, pχ̂) is nonresonant whence we
can apply Theorem B.6b to gr so that the sequence FN

r , defined by

FN
r (n) :=

∑

m∈Zs

||m||≤N

As
N,ma(Fr, ⌊p(m · χ̂)⌋) exp(2πinp(m · χ̂)) , (B.67)

converges uniformly to Fr on Z as N → ∞. Having got the approximating sequence FN
r for

Fr, (B.65) suggests to approximate F by FN where, for N ∈ Z+, the function FN : Z → C

is defined by

FN(n) := FN
κ(n)(κ

′(n)) =
∑

m∈Zs

||m||≤N

As
N,ma(Fκ(n), ⌊p(m · χ̂)⌋) exp(2πiκ′(n)p(m · χ̂))

=
∑

m∈Zs

||m||≤N

As
N,ma(Fκ(n), ⌊p(m · χ̂)⌋) exp(2πi(n− κ(n))(m · χ̂)) , (B.68)

where in the second equality we used (B.67) and where in the third equality we used (B.64).
Because FN

r converges to Fr it follows that F
N
κ(n)(κ

′(n)) converges to Fκ(n)(κ
′(n)) whence, by

(B.65), FN
κ(n)(κ

′(n)) converges to F (n) so that, by (B.68), FN converges to F as N → ∞.

Note that FN is bounded since it is a finite sum of bounded functions. To show the uniform
convergence of FN we recall from above that FN

r converges uniformly to Fr on Z, i.e., for
r = 0, ..., p− 1

(∀ε > 0)(∃M [ε, r] ∈ Z+)(∀N ∈ Z+)

(
(N ≥M [ε, r]) ⇒

(
sup
n∈Z

|FN
r (n)− Fr(n)| < ε/p

))
.

(B.69)
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It trivially follows from (B.69) that, for r = 0, ..., p− 1,

(∀ε > 0)(∃M [ε, r] ∈ Z+)(∀N ∈ Z+)

(
(N ≥M [ε, r]) ⇒

(
sup
n∈Z

|FN
r (κ′(n))− Fr(κ

′(n))| < ε/p

))
,

whence, for r = 0, ..., p− 1,

(∀ε > 0)(∃M [ε] ∈ Z+)(∀N ∈ Z+)

(
(N ≥M [ε]) ⇒

(
sup
n∈Z

|FN
r (κ′(n))− Fr(κ

′(n))| < ε/p

))
.

so that

(∀ε > 0)(∃M [ε] ∈ Z+)(∀N ∈ Z+)

(
(N ≥M [ε]) ⇒

(p−1∑

r=0

sup
n∈Z

|FN
r (κ′(n))− Fr(κ

′(n))| < ε

))
.

(B.70)

We also compute, for all n ∈ Z, N ∈ Z+, |F
N
κ(n)(κ

′(n))− Fκ(n)(κ
′(n))| ≤

∑p−1
r=0 |FN

r (κ′(n))−

Fr(κ
′(n))| whence, by (B.65),(B.68),

sup
n∈Z

|FN(n)− F (n)| = sup
n∈Z

|FN
κ(n)(κ

′(n))− Fκ(n)(κ
′(n))|

≤ sup
n∈Z

p−1∑

r=0

|FN
r (κ′(n))− Fr(κ

′(n))| ≤

p−1∑

r=0

sup
n∈Z

|FN
r (κ′(n))− Fr(κ

′(n))| , (B.71)

so that (B.70) yields to

(∀ε > 0)(∃M [ε] ∈ Z+)(∀N ∈ Z+)

(
(N ≥M [ε]) ⇒

(
sup
n∈Z

|FN(n)− F (n)| < ε

))
,

i.e., FN converges uniformly to F . With the uniform convergence of FN we have completed
the first part in our proof.

In the second part we now apply Theorem B.6a and we first compute a(FN , λ). To
simplify the expression (B.68) for FN we define, for m ∈ Zs, the function αm : Z → C by
αm(n) := a(Fκ(n), ⌊p(m · χ̂)⌋) exp(−2πiκ(n)(m · χ̂)) and obtain from (B.68) that

FN(n) =
∑

m∈Zs

||m||≤N

As
N,mαm(n) exp(2πin(m · χ̂)) . (B.72)

Note that αm is p–periodic because χ is p–periodic whence, by Theorem B.5a,

αm(n) =

p−1∑

r=0

exp(2πirn/p)a(αm, r/p) . (B.73)

It follows from (B.72),(B.73) that
FN(n) =

∑
m∈Zs

||m||≤N

As
N,m

∑p−1
r=0 a(αm, r/p) exp(2πirn/p) exp(2πin(m · χ̂)), i.e., by (B.5),

FN =
∑

m∈Zs

||m||≤N

As
N,m

p−1∑

r=0

a(αm, r/p)Er/p+m·χ̂ . (B.74)
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To compute a(FN , λ) we note, by (B.74), that if a(FN , λ) 6= 0 then there exist r = 0, ..., p−1
and m ∈ Zs such that a(Er/p+m·χ̂, λ) 6= 0 whence, by (B.8), λ = ⌊r/p +m · χ̂⌋ so that, by
(B.6), λ ∈ Y(1/p,χ̂). Thus if λ ∈ ([0, 1) \ Y(1/p,χ̂)) then a(FN , λ) = 0. To complete the
computation of a(FN , λ) let us now consider the case where λ ∈ Y(1/p,χ̂) whence, by (B.6)
and since p is an integer, λ = k1 · χ̂+ k0/p, where k0 ∈ Z, k1 ∈ Zs. Of course, by (B.74),

a(FN , λ) =
∑

m∈Zs

||m||≤N

As
N,m

p−1∑

r=0

a(αm, r/p)a(Er/p+m·χ̂, λ) . (B.75)

Setting F ≡ Er/p+m·χ̂ and c ≡ −k1 · χ̂−k0/p in Theorem B.3a we note that Λtot(Er/p+m·χ̂) =
[0, 1) whence, by Theorem B.3a, a(Er/p+m·χ̂, ⌊−c⌋) = a(Er/p+m·χ̂Ec, 0) so that we compute

a(Er/p+m·χ̂, λ) = a(Er/p+m·χ̂, ⌊λ⌋) = a(Er/p+m·χ̂, ⌊k1 · χ̂+ k0/p⌋)

= a(Er/p+m·χ̂E−k1·χ̂−k0/p, 0) = a(E(r−k0)/p+(m−k1)·χ̂, 0) ,

which implies, by (B.75),

a(FN , λ) =
∑

m∈Zs

||m||≤N

As
N,m

p−1∑

r=0

a(αm, r/p)a(E(r−k0)/p+(m−k1)·χ̂, 0) . (B.76)

To simplify the rhs of (B.76) we note, by Theorem B.3a, that if r = 0, ..., p− 1, m ∈ Zs and
a(E(r−k0)/p+(m−k1)·χ̂, 0) 6= 0 then ⌊(r − k0)/p+ (m− k1) · χ̂⌋ = 0 whence an integer k2 exists
such that (r − k0)/p+ (m− k1) · χ̂ = k2 so that

r − k0 − pk2 + p(m− k1) · χ̂ = 0 . (B.77)

Recalling from above that (1, pχ̂) is nonresonant it follows from (B.77) that

m− k1 = 0 , r − k0 − pk2 = 0 . (B.78)

Using the second equality in (B.78) and since r = 0, ..., p−1 we compute, by (B.64), κ(k0) =
p⌊k0/p⌋ = p⌊(r− pk2)/p⌋ = p⌊r/p− k2⌋ = p⌊r/p⌋ = p(r/p) = r. We thus have shown that if
r = 0, ..., p− 1, m ∈ Zs and a(E(r−k0)/p+(m−k1)·χ̂, 0) 6= 0 then m = k1 and r = κ(k0) whence
(B.76) simplifies, by Theorem B.3a and (B.64) so that, for N < ||k1||, a(F

N , λ) = 0 and, for
N ≥ ||k1||,

a(FN , λ) = As
N,k1a(αk1 , κ(k0)/p)a(E(κ(k0)−k0)/p, 0)

= As
N,k1

a(αk1 , κ(k0)/p)a(E−κ′(k0), 0) = As
N,k1

a(αk1, κ(k0)/p)a(E0, 0)

= As
N,k1

a(αk1, κ(k0)/p) , (B.79)

where in the third equality we used that κ′(k0) ∈ Z. With (B.79) we can summarize the
computation of a(FN , λ):

a(FN , λ) =





0 if λ ∈ ([0, 1) \ Y(1/p,χ̂))
0 if λ = k1 · χ̂+ k0/p and k0 ∈ Z, k1 ∈ Zs, N < ||k1||
As

N,k1
a(αk1 , κ(k0)/p) if λ = k1 · χ̂ + k0/p and k0 ∈ Z, k1 ∈ Zs, N ≥ ||k1|| .

(B.80)
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We can now finish the second part by applying Theorem B.6a and we first note, by (B.2),
that As

N,k1
converges to 1 as N → ∞ whence, by (B.80), a(FN , λ) converges as N → ∞ and

lim
N→∞

a(FN , λ) =

{
0 if λ ∈ ([0, 1) \ Y(1/p,χ̂))
a(αk1 , κ(k0)/p) if λ = k1 · χ̂+ k0/p and k0 ∈ Z, k1 ∈ Zs .

