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a. Basic problem A general 6-D formalism is pre-
sented for the calculation of the bunch parameters (e.g.
6-D stationary beam-envelope matrix) for electron stor-
age rings including radiation damping and quantum exci-
tation. The problem is formulated in terms of a stochas-
tic differential equation (SDE) and basic to our ap-
proach is the orbital eigen-analysis first introduced in [1].
The latter gives a more general framework than that of
Courant-Synder. An SDE approach was first introduced
in [2] and developed further in [3]. At a later stage the
work of [4] was incorporated and the starting point here
is the SDE in Frenet-Serret coordinates with respect to
a design orbit as described in [5]. The 6D-SDE is

~x′ = A(s)~x+ ~c(s) + ε~g(~x, s) + ε
1
2
√
b(s)ξ(s)~e6, (1)

where ~x = (x, px, y, py, z, pz)T . We have expanded up
to second order in the dynamical variables and retained
only the leading nonlinearities due to sextupoles and due
to radiation effects in quadrupoles. All functions except
ξ are C-periodic in s where C is the ring circumference.
The matrix A(s) is Hamiltonian and gives rise to the
linear symplectic synchro-betatron oscillations. The ~x-
independent term ~c describes closed orbit distortions in-
duced by dipole field errors and by the fact that the en-
ergy losses in the bending magnets and quadrupoles are
not replaced at the location in the ring where they oc-
cur. Our analysis is perturbative. The parameter ε is
inserted to indicate the perturbation size and to discuss
the perturbation procedure and the nature of the error
estimates. In the end, ε can be taken to be one in ap-
plications of the formulas. The first perturbation term is
~g(~x, s) = δA(s)~x+ ~f(~x, s). Here δA(s) models both the
energy losses from radiation and the energy gain in the
rf cavities, and ~f(~x, s) takes into account the nonlinear
terms due to sextupoles and due to radiation effects in
quadrupoles. The last term in (1) simulates the stochas-
tic excitation of the particle motion due to the quantum
nature of the radiation. Here ξ is Gaussian white noise, b
is an amplitude function proportional to ~ and ~ek is the
unit vector with 1 in the k-component, thus the stochas-
tic excitation only affects the pz component directly. The
explicit form of these quantities can be found in [5] and
details of our analysis below will be given in [6].

The main quantity of interest is the N particle random
bunch density

ρN (~x, s) =
1
N

N∑
n=1

δ(~x− ~xn(s)), (2)

where the ~xn(s) are independent and identically dis-
tributed random variables determined by (1). Let p be

the single particle probability density defined by (1), then
〈ρN 〉 = p. Here, and in the following, angular brackets
will denote the expected value of stochastic quantities.
We will assume for large N that ρN (~x, s) ≈ p(~x, s), in a
coarse grained sense. This article presents an analysis of
this single particle probability density.

Eq.(1) will be analyzed in two steps: (i) the (periodic)
6-D closed orbit ~xco, satisfying (1) with b = 0 will be
given by a solution of an integral equation; and (ii) the
equation will be linearized around ~xco and the linearized
equation analyzed.

b. The equation ~x′ = A(s)~x and its Eigen-FSM The
solutions of the linear periodic Hamiltonian system

~x ′ = A(s)~x, AT J + JA = 0, A(s+ C) = A(s), (3)

are central to our analysis. Here J = diag(J2,J2,J2) is
the unit symplectic matrix where

J2 =
(

0 1
−1 0

)
.

The transfer map, M(s, s0), is a fundamental solu-
tion matrix (FSM) which satisfies M(s0, s0) = I (often
called the principal solution matrix). The basic prop-
erties are (P1) M(s2, s1)M(s1, s0) = M(s2, s0) (semi-
group property), (P2) MT JM = J (symplecticity) and
(P3) M(s+ C, s0 + C) = M(s, s0) (periodicity).

We assume solutions of (3) are stable. This is the
case if and only if the monodromy matrix, M(C, 0), has
six linearly independent eigenvectors and its eigenval-
ues (characteristic multipliers), ρk, have modulus 1 (see
e.g. [7]). In addition to stability we assume that the
characteristic multipliers are distinct. It follows that
±1 are not multipliers and that a tune vector ~ν (vec-
tor of characteristic exponents) can be chosen such that
ρk = exp(2πıνk), νk ∈ (− 1

2 , 0) ∪ (0, 1
2 ). Because the mul-

tipliers are distinct and come in complex conjugate pairs,
we can organize them so that the tunes satisfy

0 < ν1 < ν3 < ν5 < 1/2, ν2l = −ν2l−1, l = 1, 2, 3. (4)

The matrix W := [~w1, · · · , ~w6], of associated eigenvec-
tors, is chosen such that ~w2l = ~w∗2l−1. The eigenvec-
tors satisfy ~wH

j J~wk = ıδjkγk, where H denotes conju-
gate transpose, δjk is the Kronecker delta. The γk are
real with γ2l−1 and γ2l of opposite sign; the sign is not
known appriori. We assume γk 6= 0 and normalize the
eigenvectors so that ~wH

