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a. Basic problem A general 6-D formalism is pre-
sented for the calculation of the bunch parameters (e.g.
6-D stationary beam-envelope matrix) for electron stor-
age rings including radiation damping and quantum exci-
tation. The problem is formulated in terms of a stochas-
tic differential equation (SDE) and basic to our ap-
proach is the orbital eigen-analysis first introduced in [1].
The latter gives a more general framework than that of
Courant-Synder. An SDE approach was first introduced
in [2] and developed further in [3]. At a later stage the
work of [4] was incorporated and the starting point here
is the SDE in Frenet-Serret coordinates with respect to
a design orbit as described in [5]. The 6D-SDE is

7 = A(s)E+&(s) + €d(& s) + 2 /b(s)E(s)s, (1)

where ¥ = (x,pw,y,pwz,pz)T. We have expanded up
to second order in the dynamical variables and retained
only the leading nonlinearities due to sextupoles and due
to radiation effects in quadrupoles. All functions except
& are C-periodic in s where C' is the ring circumference.
The matrix A(s) is Hamiltonian and gives rise to the
linear symplectic synchro-betatron oscillations. The -
independent term ¢ describes closed orbit distortions in-
duced by dipole field errors and by the fact that the en-
ergy losses in the bending magnets and quadrupoles are
not replaced at the location in the ring where they oc-
cur. Our analysis is perturbative. The parameter € is
inserted to indicate the perturbation size and to discuss
the perturbation procedure and the nature of the error
estimates. In the end, € can be taken to be one in ap-
plications of the formulas. The first perturbation term is
G(Z,s) = 6A(s)Z + f(Z,s). Here §A(s) models both the
energy losses from radiation and the energy gain in the
rf cavities, and f| (2, s) takes into account the nonlinear
terms due to sextupoles and due to radiation effects in
quadrupoles. The last term in (1) simulates the stochas-
tic excitation of the particle motion due to the quantum
nature of the radiation. Here ¢ is Gaussian white noise, b
is an amplitude function proportional to & and € is the
unit vector with 1 in the k-component, thus the stochas-
tic excitation only affects the p, component directly. The
explicit form of these quantities can be found in [5] and
details of our analysis below will be given in [6].

The main quantity of interest is the N particle random
bunch density

1 N
p(,5) = 57 D (T — Tu(s), (2)
n=1

where the &, (s) are independent and identically dis-
tributed random variables determined by (1). Let p be

the single particle probability density defined by (1), then
(pN) = p. Here, and in the following, angular brackets
will denote the expected value of stochastic quantities.
We will assume for large N that pn (%, s) = p(Z, s), in a
coarse grained sense. This article presents an analysis of
this single particle probability density.

Eq.(1) will be analyzed in two steps: (i) the (periodic)
6-D closed orbit Z.,, satisfying (1) with b = 0 will be
given by a solution of an integral equation; and (ii) the
equation will be linearized around Z., and the linearized
equation analyzed.

b. The equation ¥’ = A(s)Z and its Eigen-FSM The
solutions of the linear periodic Hamiltonian system

' =A(s)Z, ATI+JA =0, A(s+C)=A(s), (3)

are central to our analysis. Here J = diag(Jo,J2,J2) is
the unit symplectic matrix where

0 1
3 = (_1 0).

The transfer map, M(s, sg), is a fundamental solu-
tion matrix (FSM) which satisfies M(sg, sg) = I (often
called the principal solution matrix). The basic prop-
erties are (P1) M(sg, s1)M(s1,50) = M(sz,50) (semi-
group property), (P2) MTJM = J (symplecticity) and
(P3) M(s+ C,sp+C)=M(s,sg) (periodicity).

We assume solutions of (3) are stable. This is the
case if and only if the monodromy matrix, M(C, 0), has
six linearly independent eigenvectors and its eigenval-
ues (characteristic multipliers), px, have modulus 1 (see
e.g. [7]). In addition to stability we assume that the
characteristic multipliers are distinct. It follows that
+1 are not multipliers and that a tune vector 7 (vec-
tor of characteristic exponents) can be chosen such that
pr = exp(2mwy), v, € (—1,0) U (0, 1). Because the mul-
tipliers are distinct and come in complex conjugate pairs,
we can organize them so that the tunes satisfy

0<V1<I/3<V5<1/27 Vo] = —U2]—1, l:1,2,3. (4)