(B.81)

To apply Theorem B.6a we define the function G : Z → C by G := F −Eλ limN→∞ a(FN , λ)
and, for N ∈ Z+, the function GN : Z → C by GN := FN − Eλa(F

N , λ). Note that FN

is bounded since it is a finite sum of bounded functions whence GN is bounded. Since
Λtot(F

N) = [0, 1) we also have Λtot(G
N) = [0, 1) and we compute, by Theorem B.3a,

a(GN , λ) = a(FN − Eλa(F
N , λ), λ) = a(FN , λ)− a(Eλa(F

N , λ), λ)

= a(FN , λ)− a(FN , λ)a(Eλ, λ) = a(FN , λ)− a(FN , λ) = 0 . (B.82)

To show that GN converges uniformly to G we first consider the case where λ ∈ ([0, 1) \
Y(1/p,χ̂)). In this case, and by (B.81), G = F − Eλ limN→∞ a(FN , λ) = F and, by (B.80),
GN = FN−Eλa(F

N , λ) = FN whence, and since FN converges uniformly to F , GN converges
uniformly to G on Z as N → ∞. We now consider the case where λ ∈ Y(1/p,χ̂). In this case,
and by (B.81), G = F − Eλ limN→∞ a(FN , λ) = F − Eλa(αk1 , κ(k0)/p). Also in this
case FN converges uniformly to F and, by (B.81), a(FN , λ) converges to a(αk1, κ(k0)/p)
whence GN converges uniformly to F − Eλa(αk1 , κ(k0)/p) = G on Z as N → ∞. Thus
we have shown, for every λ ∈ [0, 1), that G and GN satisfy the conditions of Theorem
B.6a whence, by Theorem B.6a and for every λ ∈ [0, 1), λ ∈ Λtot(G), i.e., Λtot(G) = [0, 1)
and that a(G, λ) = 0. Therefore in the case, where λ ∈ ([0, 1) \ Y(1/p,χ̂)), we have λ ∈
Λtot(G) = Λtot(F ) and a(F, λ) = 0. Moreover in the case, where λ ∈ Y(1/p,χ̂), we have
λ ∈ Λtot(G) = Λtot(F − Eλa(αk1, κ(k0)/p)) whence, by Theorem B.3a, λ ∈ Λtot(F ) and
0 = a(G, λ) = a(F − Eλa(αk1 , κ(k0)/p), λ) so that a(F, λ) = a(αk1 , κ(k0)/p)a(Eλ, λ) =
a(αk1 , κ(k0)/p) which completes the proof that Λtot(F ) = [0, 1). Note that we also got

a(F, λ) =

{
0 if λ ∈ ([0, 1) \ Y(1/p,χ̂))
a(αk1, κ(k0)/p) if λ = k1 · χ̂ + k0/p and k0 ∈ Z, k1 ∈ Zs ,

(B.83)

which completes the second part.
In the third part we first note, by (B.64), (B.83) and for m ∈ Zm, r = 0, · · · , p− 1, that

a(αm, r/p) = a(αm, κ(r)/p) = a(F,m · χ̂+ r/p) whence, by (B.74) and for N ∈ Z+,

FN =
∑

m∈Zs

||m||≤N

As
N,m

p−1∑

r=0

a(F,m · χ̂+ r/p)Er/p+m·χ̂ . (B.84)

If Λ(F ) = ∅ then, by Definition B.2c and for µ ∈ [0, 1), we get a(F, µ) = 0 whence, by (B.84)
and for N ∈ Z+, F

N = 0 which implies, by the convergence of FN to F , that F = 0. ✷

Proof of Theorem B.7b: Let F : Z → C be χ–quasiperiodic where χ ∈ Rd and let Z ∈
GL(d,Z). Let also H ∈ C(Rd,C) be a χ-generator of F . Then we define h ∈ C(Rd,C) by
h(φ) := H(Z−1φ). Since H is 2π-periodic in its arguments and Z−1 ∈ Zd×d, we note that h
is 2π-periodic in its arguments. We also compute F (n) = H(2πnχ) = h(2πnZχ) whence h
is a Zχ-generator of F so that F is Zχ–quasiperiodic. ✷
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Proof of Theorem B.7c: Let χ be in Rd\Qd and let (1, χ) be resonant. The setMχ in (B.63),
i.e., Mχ = {m ∈ Zd : m ·χ ∈ Z} is the vehicle which allows us to construct from χ the matrix
Z1 and the Smith Normal Form of the latter then gives us Z. This all is accomplished by
the Z-module structure ofMχ and so our proof has two parts. In the first part we show that
Mχ is an s-dimensional Z-submodule of Zd where 0 < s ≤ d and this allows us to pick, in
the second part, a basis of Mχ which gives us the matrix Z1 and thus will allow us to show
that 0 < s < d and to find the matrix Z for completing the proof.

An additively written Abelian groupM ′ equipped with a scalar multiplication by integers
is called a “Z-module” if for all x, y ∈M ′, z, z′ ∈ Z

z(x + y) = zx+ zy , (z + z′)x = zx+ z′x , (zz′)x = z(z′x) , 1x = x , z0 = 0 . (B.85)

Clearly Zd and Mχ are Z-modules by using the addition and scalar multiplication from Rd.
Every Z-module is an Abelian group and, conversely, every Abelian group is a Z-module in a
natural way since, according to (B.85), nx can be defined inductively via the Abelian group
structure by (n+1)x := nx+x and by (n−1)x := nx−x. Thus on every Abelian group the Z-
module structure allows one to do Linear Algebra. IfM ′,M ′′ are Z-modules and ifM ′′ ⊂M ′

and if the addition and scalar multiplication in M ′′ are the restricitions from M ′ then M ′′ is
called a Z-submodule of M ′. Clearly Mχ is a Z-submodule of Zd. If r is a positive integer
and x1, x2, ..., xr are elements of a Z-module M ′ then they are called “linearly independent”
iff for every choice of integers z1, ..., zr the equality 0 = z1x

1+ ...+ zrx
r implies that z1, ..., zr

vanish. More generally, the elements of a subset L of M ′ are called “linearly independent”
(and L is called “linearly independent”) if the elements of every finite nonempty subset of L
are linearly independent. Defining e1d, ..., e

d
d ∈ Zd by e1d := (1, 0, ..., 0)t, ..., edd := (0, ..., 0, 1)t it

is clear that e1d, ..., e
d
d are linearly independent. If r is a positive integer and x1, x2, ..., xr are

elements in M ′ then the elements z1x
1 + ... + zrx

r form a Z–module, say M ′′, if one varies
the z1, ..., zr over the integers. One calls M ′′ the Z-module generated by x1, x2, ..., xr. More
generally, if L is a nonempty subset of M ′ then the Z-module generated by L is defined by
the union of all Z-modules generated by the finite nonempty subsets of L (and one says that
the elements of L “generate” M ′). Of course the Z-module generated by a nonempty subset
of M ′ is a Z-submodule of M ′. Clearly Zd is generated by e1d, ..., e

d
d. A nonempty subset L

of a Z-module M ′ is called a “basis” of M ′ if it is linearly independent and if it generates
M ′. Of course {e1d, ..., e

d
d} is a basis of the Z-module Zd. A Z-module M ′ is called “trivial”

if M ′ = {0}. If a Z-module M ′ has a finite basis of, say m elements, then (see for example
Section 3.6 in [AW]) every of its bases has m elements and M ′ is called m-dimensional and
one writes dim(M ′) = m. If a Z-moduleM ′ is trivial, then it has no basis and it then is called
0-dimensional and one writes dim(M ′) = 0. Clearly dim(Zd) = d. In general, Z-modules
are neither trivial nor have a basis and this demonstrates that Z-modules are more delicate
than vector spaces. A simple example is the Abelian group Z2 of two elements 0 and b where
the natural Z-module structure of Z2 gives us, for z ∈ Z, z0 = 0, (2z)b = 0, (2z + 1)b = b
where z is an integer. Clearly Z2 is not trivial and it is easy to check that Z2 has no linearly
independent subset whence it has no basis. In contrast Zd does not have this pathology
because it has the basis {e1d, ..., e

d
d}. Most importantly Mχ does not have this pathology

either. In fact since the Z-module Zd is d-dimensional every of its Z-submodules, e.g., Mχ

is s-dimensional where 0 ≤ s ≤ d (see, e.g., [Jac] or [Hun, Section IV.6]). If s would vanish
then Mχ would be trivial, i.e., Mχ = {0} whence, by (B.63), (1, χ) would be nonresonant, a

78



contradiction. Thus s > 0 whence 0 < s ≤ d which completes the first part of the proof. In
the second part we now use the fact that Mχ is s–dimensional and 0 < s ≤ d whence Mχ

has a finite basis of s elements, k1, ..., ks. Thus we can do Linear Algebra by defining the
matrix Z1 ∈ Zs×d by Z1 := [k1, ..., ks]t, i.e., the j-th row of Z1 is (kj)t. Clearly Z1 satisfies

Mχ = {Zt
1k : k ∈ Zs} , Z1χ ∈ Zs , (B.86)

where in the equality we used (B.63). By the Linear Algebra of Z–modules (see for example
[Jac, Sec. III.8] or [Hun, Section VII.2]) the matrix Z1 can be factorized via