2l−1J~w2l−1 = ıγ2l−1, γ2l−1 = ±1.
Thus ~wH

2lJ~w2l = ıγ2l, where γ2l = −γ2l−1, and in sum-
mary

WHJW = ıĨ, (Ĩ)jk = δjkγj , γ2l = −γ2l−1 = ±1. (5)

The phase space density of a bunch can be efficiently
determined in terms of the Eigen-FSM for (3),

Ψ(s) := M(s, 0)W, (6)
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which was first introduced in [1] and generalizes the
Courant-Synder formalism. It follows from (5) and (P2)
that

ΨH(s)JΨ(s) = ıĨ and thus Ψ−1(s) = −ıĨΨH(s)J. (7)

Define Ψ̂ by

Ψ(s) =: Ψ̂(s) exp(ıωsN), ω := 2π/C, N := diag(~ν), (8)

then Ψ̂ is C-periodic and (8) is a Floquet representation
of the Eigen-FSM. Furthermore Ψ̂ satisfies (7). The k-th

column of Ψ̂ will be denoted by ~̂
ψk.

c. Closed orbit associated with (1) If no character-
istic multiplier of (3) is 1, which we have assumed, then
(1), with b = 0, has a unique C-periodic solution for ε
sufficiently small. This is referred to as the closed orbit,
is denoted by ~xco(s, ε), and satisfies the integral equation

~xco(s, ε) = ~xco(s, 0)

+ ε

∫ C

0

G(s, t)~g(~xco(s+ t, ε), s+ t)dt. (9)

Here the Green function is given by G(s, t) = (M(s, s+
C)− I)−1M(s, s+ t) and ~xco(s, 0) =

∫ C

0
G(s, t)~c(s+ t)dt.

The closed orbit can be determined approximately by
iterating (9). See Thm.2.1, p.154 of [8].

d. Linearized motion around closed orbit Let ~y be
defined by ~x =: ~xco + ~y then for small ~y, ~y ≈ ~yL where
~yL satisfies the linearized equation for ~y, namely

~yL
′ = (A(s) + εB(s))~yL + ε

1
2
√
b(s)ξ(s)~e6. (10)

Here B(s) := D1~g(~xco(s), s) is the Jacobian matrix
of ~g(·, s). The most important information about the
bunch is contained in the moment (beam-envelope) ma-
trix U(s) = 〈~yL(s)~yT

L (s)〉. We now determine an approx-
imation to U.

e. Equation for moment matrix and averaging ap-
proximation Let Ψ be an FSM for A, e.g. the Eigen-
FSM, then the transformation ~yL → ~z via ~yL =: Ψ(s)~z
gives

~z ′ = εD(s)~z + ε
1
2 ξ(s)~d(s), ~d(s) =

√
b(s)Ψ−1(s)~e6,

D(s) := Ψ−1(s)B(s)Ψ(s), (11)

with initial condition ~z(0) = Ψ−1(0)~yL(0). Now U =
ΨVΨH where V = 〈~z ~zH〉 and the differential equation
for V is

V′ = ε[D(s)V + VDH(s) + E(s)], (12)

where E(s) = ~d(s)~dH(s). This equation can be derived
by writing the solution of (11) in terms of an FSM for
D(s), calculating V from this solution, and then noting
that it satisfies (12).

Let f be a quasiperiodic function, scalar, vector or
matrix, then we define its average f̄ by

f̄ = lim
L→∞

1
L

∫ L

0

f(s)ds. (13)

We apply averaging methodology (See Remark 2) to (12)
and we obtain V(s) ≈ Va(s) where

V′a = ε[D̄Va + VaD̄H + Ē]. (14)

The nature of the approximation is mentioned in the re-
marks. If an equilibrium (constant) solution, Vae, of (14)
exists then the solution can be written

Va(s) = exp(εD̄s)(V0 −Vae) exp(εD̄Hs) + Vae, (15)

where V0 = V(0). Since E is proportional to ~ so is the
equilibrium solution Vae.

To determine an equilibrium solution we first assume
that D̄ has a full set of linearly independent eigenvectors.
Let X be the matrix of eigenvectors and Λ the diagonal
matrix of eigenvalues, λj , so that D̄X = XΛ. Let F be
defined by Vae =: XFXH then (14) gives ΛF + FΛ∗ =
−X−1ĒX−H from which

Fjk = − 1
λj + λ∗k

(X−1ĒX−H)jk. (16)

Thus Vae is defined and unique as long as λj +λ∗k 6= 0 for
all j and k. When D̄ is diagonal the formula simplifies
since X can be chosen to be the identity.