The matrix W := [Wy, - ,Wg], of associated eigenvec-
tors, is chosen such that wy = wj;_ ;. The eigenvec-
tors satisfy ijsz)k = 10;,Yk, where H denotes conju-
gate transpose, d;; is the Kronecker delta. The +; are
real with ~9;_1 and -9 of opposite sign; the sign is not
known appriori. We assume 5 # 0 and normalize the
eigenvectors so that 15571&1721_1 = ¥y91_1, Yor—1 = 1.
Thus w’ngUQl = 179, where 9, = —79;_1, and in sum-
mary

WHIW =L, (1) & = 017, Y21 = —2i-1 = £1. (5)

The phase space density of a bunch can be efficiently
determined in terms of the Eigen-FSM for (3),

W(s) := M(s,0)W, (6)



which was first introduced in [1] and generalizes the
Courant-Synder formalism. It follows from (5) and (P2)
that

H(5)JW(s) = I and thus =1 (s) = —I®H (5)J. (7)

Define ¥ by
W(s) =: ¥(s)exp(uwsN), w := 27/C, N := diag(7), (8)

then W is C-periodic and (8) is a Floquet representation
of the Eigen-FSM. Furthermore ¥ satisfies (7). The k-th

column of ¥ will be denoted by ¥y,.

c. Closed orbit associated with (1) If no character-
istic multiplier of (3) is 1, which we have assumed, then
(1), with b = 0, has a unique C-periodic solution for e
sufficiently small. This is referred to as the closed orbit,
is denoted by Z.,(s, €), and satisfies the integral equation

Zeo(8,€) = Teo(s,0)
+ 6/ G(8,8)J(Zeo(s + t,€), s +t)dt. (9)

Here the Green function is given by G(s t) (M(s 5+
C)—I)"'M(s,s+1t) and T (s, 0) fo )e(s+t)dt.
The closed orbit can be determlned approxnnately by
iterating (9). See Thm.2.1, p.154 of [§].

d. Linearized motion around closed orbit Let i be
defined by & =: Z., + ¢ then for small 3, § ~ 1, where
iy, satisfies the linearized equation for ¢, namely

Jr' = (A(s) + eB(5))71 + €2 /b(s)&(s (10)

Here B(s) := D1g§(Zco(s),s) is the Jacobian matrix
of g(+,s). The most important information about the
bunch is contained in the moment (beam-envelope) ma-
trix U(s) = (71 (s)7~ (s)). We now determine an approx-
imation to U.

e. Equation for moment matrix and averaging ap-
proximation Let ¥ be an FSM for A, e.g. the Eigen-

FSM, then the transformation ¢y, — 2 via gy, =: ¥(s)Z

gives

Z' = €eD(s )Z—i— e2&(s)d(s), d(s) = /b(s)¥1(s)é,
D(s) := &' (s)B(s)¥(s), (11)

)
with initial condition ( ) =
)

~1(0)7.,(0). Now U =

YVEH where V = (77 and the differential equation
for V is

V' = ¢[D(s)V + VD (s) + E(s)], (12)

where E(s) = d(s)d# (s). This equation can be derived

by writing the solution of (11) in terms of an FSM for
D(s), calculating V from this solution, and then noting
that it satisfies (12).

Let f be a quasiperiodic function, scalar, vector or
matrix, then we define its average f by

L

f(s)ds. (13)

We apply averaging methodology (See Remark 2) to (12)
and we obtain V(s) &= V,(s) where

V, =¢DV, +V,D" +E|. (14)

The nature of the approximation is mentioned in the re-
marks. If an equilibrium (constant) solution, V., of (14)
exists then the solution can be written

Va(s) = exp(eDs) (Vg — V) exp(eDs) + V., (15)

where Vi = V(0). Since E is proportional to f so is the
equilibrium solution V 4.

To determine an equilibrium solution we first assume
that D has a full set of linearly independent eigenvectors.
Let X be the matrix of eigenvectors and A the diagonal
matrix of eigenvalues, A;, so that DX = XA. Let F be
defined by V.. =: XFX then (14) gives AF + FA* =
—X'EX~# from which

Fj.=— (XTTEX ). (16)

)\]-l-)\z

Thus V. is defined and unique as long as A; + A} # 0 for
all j and k. When D is diagonal the formula simplifies
since X can be chosen to be the identity.