Z1 = Z2Z3Z , (B.87)

where Z2 ∈ GL(s,Z) and Z ∈ GL(d,Z) and where the Z3 ∈ Zs×d is of “Smith Normal
Form”, i.e., Z3 = [l1e

1
d, ..., lse

s
d]

t with nonzero integers l1, ..., ls. The integers l1, ..., ls also
satisfy a divisibility condition (which however is not needed in our proof). For the notion of
“Smith Normal Form” see also [AW, Section 5.3]. We define χ̌ ∈ Rd and χ̃ ∈ Rs by

(χ̌1, ..., χ̌d)
t = χ̌ := Zχ , χ̃ := (χ̌1, ..., χ̌s)

t . (B.88)

To show that χ̃ ∈ Qs and that 0 < s < d we compute, by (B.87),(B.88),

Z2Z3χ̌ = Z2Z3Zχ = Z1χ ∈ Zs . (B.89)

We also note, by (B.88),

Z3χ̌ = (l1χ̌1, ..., lsχ̌s)
t = (l1χ̃1, ..., lsχ̃s)

t . (B.90)

Because Z2 ∈ GL(s,Z), (B.89) yields Z3χ̌ ∈ Zs whence, by (B.90) and since l1, ..., ls are
nonzero integers, we obtain that χ̃ ∈ Qs. To show that 0 < s < d we first note that χ̌ 6∈ Qd

since otherwise Z−1χ̌ would belong to Qd, i.e., χ would belong to Qd, a contradiction. It is
now easy to see that s < d because the equality: s = d would imply χ̌ = χ̃ whence χ̌ would
belong to Qd, a contradiction. Thus 0 < s < d. We now define χ̂ ∈ Rd−s by

χ̂ := (χ̌s+1, ..., χ̌d)
t , (B.91)

whence, by (B.88),
χ̌ = (χ̃t, χ̂t)t , (B.92)

so it remains to be shown that (1, χ̂) is nonresonant. We first compute, by (B.63), (B.86),
(B.87),(B.88),

Mχ̌ = {m ∈ Zd : m · χ̌ ∈ Z} = {m ∈ Zd : m · (Zχ) ∈ Z} = {m ∈ Zd : (Ztm) · χ ∈ Z}

= {(Zt)−1m : m ∈ Zd, m · χ ∈ Z} = {(Zt)−1m : m ∈Mχ}

= {(Zt)−1Zt
1k : k ∈ Zs} = {(Zt)−1(Z2Z3Z)

tk : k ∈ Zs} = {Zt
3Z

t
2k : k ∈ Zs}

= {Zt
3k : k ∈ Zs} , (B.93)

where in the fourth equality we used that Z ∈ GL(d,Z) and in the ninth equality we used
that Z2 ∈ GL(s,Z). We are now in a position to show that (1, χ̂) is nonresonant. By the
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remarks after (B.63), (1, χ̂) is nonresonant iff Mχ̂ = {0}. To show the latter let m̂ ∈ Mχ̂

whence, by (B.63), m̂ · χ̂ ∈ Z so that, by (B.92), (0, m̂) · χ̌ ∈ Z. Thus, by (B.63), (0, m̂) ∈Mχ̌

whence, by (B.93), (0, m̂) = Zt
3k for some k = (k1, ..., ks)

t ∈ Zs. On the other hand, by
the definition of Z3, Z

t
3k = k1l1e

1
d + · · · kslse

s
d whence (0, m̂) = k1l1e

1
d + · · · kslse

s
d so that

k1 = · · · = ks and m̂ = 0 which implies that Mχ̂ = {0}, i.e., that (1, χ̂) is nonresonant. ✷

Proof of Theorem B.7d: By Theorem B.7b, F is Zχ-quasiperiodic whence F is (χ̃, χ̂)–
quasiperiodic. Thus, by Theorem B.7a, Λtot(F ) = [0, 1). If Λ(F ) = ∅ then, since F is
(χ̃, χ̂)–quasiperiodic and by by Theorem B.7a, F = 0. ✷

With the Second, Third and Fourth Spectral Theorems we have shown, for every quasiperi-
odic function F , that Λtot(F ) = [0, 1) and that, in the case Λ(F ) = ∅, F = 0 (and we will
apply these facts in Appendices B.5 and B.6 below). However we have accomplished even
more since we have found, by (B.50),(B.55), (B.84), how to explicitly express F in terms of
the data a(F, λ). The latter circumstance is very interesting for future work on spin-orbit
systems in SOS(d,P[ω]) since it opens the road towards generalizing theorems which hold
off orbital resonance (e.g., Theorem 3.3a and the Uniqueness Theorem) to theorems which
even hold on orbital resonance.
Remark:

(3) Let (P[ω], A) ∈ ACB(d,P[ω]) and ν ∈ Ξ(P[ω], A). Let also (Z, S) be a particle-spin-
vector trajectory of (P[ω], A) and let Sj denote the j-th component of S. We recall
from Remark 2 above that Sj is (ω, ν)-quasiperiodic whence, by the Second, Third
and Fourth Spectral Theorems, Λ(Sj) ⊂ Y(ω,ν). This inclusion will be sharpened in
Appendix B.5 below to the spectral formula (7.28). ✷

B.5 Proof of the spectral formula (7.28)

The following theorem proves the main claims made in Section 7.2 about the spectral ap-
proach to spin tunes. In particular it proves (7.28).

Theorem B.8 Let (Z, S) be a particle-spin-vector trajectory of (P[ω], A) ∈ ACB(d,P[ω])
and let Sj(n) denote the j-th component of S(n). Then Λtot(Sj) = [0, 1) and, for every
λ ∈ [0, 1), aN(Sj , λ) converges to a(Sj, λ) as N → ∞. Moreover (7.28) holds, i.e.,

Λ(Sj) ⊂ Ξ(P[ω], A) ∪ {l · ω + n : l ∈ Zd, n ∈ Z} .

Proof of Theorem B.8: We will prove the claims in two parts. In the first part we prove,
by using the Second, Third and Fourth Spectral Theorems, that Λtot(Sj) = [0, 1) and in
the second part we use the First Spectral Theorem. Following Remark 2 above, we pick a
ν ∈ Ξ(P[ω], A) and a transfer field T from (P[ω], A) to (P[ω], Ad,ν) (recall from Remark 2
that T is a uniform IFF of (P[ω], A)). We also pick a φ0 ∈ Rd such that πd(φ0) = Z(0) and
we define the function t : Z → SO(3) by (B.24) which gives us (B.25) whence, by (7.5),

Ψ[P[ω], A](n;Z(0)) = t(n) exp(2πJ nν)tt(0) . (B.94)
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Defining

∆± :=
1

2




1 ±i 0
∓i 1 0
0 0 0


 , ∆0 :=




0 0 0
0 0 0
0 0 1


 , (B.95)

we have, by (6.7),

exp(J ν2πn) = ∆+ exp(2πinν) + ∆− exp(−2πinν) + ∆0 . (B.96)

By (B.5),(B.94) and (B.96) we have, for all n,

Ψ[P[ω], A](n;Z(0)) = t(n)

(
∆+ exp(2πinν) + ∆− exp(−2πinν) + ∆0

)
tt(0)

=: t+(n)Eν(n) + t−(n)E−ν(n) + t0(n) , (B.97)

where

t+(n) := t(n)∆+t
t(0) , t−(n) := t(n)∆−t

t(0) , t0(n) := t(n)∆0t
t(0) . (B.98)

It follows from (2.35) that S(n) = Ψ[P[ω], A](n;Z(0))S(0) whence, by (B.97),

Sj =
3∑

k=1

(
t+jkEν + t−jkE−ν + t0jk

)
Sk(0) , (B.99)

where t+jk, t
−

jk and t0jk denote the jk-matrix elements of t+, t− and t0. We recall from Remark
2 above that each matrix element of t is an ω-quasiperiodic function whence, by (B.98) and
Remark 1 above, t+jk, t

−

jk and t
0
jk are ω-quasiperiodic so that, by the Second, Third and Fourth

Spectral Theorems in Appendix B.4, Λtot(t
+
jk) = Λtot(t

−

jk) = Λtot(t
0
jk) = [0, 1) which implies,

by Theorem B.3a,

Λtot(t
+
jkEν) = [0, 1) , Λtot(t

−

jkE−ν) = [0, 1) , Λtot(t
0
jk) = [0, 1) . (B.100)

We conclude from (B.99),(B.100) that

Λtot(Sj) = [0, 1) , (B.101)

which completes the first part of the proof. Of course (B.101) implies, by Definition B.2c, that
aN(Sj , λ) converges to a(Sj, λ) as N → ∞. We now prove (7.28) by using the First Spectral
Theorem in Appendix B.2. We note, by (B.101) and Definition B.2c, that the Cesàro spec-
trum of Sj is well-defined so let λ ∈ Λ(Sj). Then, by Definition B.2c, a(Sj , λ) 6= 0 whence,
by (B.99), there exist j, k ∈ {1, 2, 3} such that either a(t+jkEν , λ) 6= 0 or a(t−jkE−ν , λ) 6= 0 or
a(t0jk, λ) 6= 0 so that we have to consider three cases, i.e., we will show for each case that λ is
an element of the set on the rhs of (7.28). In the case where a(t+jkEν , λ) 6= 0 it follows from