We have thus determined the approximation

U(s) ≈ Ua(s) := Ψ(s)Va(s)ΨH(s), (17)

to the moment matrix.
f. Calculation of Ē and D̄ for the Eigen-FSM under

a non-resonance condition From (7), (8), (11), and (12)

D(s) = exp(−ıωsN)D̂(s) exp(ıωsN),

D̂(s) = −ıĨΨ̂H(s)JB(s)Ψ̂(s),

and

E(s) = ~d(s)~dH(s) = exp(−ıωsN)Ê(s) exp(ıωsN),

Ê(s) = b(s)ĨΨ̂H(s)diag(~e5)Ψ̂(s)Ĩ.

Note that (D(s))jk = exp[−ıω(νj − νk)s]D̂(s)jk and D̂
is C-periodic, the same being true for E.

We have assumed the tune condition (4), thus the av-
erages D̄ and Ē are diagonal and are given by

D̄jj = λj = −ıγj
~̂
ψH

j (s)JB(s) ~̂ψj(s), (18)

Ējj = b(s)|Ψ̂(s)5j |2. (19)

g. Summary and dissipative case The stochastic
process ~x, defined by (1), is given in a linear approxi-
mation by ~xL(s) := ~xco(s) + ~yL(s). The moment matrix
of ~yL is U = ΨVΨH , where Ψ is defined by (6), with its
Floquet representation given in (8), and V is defined by
(12). An averaging approximation gives V ≈ Va where
Va is given by (15) and paragraph f. More specifically

Va(s)jk =
exp[ε(λj + λ∗k)s](V0 jk + δjkVae jj) + δjkVae jj , (20)
Vae jj = −Ējj/2<λj . (21)
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Here λj and Ējj are given by (18) and (19) respectively
and we note that λ∗2l = λ2l−1.

For <λj < 0, the dissipative case, Va(s) → Vae as
s→∞ and the approximate moment matrix in (17) be-
comes Ua(s) = Ψ(s)VaeΨH(s) = Ψ̂(s)VaeΨ̂H(s). Us-
ing (18), (19) and (21), this stationary, C-periodic Ua

can be written

Ua(s)mn =
∑

l=1,2,3

Gl<[( ~̂ψ2l−1(s))m( ~̂ψ∗2l−1(s))n],

Gl = − 2
αl

1
C

∫ C

0

b(s)| ~̂ψ2l−1(s)5)|2ds. (22)

The quantities αl := 2<λ2l−1 are called the damping
constants and are given by

<λ2l−1 = <λ2l = γ2l−1
1
C

∫ C

0

=[ ~̂ψH
j (s)JB(s) ~̂ψj(s)]ds < 0.

h. Remarks

1. Since D and B are related by the similarity
transformation of (11), TrD(s) =TrB(s) and thus the
C-periodicity of B gives

6∑
1

λj = TrD̄ =
1
C

∫ C

0

TrD1g(xco(s), s)ds = 2
U0

E0
, (23)

where U0 and E0 are the energy gain in the cavity
and beam energy respectively. The λj form complex
conjugate pairs so that

∑3
1 αl =

∑6
1 λj and thus (23) is

the Robinson sum rule, [9].

2. The averages of E and D were computed un-
der the non-resonance condition of (4). However the
standard averaging error bound |V(s) − Va(s)| < O(ε)
for 0 ≤ s < O(1/ε) requires a sufficient, O(1), separation

between 0, ν1, ν3, ν5, and 1/2. In the dissipative case,
the s-interval of validity of the averaging approximation
can be extended to all s ≥ 0. Details are given in [6].
The resonant case is considered in [10].
3. The mean of ~yL is easily handled and in the averaging
approximation 〈~yL(s)〉 ≈ Ψ(s) exp(εD̄s)Ψ−1(0)〈~yL(0)〉
and the covariance matrix is easily computed. Of course,
in the dissipative case the mean approaches zero for large
s. If ~yL(0) is a Gaussian random vector, then ~yL is a
Gaussian process. If in addition ~yL(0) has zero mean
then ~yL is zero mean and the approximate bunch density
is

(2π)−3(det Ua(s))−1/2 exp{−~yT
LUa(s)−1~yL/2}.

4. Spin-orbit motion in electron storage rings and espe-
cially spin diffusion due to the quantum fluctuations can
be treated approximately by introducing an 8-D matrix
formalism. See Secs.2.7.7 and 2.7.8. (which may have
changed). The codes SLIM and SLICK discussed in Sec.
2.7.8 are based on the orbital eigen-analysis of this sec-
tion and can be used to calculate beam polarization, as
well as the orbital dynamics of this section.
5. A general formalism for treating the linear electron
beam dynamics with radiation effects taken into account
is also presented in [11] and [12]. Whereas [11] starts from
a kinetic description (Fokker-Planck equation) [12] uses
(as we do) the SDE for the particle motion. The second
order moments (beam envelopes) are calculated directly
(rather than using the orbital-FSM) and these results are
used in the computer code SAD. Furthermore generalized
radiation integrals are derived which in the limiting case
of a completely uncoupled machine reduce to the well
known results of Sands, [13] (see Section 3.1.4.1). This
is also true in our case if we separate the six dimensional
dynamics into fast betatron and slow synchrotron com-
ponents via the dispersion (see Section 2.7.8, p.181).
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