We have thus determined the approximation

U(s) = Uy(s) := W(5)V,(s) P (s), (17)

to the moment matrix. ~
f. Calculation of E and D for the Eigen-FSM under
a non-resonance condition From (7), (8), (11), and (12)

D(s) = exp(—wsN)D(s) exp(iwsN),

D(s) = —IW (5)IB(s)¥(s),
and
E(s) = (s)cfH s) = exp(— zwsN) (s) exp(iuwsN),
E(s) = b(s)T¥" (s)diag(és) ¥ (s)I.

Note that (D(s));x = exp[—w(v; — vi)s]D(s);r and D
is C-periodic, the same being true for E.

We have assumed the tune condition (4), thus the av-
erages D and E are diagonal and are given by

]_Djj =\ = —z*ijZf(s)JB(s)zzj (s), (18)
Ejj = b(s)|®(s)s;]. (19)

g. Summary and dissipative case The stochastic
process @, defined by (1), is given in a linear approxi-
mation by & (s) := Zeo(s) + ¥(s). The moment matrix
of gr is U= ¥VWH where ¥ is defined by (6), with its
Floquet representation given in (8), and V is defined by
(12). An averaging approximation gives V &~ V, where
V, is given by (15) and paragraph f. More specifically

Va(s)jk =
exple(Aj + AL)sl(Vojk + 6k Vae jj) + 0jk Vae i, (20)
Ve s = —Bj;/2R),. (21)



Here A; and E;; are given by (18) and (19) respectively
and we note that A5, = Ag—1.

For ), < 0, the dissipative case, V,(s) — Vg, as
s — oo and the approximate moment matrix in (17) be-
comes Uy, (s) = W(s) V4 O (s) = U(s)V,. ¥ (s). Us-
ing (18), (19) and (21), this stationary, C-periodic U,
can be written

U)o = S GRI(Wo1-1())m (9511 ()],

1=1,2,3

C =
Gr= 2L [ b(s) i (5)5)Pds. (22)

OélC 0

The quantities «; := 2Ry 1 are called the damping
constants and are given by

—

1 (.=
Rhai1 = Rhar =215 [ (Y (5)IB(s)(5)ds <0,
0

h. Remarks

1. Since D and B are related by the similarity
transformation of (11), TrD(s) =TrB(s) and thus the
C-periodicity of B gives

: 1 [c U
Z Aj=TD = —/ TrD1g(2eo(s), s)ds = 2—2, (23)
T CJo Ey

where Uy and Ejy are the energy gain in the cavity
and beam energy respectively. The A; form complex
conjugate pairs so that Z‘rf a = Z? A; and thus (23) is
the Robinson sum rule, [9].

2. The averages of E and D were computed un-
der the non-resonance condition of (4). However the
standard averaging error bound |V (s) — V,(s)| < O(e)
for 0 < s < O(1/e) requires a sufficient, O(1), separation

between 0,v1,v3,v5, and 1/2. In the dissipative case,
the s-interval of validity of the averaging approximation
can be extended to all s > 0. Details are given in [6].
The resonant case is considered in [10].

3. The mean of 4, is easily handled and in the averaging
approximation (r,(s)) ~ W(s)exp(eDs)¥~1(0)(7L(0))
and the covariance matrix is easily computed. Of course,
in the dissipative case the mean approaches zero for large
s. If 1(0) is a Gaussian random vector, then 7 is a
Gaussian process. If in addition ¢ (0) has zero mean
then g, is zero mean and the approximate bunch density
is

(2m) 7% (det Ua(s)) ™2 exp{—§f Ua(s) "4z /2}-

4. Spin-orbit motion in electron storage rings and espe-
cially spin diffusion due to the quantum fluctuations can
be treated approximately by introducing an 8-D matrix
formalism. See Secs.2.7.7 and 2.7.8. (which may have
changed). The codes SLIM and SLICK discussed in Sec.
2.7.8 are based on the orbital eigen-analysis of this sec-
tion and can be used to calculate beam polarization, as
well as the orbital dynamics of this section.

5. A general formalism for treating the linear electron
beam dynamics with radiation effects taken into account
is also presented in [11] and [12]. Whereas [11] starts from
a kinetic description (Fokker-Planck equation) [12] uses
(as we do) the SDE for the particle motion. The second
order moments (beam envelopes) are calculated directly
(rather than using the orbital-FSM) and these results are
used in the computer code SAD. Furthermore generalized
radiation integrals are derived which in the limiting case
of a completely uncoupled machine reduce to the well
known results of Sands, [13] (see Section 3.1.4.1). This
is also true in our case if we separate the six dimensional
dynamics into fast betatron and slow synchrotron com-
ponents via the dispersion (see Section 2.7.8, p.181).
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