Theorem B.3a that a(t+jk, ⌊λ− ν⌋) 6= 0 whence, by Definition B.2c, ⌊λ− ν⌋ ∈ Λ(t+jk) so that,

by the First Spectral Theorem in Appendix B.2 and since t+jk is ω-quasiperiodic,

⌊λ− ν⌋ ∈ Yω . (B.102)
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It follows from (B.6),(B.102) that λ−ν = m ·ω+ l where m ∈ Zd, l ∈ Z whence, by Theorem
7.3f and since ν ∈ Ξ(P[ω], A), we get λ ∈ Ξ(P[ω], A) so that indeed λ is an element of the
set on the rhs of (7.28). In the case where a(t−jkE−ν , λ) 6= 0 it follows from Theorem B.3a

that a(t−jk, ⌊λ + ν⌋) 6= 0 whence, by Definition B.2c, ⌊λ + ν⌋ ∈ Λ(t−jk) so that, by the First

Spectral Theorem in Appendix B.2 and since t−jk is ω-quasiperiodic,

⌊λ + ν⌋ ∈ Yω . (B.103)

It follows from (B.6),(B.103) that λ+ν = m ·ω+ l where m ∈ Zd, l ∈ Z whence, by Theorem
7.3f and since ν ∈ Ξ(P[ω], A), we get λ ∈ Ξ(P[ω], A) so that indeed λ is an element of
the set on the rhs of (7.28). In the case where a(t0jk, λ) 6= 0 it follows from Definition B.2c
that λ ∈ Λ(t0jk) whence, by the First Spectral Theorem in Appendix B.2 and since t0jk is

ω-quasiperiodic, λ ∈ Yω so that, by (B.6), λ = m · ω + l where m ∈ Zd, l ∈ Z which implies
that λ is an element of the set on the rhs of (7.28). This completes the proof of the theorem.
✷

By (B.6) and Theorem 7.3f, Ξ(P[ω], A) ∪ {l · ω + n : l ∈ Zd, n ∈ Z} ⊂ Y(ω,ν) whence the
spectral formula (7.28) sharpens the inclusion: Λ(Sj) ⊂ Y(ω,ν) from Remark 3 above.

B.6 Remarks on the absence of spin tunes

Let (P[ω], A) ∈ ACB(d,P[ω]), i.e., by Theorem 7.3b, let (P[ω], A) have spin tunes. Let also
(Z, S) be a particle-spin-vector trajectory of (P[ω], A) and let Sj denote the j-th component
of S. Then, by Remark 3 above, every Sj is quasiperiodic and satisfies: Λtot(Sj) = [0, 1)
and Λ(Sj) ⊂ Y(ω,ν). Denoting the union over the Λ(Sj) by Λ where (Z, S) varies over all
particle-spin-vector trajectories of (P[ω], A) we get Λ ⊂

⋃
ν∈Ξ[P[ω],A] Y(ω,ν) whence, by (B.6)

and Theorem 7.3f, Λ is a countable set.
These properties of the Sj are not satisfied in general by spin-orbit systems which do

not have spin tunes. One example is the 2-snake model (P[1/2], A2S) from Section 3.3. In
fact one can show for (P[1/2], A2S) that, while Λ is well-defined, it is an uncountable set
[He1]. This implies, by the above, that (P[1/2], A2S) has no spin tunes. Of course this is no
surprise since we know from Section 3.3 that (P[1/2], A2S) has no ISF whence, by Remark
5 in Chapter 4, (P[ω], A) 6∈ ACB(d,P[ω]), i.e., by Theorem 7.3b, (P[ω], A) has no spin
tunes. Another example is the spin-orbit system (P[ω], A) of Theorem 7.6 in the case where
d = 1 and N 6= 0. In that case let us consider the particle-spin-vector trajectory (Z, S) of
(P[ω], A) for which Z(0) = π1(0) and S(0) = (1, 0, 0)t. It is easy to show, by (2.35),(2.36),
S1(n) = cos(πωNn(n− 1)) which implies (see for example Weyl’s Theorem in Section III.19
of [Kor]) that Λtot(S1) = [0, 1) and Λ(S1) = ∅. However the latter implies, by the Second,
Third and Fourth Spectral Theorems and since S1 is not the zero function, that S1 is not
quasiperiodic. Therefore, by the above, (P[ω], A) has no spin tunes. Of course this is no
surprise since we know from Theorem 7.6 that (P[ω], A) has no spin tunes.
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C Further proofs

C.1 Proof of Theorem 2.5

We first state and prove Theorem C.1 since we need it to prove Theorem 2.5a. For ε ∈ (0,∞)
and φ ∈ Rd we define

Bd[φ, ε] := (φ1 − ε, φ1 + ε)× · · · × (φd − ε, φd + ε) ⊂ Rd , (C.1)

and we also abbreviate

τ̃Rd := {Bd[φ, ε] : ε ∈ (0,∞), φ ∈ Rd} , (C.2)

τ̃ find := {πd(Bd[φ, ε]) : ε ∈ (0,∞), φ ∈ Rd} . (C.3)

Theorem C.1 a) Let A ⊂ Rd. Then

π−1
d (πd(A)) =

⋃

N∈Zd

P̂ [N ](A) , (C.4)

where P̂ [N ] is defined in Section 2.2.
b) Denoting the natural topology of Rd by τRd we have

τ find = {πd(A) : A ∈ τRd} . (C.5)

c) τ̃Rd is a base of the topology τRd and τ̃ find is a base of the topology τ find .
d) For every φ ∈ Rd and ε ∈ (0,∞)

πd(φ) = (π1(φ1), · · · , π1(φd))
t , (C.6)

πd(Bd[φ, ε]) = π1(B1[φ1, ε])× · · · × π1(B1[φd, ε]) . (C.7)

Moreover the topological space (Td, τ find ) is Hausdorff.
e) τd is the subspace topology from τR2d , i.e., τd = {B ∩ Td : B ∈ τR2d}. Moreover the
topological space (Td, τd) is compact.
f) τ find ⊂ τd.

Proof of Theorem C.1a: If φ ∈ Rd then, by Definition 2.4 and by the definition of P̂ [N ] in
Section 2.2, we compute π−1

d (πd({φ})) = {φ+ 2πN : N ∈ Zd} =
⋃

N∈Zd P̂ [N ]({φ}) whence,
for A ⊂ Rd,

π−1
d (πd(A)) = π−1

d (πd(
⋃

φ∈A

{φ})) = π−1
d (
⋃

φ∈A

πd({φ})) =
⋃

φ∈A

π−1
d (πd({φ}))

=
⋃

φ∈A

⋃

N∈Zd

P̂ [N ]({φ}) =
⋃

N∈Zd

⋃

φ∈A

P̂[N ]({φ}) =
⋃

N∈Zd

P̂ [N ](
⋃

φ∈A

{φ}) =
⋃

N∈Zd

P̂ [N ](A) ,

which proves the claim. ✷
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Proof of Theorem C.1b: “⊂”: Let V ∈ τ find whence, by the definition of τ find in Section 2.3,
A := π−1

d (V ) belongs to τRd. Since πd is onto Td we get V = πd(π
−1
d (V )) = πd(A) whence V

belongs to the set on the rhs of (C.5) so that

τ find ⊂ {πd(A) : A ∈ τRd} . (C.8)

“⊃”: Let A ∈ τRd. To show that πd(A) belongs to τ
fin
d we note, for every N ∈ Zd and since

P̂[N ] ∈ Homeo(Rd), that P̂ [N ](A) ∈ τRd whence the union
⋃

N∈Zd P̂ [N ](A) also belongs

to τRd so that, by Theorem C.1a, π−1
d (πd(A)) ∈ τRd which implies, by the definition of τ find ,

that πd(A) ∈ τ find . Thus τ find ⊃ {πd(V ) : V ∈ τRd} whence the claim follows from (C.8). ✷

Proof of Theorem C.1c: Because τRd is the metric topology on Rd (from the Euclidean metric
on Rd) it is clear that every A ∈ τRd is a union of sets of the form Bd[φ, ε], i.e., that τ̃Rd is a
base of the topology τRd . To show the second claim let V ∈ τ find , i.e., A := π−1

d (V ) belongs
to τRd . Since τ̃Rd is a base of the topology τRd there exists a set Λ and, for every λ ∈ Λ,
an φλ ∈ Rd and ελ ∈ (0,∞) such that A =

⋃
λ∈Λ Bd[φλ, ελ] whence V = πd(π

−1
d (V )) =

πd(A) = πd(
⋃

λ∈Λ Bd[φλ, ελ]) =
⋃

λ∈Λ πd(Bd[φλ, ελ]) so that V is a union of sets of the form

πd(Bd[φ, ε]) which implies, by (C.5), that τ̃ find is a base of τ find . ✷

Proof of Theorem C.1d: We first note that (C.6) follows from the definition (2.19) of πd
and that (C.7) follows from (C.1) and (C.6). To prove the last claim we first consider
the case d = 1 so let z, z′ ∈ T and z 6= z′. We choose φ, φ′ ∈ (−π, π] such that z =
π1(φ), z

′ = π1(φ
′) and without loss of generality we assume that φ < φ′ and we define ε

such that 3ε is the minimum of φ and φ′ − φ. Clearly ε ∈ (0,∞) whence, by Theorem
C.1b, π1(B1[φ, ε]) is an open neighborhood of z and π1(B1[φ

′, ε]) is an open neighborhood
of z′. Moreover φ + ε < φ′ − ε, φ′ + ε < φ − ε + 2π whence π1(B1[φ, ε]) ∩ π1(B1[φ

′, ε]) = ∅
so that (T, τ fin1 ) is Hausdorff. Let now z, z′ ∈ Td and z 6= z′. We choose φ, φ′ ∈ (−π, π]d

such that z = πd(φ), z
′ = πd(φ

′). Because z 6= z′ we have zj 6= z′j for some j = 1, ..., d
and without loss of generality we assume that φj < φ′

j and we define ε such that 3ε is the
minimum of φj and φ′

j − φj. Clearly ε ∈ (0,∞) whence, by Theorem C.1b, πd(Bd[φ, ε])
is an open neighborhood of z and πd(Bd[φ

′, ε]) is an open neighborhood of z′. Moreover
φj + ε < φ′

j − ε, φ′
j + ε < φj − ε + 2π whence π1(B1[φj , ε]) ∩ π1(B1[φ

′
j, ε]) = ∅ so that,

by Theorem C.1d, πd(Bd[φ, ε]) ∩ πd(Bd[φ
′, ε]) = ∅ which implies that the topological space

(Td, τ find ) is Hausdorff. ✷

Proof of Theorem C.1e: Since µd is the restriction of the Euclidean metric of R2d it follows
and since τR2d is the metric topology from the Euclidean metric it is easy to show, by using
the base τ̃R2d of τR2d , that τd is the subspace topology from τR2d (see also Section 2.10 in [Mu]).
To prove the second claim we define the function f ∈ C(R2d,Rd) by f(z1, z2, · · · , z2d−1, z2d) :=
(z21 + z22, · · · , z

2
2d−1+ z22d)

t and note that Td is the inverse image of (1, · · · , 1)t under f . Since
the singleton {(1, · · · , 1)t} is a closed subset of Rd and since f is continuous it follows that
Td is a closed subset of R2d. Moreover Td is bounded (w.r.t. the Euclidean metric on R2d)
whence, by the Heine-Borel Theorem (see, e.g., Corollary 2.12 in [Hu, Chapter III]), Td is a
compact subset of R2d so that, since Td is a subspace of R2d, the topological space (Td, τd)
is compact. ✷

Proof of Theorem C.1f: To show that τ find ⊂ τd we note, by Theorem C.1c, that τ̃ find is a base

of the topology τ find whence we are done if we show that τ̃ find ⊂ τd. We first consider the case
d = 1 so let φ ∈ (−π, π] and ε ∈ (0,∞) whence our aim is to show that π1(B1[φ, ε]) ∈ τ1.
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We define the wedge W := {r(cos(ψ), sin(ψ))t : r ∈ (0,∞), φ − ε < ψ < φ + ε} and
observe that W ∈ τR2 as can be easily checked. Moreover π1(B1[φ, ε]) = W ∩ T whence
π1(B1[φ, ε]) ∈ τ1. We now consider the general case so let φ ∈ (−π, π]d and ε ∈ (0,∞).
To show that πd(Bd[φ, ε]) ∈ τd we define, for j = 1, ..., d, Wj := {r(cos(ψ), sin(ψ))t : r ∈
(0,∞), φj − ε < ψ < φj + ε} and recall from above that Wj ∈ τR2 . On the other hand,
by Theorem C.1c, τ̃R2d is a base of τR2d whence W1 × · · · × Wd ∈ τR2d as can be easily
checked. Moreover π1(B1[φj, ε]) = Wj ∩ T so we compute, by (2.15) and Theorem C.1d,
πd(Bd[φ, ε]) = π1(B1[φ1, ε])× · · · × π1(B1[φd, ε]) = (W1 ∩T)× · · · × (Wd ∩ T) = (W1 × · · · ×
Wd) ∩ (T × · · · × T) = (W1 × · · · × Wd) ∩ Td whence, and since W1 × · · · × Wd ∈ τR2d ,
πd(Bd[φ, ε]) belongs to the subspace topology from τR2d . However, by Theorem C.1e, τd is
the subspace topology from τR2d whence πd(Bd[φ, ε]) ∈ τd. ✷

We are now ready to prove Theorem 2.5.
Proof of Theorem 2.5a: To prove that τd = τ find we first note that this equality holds iff idTd

is a homeomorphism from (Td, τd) to (Td, τ find ). Since idTd is a bijection we can use the fact
from Proposition 2.6 in [Hu, Chapter III] that idTd is a homeomorphism if it is continuous
and if τ find is Hausdorff and τd is compact. Thus, by Theorems C.1d and C.1e above, idTd

is a homeomorphism if it is continuous. Of course since idTd is the identity function on Td

it is a continuous function from (Td, τd) to (Td, τ find ) iff τ find ⊂ τd whence, by Theorem C.1f
above, idTd is a continuous function. This completes the proof of the first claim, i.e., that
τd = τ find . To show that πd is continuous let V ∈ τd whence we are done if we show that

π−1
d (V ) is open. In fact, by the first claim, V ∈ τ find whence π−1

d (V ) is open as was to be
shown. ✷

Proof of Theorem 2.5b: Let F ∈ C(Rd, X) be 2π-periodic in its arguments. If φ ∈ Rd then,
by Definition 2.4, there exists an N(φ) ∈ Zd such that φ + 2πN(φ) = Arg(πd(φ)) whence
F (Arg(πd(φ))) = F (φ+2πN(φ)) = F (φ). Let f : Td → X be defined by f(z) := F (Arg(z)).
If φ ∈ Rd then, by the above f(πd(φ)) = F (Arg(πd(φ))) = F (φ) whence f ◦ πd = F . To
see that f is continuous we need to show that for every open subset V of X the inverse
image f−1(V ) is open, the latter meaning that f−1(V ) ∈ τd. Because of Theorem 2.5a we
just need to show that f−1(V ) ∈ τ find . In fact we compute π−1

d (f−1(V )) = (f ◦ πd)
−1(V ) =

F−1(V ). However F is continuous whence F−1(V ) is open so that π−1
d (f−1(V )) is open so that

f−1(V ) ∈ τ find which implies that indeed f is continuous. Let g ∈ C(Td, X) such that g◦πd =
F . To show that f = g we compute f(πd(φ)) = F (Arg(πd(φ))) = g(πd(Arg(πd(φ)))) =
g(πd(φ)) where in the third equality we used Definition 2.4. Thus indeed f = g. Let
G ∈ C(Rd, X) be 2π-periodic in its arguments and F (Arg(z)) = G(Arg(z)) and let φ ∈ Rd.
Thus, by the first claim, F (φ) = F (Arg(πd(φ))) = G(Arg(πd(φ))) = G(φ) so that F = G.

Let conversely h ∈ C(Td, X) and H = h ◦ πd. By Theorem 2.5a πd is continuous whence
H ∈ C(Rd, X). Moreover H(Arg(z)) = h(πd(Arg(z))) = h(z) where in the second equality
we used Definition 2.4. ✷

Proof of Theorem 2.5c: Let F ∈ C(Rk,Td). Since Rk is simply connected one can show, e.g.,
as in [Br, Section III.4] or [Mu, Section 8.4], that a f̂ ∈ C(Rk,Rd) exists such that F = π ◦ f̂ .

To prove the second claim let first of all G ∈ C(Rk,Td) be constant valued with value
πd(0, · · · , 0) = (1, 0, · · · , 1, 0)t and let ĝ ∈ C(Rk,Rd) be such that G = πd ◦ ĝ. Then, by Defi-
nition 2.4, ĝ(φ) = 2πN(φ) where N(φ) ∈ Zd whence, and since ĝ is continuous, N(φ) is inde-
pendent of φ. To finish the proof of the second claim let f̂1, f̂2 ∈ C(Rk,Rd) such that πd◦ f̂1 =
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πd ◦ f̂2 whence, by Definition 2.4, exp(Jf̂1(φ)
)(1, 0, · · · , 1, 0)t = πd(f̂1(φ)) = πd(f̂2(φ)) =

exp(Jf̂2(φ)
)(1, 0, · · · , 1, 0)t so that πd(f̂1(φ) − f̂2(φ)) = exp(Jf̂1(φ)−f̂2(φ)

)(1, 0, · · · , 1, 0)t =

exp(Jf̂1(φ)
) exp(−Jf̂2(φ)

)(1, 0, · · · , 1, 0)t = (1, 0, · · · , 1, 0)t which implies, by the above, that

setting ĝ ≡ f̂1 − f̂2 we get ĝ(φ) = 2πN with N ∈ Zd, i.e., f̂1(φ) = f̂2(φ) + 2πN . This proves
the second claim. ✷

Proof of Theorem 2.5d: To prove the first claim let us first assume that f̂ ∈ Fund whence,
for every N ∈ Zd and recalling Section 2.2, there exists an Ñ ∈ Zd such that f̂(φ+ 2πN) =
f̂(φ) + 2πÑ so that, by the periodicity of πd, πd(f̂(φ+2πN)) = πd(f̂(φ) + 2πÑ) = πd(f̂(φ))
which implies that πd ◦ f̂ is 2π-periodic in its arguments. Conversely let f̂ ∈ C(Rd,Rd) and
πd ◦ f̂ be 2π-periodic in its arguments then, for N ∈ Zd, πd ◦ f̂(· + 2πN) is continuous and
equal to πd ◦ f̂ whence, by the Baby Lift Theorem, an Ñ ∈ Zd exists such that f̂(φ+2πN) =
f̂(φ) + 2πÑ so that f̂ ∈ Fund.

The second claim follows from the first claim and the definition, (2.11), of Mapd.
To prove the third claim let f̂ ∈ Fund. Then, by the first claim, πd ◦ f̂ is 2π-periodic in
its arguments whence, by Theorem 2.5b and since πd ◦ f̂ is continuous, we conclude that
πd ◦ f̂ ◦ Arg belongs to C(Td,Td). ✷

Proof of Theorem 2.5e: The proof is a multiple application of Theorem 2.5b. To prove
the first claim we define the function A : Rd → SO(3) by A(z) := Â(Arg(z)). Since Â
is 2π-periodic in its arguments and continuous and setting X = SO(3), we conclude from
Theorem 2.5b that A ∈ C(Td, SO(3)).

To prove the second claim we have to show that πd ◦ ĵ ◦ Arg belongs to Homeo(Td) so
we define the function j : Td → Td by j := πd ◦ ĵ ◦ Arg. To show that j is continuous we
note by Theorem 2.5d that πd ◦ ĵ is 2π-periodic in its arguments because ĵ ∈ Mapd. Also, by
Theorem 2.5a, πd is continuous whence, and since ĵ is continuous, πd ◦ ĵ is continuous too.
We thus have shown that πd ◦ ĵ is 2π-periodic in its arguments and continuous whence, by
Theorem 2.5b, πd ◦ ĵ ◦Arg is continuous, i.e., j ∈ C(Td,Td). To complete the proof that j is a
homeomorphism we first need to show that it has an inverse. Since j = πd ◦ ĵ ◦Arg, a natural
candidate for the inverse of j is the function g : Td → Td, defined by g := πd ◦ ĵ

−1 ◦ Arg.
To show that g indeed is the inverse of j we compute j ◦ g = πd ◦ ĵ ◦Arg ◦ πd ◦ ĵ

−1 ◦ Arg =
πd ◦ ĵ ◦ ĵ

−1 ◦Arg = πd ◦Arg = idTd where in the second equality we used Theorem 2.5b and
the periodicity of πd ◦ ĵ and where in the fourth equality we used Definition 2.4. Analogously
we compute g ◦ j = πd ◦ ĵ

−1 ◦Arg ◦ πd ◦ ĵ ◦Arg = πd ◦ ĵ
−1 ◦ ĵ ◦Arg = πd ◦Arg = idTd where

in the second equality we used Theorem 2.5b and the periodicity of πd ◦ ĵ
−1 and where in

the fourth equality we used Definition 2.4. Thus indeed g is the inverse of j, i.e., g = j−1.
To complete the proof that j is a homeomorphism we now show that j−1 is continuous in
the same way as we proved above that j is continuous. Thus we first note by Theorem 2.5d
that πd ◦ ĵ

−1 is 2π-periodic in its arguments because ĵ−1 ∈ Mapd. Also, by Theorem 2.5a,
πd is continuous whence, and since ĵ−1 is continuous, πd ◦ ĵ

−1 is continuous too. We thus
have shown that πd◦ ĵ

−1 is 2π-periodic in its arguments and continuous whence, by Theorem
2.5b, πd ◦ ĵ

−1 ◦ Arg is continuous, i.e., j−1 ∈ C(Td,Td).
To prove the third claim we proceed as with our claim after Definition 2.4 so let z =

πd(φ),S = S and let φ′ := ĵ(φ), z′ := j(z) as well as S ′ := Â(φ)S,S ′ := A(z)S. To show that
z′ = πd(φ

′) we compute z′ = j(z) = j(πd(φ)) = (πd ◦ ĵ ◦ Arg ◦ πd)(φ) = (πd ◦ ĵ)(φ) = πd(φ
′)

where in the fourth equality we used Theorem 2.5b and the periodicity of πd ◦ ĵ whence
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indeed z′ = πd(φ
′). To show that S ′ = S ′ we compute S ′ = A(z)S = A(πd(φ))S = ((Â ◦

Arg ◦ πd)φ)S = Â(φ)S = S ′ where in the fourth equality we used Theorem 2.5b and the
periodicity of Â whence indeed S ′ = S ′ which completes the proof of the third claim. ✷

C.2 Proof of Theorem 2.6

Proof of Theorem 2.6a: We define the function F : Rd → Td by F := f ◦ πd whence, by
Theorem 2.5b, F is 2π-periodic in its arguments. Thus, by Theorem 2.5c, there exists a
f̂ ∈ C(Rd,Rd) such that F = πd ◦ f̂ whence f ◦ πd = πd ◦ f̂ so that, by Definition 2.4,
f = f ◦ πd ◦ Arg = πd ◦ f̂ ◦ Arg which completes the proof of the first claim. To prove the
second claim let f̂1, f̂2 be in Fund and such that πd ◦ f̂1◦Arg = f = πd◦ f̂2◦Arg. By Theorem
2.5d πd ◦ f̂1 and πd ◦ f̂2 are 2π-periodic in their arguments. Using Theorem 2.5b and the
periodicity of πd ◦ f̂1 and the periodicity of πd ◦ f̂2 we compute πd ◦ f̂1 = πd ◦ f̂1 ◦Arg ◦ πd =
πd ◦ f̂2 ◦ Arg ◦ πd = πd ◦ f̂2 whence, by Theorem 2.5c and since f̂1, f̂2 are continuous, there
exists indeed a constant N ∈ Zd such that f̂1(φ) = f̂2(φ) + 2πN . ✷

Proof of Theorem 2.6b: To prove the first claim we note, by Theorem 2.6a and since j ∈
Homeo(Td), that there exists a ĵ and ĝ in C(Rd,Rd) such that πd◦ ĵ and πd◦ ĝ are 2π-periodic
in their arguments and such that j = πd ◦ ĵ ◦Arg and j−1 = πd ◦ ĝ ◦Arg. Thus to complete
the proof of the first claim we have to show that ĵ ∈ Mapd, i.e., that ĵ ∈ Homeo(Rd) and
that πd ◦ ĵ and πd ◦ ĵ

−1 are 2π-periodic in their arguments. Of course the latter are already
established whence we have just to show that ĵ is a homeomorphism so we compute

idTd = j ◦ j−1 = πd ◦ ĵ ◦ Arg ◦ πd ◦ ĝ ◦ Arg = πd ◦ ĵ ◦ ĝ ◦ Arg , (C.9)

where in the third equality we used Theorem 2.5b and the periodicity of πd ◦ ĵ. It follows
from (C.9) that

πd = idTd ◦ πd = πd ◦ ĵ ◦ ĝ ◦ Arg ◦ πd . (C.10)

To get rid of the factor Arg ◦ πd on the rhs of (C.10) we note, by Theorem 2.5b and the
periodicity of πd ◦ ĵ, that

j ◦ πd = πd ◦ ĵ ◦ Arg ◦ πd = πd ◦ ĵ , (C.11)

whence, by (C.10),

πd = j ◦ πd ◦ ĝ ◦ Arg ◦ πd . (C.12)

By Theorem 2.5b and the periodicity of πd ◦ ĝ we conclude from (C.12) that

πd = j ◦ πd ◦ ĝ ◦ Arg ◦ πd = j ◦ πd ◦ ĝ = πd ◦ ĵ ◦ ĝ , (C.13)

where in the third equality we used (C.11). By Theorem 2.5c and (C.13) a N ∈ Zd exists
such that ĵ ◦ ĝ = idTd + 2πN , i.e.,

ĵ(ĝ(φ)) = φ+ 2πN , (C.14)
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whence ĵ is onto Rd. To show that ĵ is one-one we repeat the argumentation which led us
from (C.9) to (C.14) so we first compute

idTd = j−1 ◦ j = πd ◦ ĝ ◦ Arg ◦ πd ◦ ĵ ◦ Arg = πd ◦ ĝ ◦ ĵ ◦ Arg , (C.15)

where in the third equality we used Theorem 2.5b and the periodicity of πd ◦ ĝ. It follows
from (C.15) that

πd = idTd ◦ πd = πd ◦ ĝ ◦ ĵ ◦ Arg ◦ πd . (C.16)

To get rid of the factor Arg ◦ πd on the rhs of (C.16) we note, by Theorem 2.5b and the
periodicity of πd ◦ ĝ, that

g ◦ πd = πd ◦ ĝ ◦ Arg ◦ πd = πd ◦ ĝ , (C.17)

whence, by (C.16),

πd = g ◦ πd ◦ ĵ ◦ Arg ◦ πd . (C.18)

By Theorem 2.5b and the periodicity of πd ◦ ĝ we conclude from (C.18) that

πd = g ◦ πd ◦ ĵ ◦ Arg ◦ πd = g ◦ πd ◦ ĵ = πd ◦ ĝ ◦ ĵ , (C.19)

where in the third equality we used (C.17). By Theorem 2.5c and (C.19) a M ∈ Zd exists
such that ĝ ◦ ĵ = idTd + 2πM , i.e.,

ĝ(ĵ(φ)) = φ+ 2πM , (C.20)

whence ĵ is one-one. Thus we have shown that ĵ is a bijection. To show that ĵ is a
homeomorphism we need to show that its inverse is continuous so we define the function
ĥ ∈ C(Rd,Rd) by ĥ(φ) := ĝ(φ)− 2πM and compute, by (C.20), ĥ(ĵ(φ)) = ĝ(ĵ(φ))− 2πM =
φ+ 2πM − 2πM = φ whence ĥ ◦ ĵ = idRd so that, and since ĵ is a bijection, ĥ is the inverse
of ĵ. Thus the continuous function ĥ is the inverse of the continuous function ĵ whence
ĵ ∈ Homeo(Rd) so that indeed ĵ ∈ Mapd.

To prove the second claim let ĵ ∈ Mapd such that j = πd ◦ ĵ ◦ Arg and let us define,
for fixed but arbitrary N , the function ĝ ∈ C(Rd,Rd) by ĝ(φ) := ĵ(φ) + 2πN . Since πd
is 2π-periodic in its arguments it is clear that j = πd ◦ ĝ ◦ Arg whence it remains to be
shown that ĝ ∈ Mapd. We first note that ĵ ∈ Mapd whence πd ◦ ĵ is 2π-periodic in its
arguments. Also πd is 2π-periodic in its arguments whence πd ◦ ĝ is 2π-periodic in its
arguments. To show that πd ◦ ĝ

−1 is 2π-periodic in its arguments we have to find ĝ−1. We
again note that ĵ ∈ Mapd whence ĵ is a bijection which implies that ĝ is a bijection so
that ĝ−1 exists. To find ĝ−1 we compute ĝ(ĵ−1(φ)) = ĵ(ĵ−1(φ)) + 2πN = φ + 2πN which
suggests to define the function f̂ ∈ C(Rd,Rd) by f̂(φ) := ĵ−1(φ−2πN) and we readily obtain
ĝ(f̂(φ)) = ĵ(f̂(φ))+2πN = ĵ(ĵ−1(φ−2πN))+2πN = φ whence ĝ◦f̂ = idRd so that, and since
ĝ is a bijection, f̂ is the inverse of ĝ. To show that πd ◦ ĝ

−1 is 2π-periodic in its arguments
we note again that ĵ ∈ Mapd whence πd ◦ ĵ

−1 is 2π-periodic in its arguments. On the other
hand, πd(ĝ

−1(φ)) = πd(f̂(φ)) = πd(ĵ
−1(φ − 2πN)) = πd(ĵ

−1(φ)) whence πd ◦ ĝ
−1 = πd ◦ ĵ

−1

so that πd ◦ ĝ
−1 is 2π-periodic in its arguments since πd ◦ ĵ

−1 is 2π-periodic in its arguments.
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To show that ĝ is a homeomorphism we note that the continuous function f̂ is the inverse
of the continuous function ĝ whence ĝ ∈ Homeo(Rd).

The third claim follows readily from Theorem 2.6a.
To prove the fourth claim let A ∈ C(Td, SO(3)) and let us define Â ∈ C(Rd, SO(3)) by
Â := A ◦ πd. Clearly Â is 2π-periodic in its arguments and, by Definition 2.4, Â ◦ Arg =
A ◦ πd ◦ Arg = A. If furthermore B̂ ∈ C(Rd, SO(3)) is 2π-periodic in its arguments and
B̂ ◦ Arg = A then, by Theorem 2.5b, Â = B̂. ✷

C.3 Proof of Theorem 7.6

We first state and prove Theorem C.2 since we need its part c) to prove Theorem 7.6.

Theorem C.2 Let P[ω] be topologically transitive, i.e., (1, ω) be nonresonant and let A ∈
C(Td, SO(3)) be of the form (7.22), i.e.,

A(z) = exp(J (N · φ)) ,

where πd(φ) = z and where N ∈ Zd. Then the following hold.
a) Let T be a transfer field from (P[ω], A) to (P[ω], Ad,ν) and let either T or TJ ′ be SO(2)-
valued. Then N = 0.
Remark: Note, by Definition 7.2 and (7.21), that ν is a spin tune and T is a uniform IFF
of (P[ω], A).
b) Let ν ∈ [0, 1) and let (P[ω], A) and (P[ω], Ad,ν) be equivalent. Then a transfer field T
from (P[ω], A) to (P[ω], Ad,ν) exists such that either T or TJ ′ is SO(2)-valued.
Remark: Note, by (7.21), that T is a uniform IFF of (P[ω], A).
c) Let ν ∈ [0, 1) and let (P[ω], A) and (P[ω], Ad,ν) be equivalent. Then N = 0.

Proof of Theorem C.2a: We first consider the case where T is SO(2)-valued. Thus, by
Theorem 6.3b,

T (z) = exp(J [M · φ+ 2πg(z)]) , (C.21)

where πd(φ) = z and where M ∈ Zd and g ∈ C(Td,R). Using (2.25),(7.4),(7.22), (C.21) and
the fact that T is a transfer field from (P[ω], A) to (P[ω], Ad,ν) we compute

exp

(
−J [M · (φ+ 2πω) + 2πg(πd(φ+ 2πω))]

)
exp(J (N · φ))

exp

(
J [M · φ+ 2πg(πd(φ))]

)
= T t(πd(φ+ 2πω))A(πd(φ))T (πd(φ))

= T t(P[ω](z))A(z)T (z) = Ad,ν = exp(2πνJ ) ,

i.e.,

exp

(
J [−2π(M · ω)− 2πg(πd(φ+ 2πω)) +N · φ+ 2πg(πd(φ))− 2πν]

)
= I3×3 ,
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whence, by Theorem 6.3b, an integer n exists such that, for φ ∈ Rd,

2π

(
−M · ω − g(πd(φ+ 2πω)) + g(πd(φ))− ν

)
= −N · φ+ 2πn . (C.22)

Since g ◦πd is 2π-periodic in its arguments, the lhs of (C.22) is 2π-periodic in all components
of φ whence, by (C.22), the rhs of (C.22) is 2π-periodic in all components of φ so that N = 0.

We now consider the case when TJ ′ is SO(2)-valued so we define R ∈ C(Td, SO(3))
by R := TJ ′. Thus, by Theorem 6.3b, M ∈ Zd and g ∈ C(Td,R) exist such that, when
πd(φ) = z, R(z) = exp(J [M · φ+ 2πg(z)]) whence

T (z) = T (z)J ′J ′ = R(z)J ′ = exp(J [M · φ+ 2πg(z)])J ′ , (C.23)

where in the first equality of (C.23) we used (B.32). Using (2.25), (7.4),(7.22), (B.33),(C.23)
and Definition 4.1 and the fact that T is a transfer field from (P[ω], A) to (P[ω], Ad,ν) we
compute

exp

(
J [2π(M · ω) + 2πg(πd(φ+ 2πω))−N · φ− 2πg(πd(φ))]

)

= J ′ exp

(
J [−2π(M · ω)− 2πg(πd(φ+ 2πω)) +N · φ+ 2πg(πd(φ))]

)
J ′

= J ′ exp

(
−J [M · (φ+ 2πω) + 2πg(πd(φ+ 2πω))]

)
exp(J (N · φ))

exp

(
J [M · φ+ 2πg(πd(φ))]

)
J ′ = T t(πd(φ+ 2πω))A(πd(φ))T (πd(φ))

= T t(P[ω](z))A(z)T (z) = Ad,ν = exp(2πνJ ) ,

i.e.,

exp

(
J [2π(M · ω) + 2πg(πd(φ+ 2πω))−N · φ− 2πg(πd(φ))− 2πν]

)
= I3×3 ,

whence, by Theorem 6.3b, an integer n exists such that, for φ ∈ Rd,

2π

(
M · ω + g(πd(φ+ 2πω))− g(πd(φ))− ν

)
= N · φ+ 2πn . (C.24)

Since g ◦πd is 2π-periodic in its arguments, the lhs of (C.24) is 2π-periodic in all components
of φ whence, by (C.24), the rhs of (C.24) is 2π-periodic in all components of φ so that N = 0.
✷

Proof of Theorem C.2b: By Definition 4.2 we have a transfer field T ′ from (P[ω], A) to
(P[ω], Ad,ν) whence our task is to construct, out of T ′, a transfer field T from (P[ω], A) to
(P[ω], Ad,ν) such that either T or TJ ′ is SO(2)-valued. Since T ′ is a transfer field from
(P[ω], A) to (P[ω], Ad,ν) it follows from (7.4) and Definition 4.1 that

A(z)T ′(z) = T ′(P[ω](z)) exp(2πνJ ) . (C.25)

90



Defining t ∈ C(Td,R3) by t(z) := T ′(z)(0, 0, 1)t, we conclude from (C.25) and (6.7) that

A(z)t(z) = A(z)T ′(z)(0, 0, 1)t = T ′(P[ω](z)) exp(2πνJ )(0, 0, 1)t = T ′(P[ω](z))(0, 0, 1)t

= t(P[ω](z)) . (C.26)

Note that |t(z)| = 1 because T ′(z) ∈ SO(3). Because t ∈ C(Td,R3), and for j = 1, 2, 3,
the j-th component tj of t belongs to C(Td,R). Since A is SO(2)-valued it follows from
(C.26),(6.5) and (6.7) that

t3(z) = t3(P[ω](z)) . (C.27)

Because P[ω] is topologically transitive we conclude from (C.27) and Theorem 3.3a that t3
is a constant function so that, since |t3| ≤ |t| = 1, only the following three cases can occur:
Case (i) where, for all z ∈ Td, t3(z) = 1, Case (ii) where, for all z ∈ Td, t3(z) = −1, Case
(iii) where, for all z ∈ Td, |t3(z)| < 1.

We first consider Case (i). Since |t| = 1, in the present case t1(z) = t2(z) = 0 whence t =
t3(0, 0, 1)

t = (0, 0, 1)t, i.e., T ′(0, 0, 1)t = t = (0, 0, 1)t. Due to Theorem 6.2a, we obtain that
T ′ is SO(2)-valued whence T ′ is an SO(2)-valued transfer field from (P[ω], A) to (P[ω], Ad,ν).

We now consider Case (ii). Since |t| = 1, in the present case t1(z) = t2(z) = 0 whence t =
t3(0, 0, 1)

t = (0, 0,−1)t, i.e., T ′(0, 0, 1)t = t = (0, 0,−1)t so that, by (B.32), T ′J ′(0, 0, 1)t =
(0, 0, 1)t which implies, by Theorem 6.2a, that T ′J ′ is SO(2)-valued whence T ′ is a transfer
field from (P[ω], A) to (P[ω], Ad,ν) for which T

′J ′ is SO(2)-valued.
We now consider Case (iii). Note that if T1 or T1J

′ would be SO(2)-valued then, by
(6.5),(6.7), (B.32), the third column t of T1 would either be (0, 0, 1)t-valued or (0, 0,−1)t-
valued whence |t3| would be 1-valued which of course is impossible in the present case. Thus,
unlike to Cases (i) and (ii), the transfer field T we are looking for is different from T1 so we
have to do some work. In fact this work is rather easy since the (33)-matrix element t3 of
T1 is a constant function which allows us to factorize T1 into three simple and continuous
functions in (C.32) below. To accomplish all that we first note, because |t3| < 1, that the
function t0 ∈ C(Td,R), defined by t0(z) :=

√
t21(z) + t22(z) =

√
1− t23(z) has only positive

values. Note that t0 is a constant function because t3 is a constant function. Since t0 has
only nonzero values we can define T2 : T

d → SO(3) by

T2(z) :=




t1(z)
t0(z)

− t2(z)
t0(z)

0
t2(z)
t0(z)

t1(z)
t0(z)

0

0 0 1


 . (C.28)

Note, by (C.28) and Theorem 6.2a, that T2 is SO(2)-valued which implies that T2 ∈
C(Td, SO(3)). It also follows from (C.28) that

T t
2T1(0, 0, 1)

t = T t
2t = T t

2(t1, t2, t3)
t = ((t21 + t22)/t0, 0, t3)

t = t0(1, 0, 0)
t + t3(0, 0, 1)

t . (C.29)

Since t0 and t3 are constant functions and since |t0(1, 0, 0)
t + t3(0, 0, 1)

t| = 1 there exists a
C in SO(3) such that C(0, 0, 1)t = t0(1, 0, 0)

t + t3(0, 0, 1)
t whence, by (C.29),

CtT t
2T1(0, 0, 1)

t = Ct(t0(1, 0, 0)
t + t3(0, 0, 1)

t) = (0, 0, 1)t . (C.30)
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We thus define the function T3 ∈ C(Td, SO(3)) by

T3(z) := CtT t
2(z)T1(z) , (C.31)

and observe, by (C.30), that T3(z)(1, 0, 0)
t = (1, 0, 0)t whence, by Theorem 6.2a, T3 is SO(2)-

valued. With (C.31), we get the following factorization of T1:

T1(z) = T2(z)CT3(z) . (C.32)

To obtain T from T1 we first generalize T1 by defining, for fixed but arbitrary B ∈ SO(3),
the function TB ∈ C(Td, SO(3)) by

TB(z) := T2(z)BT3(z) . (C.33)

Indeed T1 = TC whence T1 is a special case of TB as can be easily checked by (C.32),(C.33).
We now show that every TB is a transfer field from (P[ω], A) to (P[ω], Ad,ν) whence we have
to compute T t

B(P[ω](z))A(z)TB(z). We first compute T t
2(P[ω](z))A(z)T2(z) and we note, by

(C.26),(C.29),

A(z)T2(z)[t0(1, 0, 0)
t + t3(0, 0, 1)

t] = A(z)T2(z)[t0(z)(1, 0, 0)
t + t3(z)(0, 0, 1)

t] = A(z)t(z)

= t(P[ω](z)) = T2(P[ω](z))[t0(P[ω](z))(1, 0, 0)t + t3(P[ω](z))(0, 0, 1)t]

= T2(P[ω](z))[t0(1, 0, 0)
t + t3(0, 0, 1)

t] , (C.34)

where in the first and fifth equalities we used that t0 and t3 are constant functions. Multi-
plying (C.34) from the left by T t

2(P[ω](z)) we get

T t
2(P[ω](z))A(z)T2(z)[t0(1, 0, 0)

t + t3(1, 0, 0)
t] = [t0(1, 0, 0)

t + t3(1, 0, 0)
t] . (C.35)

Since A(z), T2(z) and T
t
2(P[ω](z)) belong to SO(2), their product belongs to SO(2) whence,

by Theorem 6.2a,

T t
2(P[ω](z))A(z)T2(z)t3(0, 0, 1)

t = t3T
t
2(P[ω](z))A(z)T2(z)(0, 0, 1)

t = t3(0, 0, 1)
t ,

so that, by (C.35),

t0T
t
2(P[ω](z))A(z)T2(z)(1, 0, 0)

t = T t
2(P[ω](z))A(z)T2(z)t0(1, 0, 0)

t = t0(1, 0, 0)
t , (C.36)

which implies, since t0 is nonzero, that

T t
2(P[ω](z))A(z)T2(z)(1, 0, 0)

t = (1, 0, 0)t . (C.37)

Recalling from the remarks after (C.35), that T t
2(P[ω](z))A(z)T2(z) belongs to SO(2), we

conclude from Theorem 6.2a that T t
2(P[ω](z))A(z)T2(z)(0, 0, 1)

t = (0, 0, 1)t whence, by
(C.37),

T t
2(P[ω](z))A(z)T2(z) = I3×3 . (C.38)

It follows from (C.33),(C.38) that

T t
B(P[ω](z))A(z)TB(z) = T t

3(P[ω](z))BtT t
2(P[ω](z))A(z)T2(z)BT3(z)

= T t
3(P[ω](z))BtI3×3BT3(z) = T t

3(P[ω](z))T3(z) . (C.39)
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We recall from the remarks after (C.33) that T1 = TC whence in that case (C.39) results in

Ad,ν(z) = T t
1(P[ω](z))A(z)T1(z) = T t

C(P[ω](z))A(z)TC(z) = T t
3(P[ω](z))T3(z) , (C.40)

where in the first equality of (C.40) we used that T1 is a transfer field T from (P[ω], A) to
(P[ω], Ad,ν). It follows from (C.39),(C.40) that, for every B ∈ SO(3),

Ad,ν(z) = T t
B(P[ω](z))A(z)TB(z) , (C.41)

whence indeed every TB is a transfer field from (P[ω], A) to (P[ω], Ad,ν). Thus our task of
finding an SO(2)-valued transfer field T from (P[ω], A) to (P[ω], Ad,ν) boils down to find a
B ∈ SO(3) such that TB is SO(2)-valued. In fact since T2 and T3 are SO(2)-valued we pick
B = I3×3 and observe, by (C.33), that TI3×3

is SO(2)-valued whence T := TI3×3
= T2T3 is an

SO(2)-valued transfer field T from (P[ω], A) to (P[ω], Ad,ν). ✷

Proof of Theorem C.2c: Since (P[ω], A) and (P[ω], Ad,ν) are equivalent we conclude from
Theorem C.2b that a transfer field T from (P[ω], A) to (P[ω], Ad,ν) exists such that either
T or TJ ′ is SO(2)-valued which implies, by Theorem C.2a, that N = 0. ✷

Proof of Theorem 7.6: It is clear, by Definition 6.1, that T = Ad,0 is an IFF of (P[ω], A)
whence, by Theorem 6.2c, (P[ω], A) has an ISF (recall from the remarks after (3.4) that
Ad,0(z) = I3×3). To prove the final claim let first of all N = 0. Then A = Ad,0 whence, by
Definition 7.2, (P[ω], A) has spin tunes. Let now N 6= 0. Then (P[ω], A) has no uniform IFF
as follows. In fact if a uniform IFF would exist then, by (7.21), a ν ∈ [0, 1) and a transfer
field T from (P[ω], A) to (P[ω], Ad,ν) would exist whence, by Definition 4.2, (P[ω], A) and
(P[ω], Ad,ν) would be equivalent which, by Theorem C.2c above, would imply that N = 0, a
contradiction. Thus if N 6= 0. Then (P[ω], A) has no uniform IFF whence, by Remark 6 in
Chapter 7, (P[ω], A) has no spin tune. ✷
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