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We give an overview of our current/future analytical and numerical work on the spin
polarization in high-energy electron storage rings. Our goal is to study the possibility
of polarization for the CEPC and FCC-ee. Our work is based on the so-called Full
Bloch equation for the polarization density introduced by Derbenev and Kondratenko
in 1975. We also give an outline of the standard approach, the latter being based on the
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1. Introduction

This paper is an update on a talk by K. Heinemann at the IAS Mini-Workshop on

Beam Polarization in Future Colliders on January 17, 2019, in Hong Kong.1 Our

ultimate goal is to examine the possibility of polarization for CEPC and FCC-ee.

We will first briefly review the “standard” approach which is based on the

Derbenev-Kondratenko formulas.2 These formulas rely, in part, on plausible as-

sumptions grounded in deep physical intuition. So the following question arises: do

the Derbenev-Kondratenko formulas tell full story? In fact there is an alternative

approach based on a Bloch-type equation for the polarization density3 which we call

the Full Bloch equation (FBE) and which we believe can deliver more information

than the standard approach even if the latter includes potential correction terms.4

So we aim to determine the domain of applicability of the Derbenev-Kondratenko

formulas and the possibility in theory of polarization at the CEPC and FCC-ee

energies. Of course both approaches focus on the equilibrium polarization and the

polarization time. We use the name “Bloch” to reflect the analogy with equations

for magnetization in condensed matter.5 This paper concentrates on the Bloch ap-

proach. The cost of the numerical computations in the Bloch approach is consid-

erable since the polarization density depends on six phase-space variables plus the

time variable so that the numerical solution of the FBE, the FBE being a system

of three PDEs in seven independent variables, is a nontrivial task which cannot be

pursued with traditional approaches like the finite difference method. However we

see at least five viable methods:

(1) Approximating the FBE by an effective FBE via the Method of Averaging

and solving the effective FBE via spectral phase-space discretization, e.g., a

collocation method, plus an implicit-explicit time discretization.

(2) Solving the system of stochastic differential equations (SDEs), which underlies

the FBE, via Monte-Carlo spin tracking.

(3) Solving the Fokker-Planck equation, which underlies the FBE, via the Gram-

Charlier method.

(4) Solving the FBE via a deep learning method.

(5) Solving the system of SDEs in a way that allows connections with the Derbenev-

Kondratenko formulas to be established.

We will dwell on Method 1 in this paper. We plan to validate this method by

one of the other four methods. More details on Method 1 can be found in Ref. 6.

The method of averaging we use is discussed in Refs. 7-12. One hope tied to Method

1 is the fact that the effective FBE gives analytical insights into the spin-resonance

structure of the bunch. Note that Methods 1-4 are independent of the standard

approach. In particular they do not rely on the invariant spin field. Note also that
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Methods 1-3 and 5 are based on knowing the system of SDEs, which underlies the

FBE. For details of this system of SDEs, see the invited ICAP18 paper of Ref. 6.

Regarding Method 2 there is a large literature on the numerical solution of SDEs,

see Refs. 13, 14 and references in Ref. 15.

By neglecting the spin flip terms and the kinetic-polarization term in the FBE

one obtains an equation that we call the reduced Bloch equation (RBE). The RBE

approximation is sufficient for computing the radiative depolarization rate due to

stochastic orbital effects and it shares the terms with the FBE that are challenging

to discretize. For details on our phase-space discretization and time discretization

of the RBE, see Refs. 6, 16 and 17.

We proceed as follows. In the second section we sketch the standard approach. In

the third section we present, for the laboratory frame, the FBE and its restriction,

the RBE. In the fourth section we discuss the RBE in the beam frame and in the

fifth section we show how, in the beam frame, the effective RBE is obtained via the

method of averaging. In the sixth section we describe ongoing and future work.

2. Sketching the standard approach based on the

Derbenev-Kondratenko formulas

We define the “time” θ = 2πs/C where s is the distance around the ring and C is the

circumference and we denote by y a position in six-dimensional phase space w.r.t.

the closed orbit (CO). In particular, following Ref. 26, y6 is the relative deviation

of the energy from the reference energy. Then if, in the beam frame, f = f(θ, y)

denotes the normalized phase-space density at θ and y and ~Ploc = ~Ploc(θ, y) denotes

the local polarization vector of the bunch we have
∫

dy f(θ, y) = 1 ,

∫

dy f(θ, y)~Ploc(θ, y) = ~P (θ) , (1)

where ~P (θ) is the polarization vector of the bunch at θ. For a detailed discussion

about ~Ploc, see, e.g., Ref. 18. Here and in the following we use arrows on three-

component column vectors.

Central to the standard approach is the invariant spin field ~n = ~n(θ, y) (ISF)

defined as a normalized periodic solution of the Thomas-BMT-equation in phase

space, i.e.,

∂θ~n = LLiou(θ, y)~n+Ω(θ, y)~n , (2)

such that

(1)
∣

∣

∣
~n(θ, y)

∣

∣

∣
= 1,

(2) ~n(θ + 2π, y) = ~n(θ, y),

and where LLiou denotes the Hamiltonian part of the Fokker-Planck operator LFP,

the latter being introduced in Section 3 below. The unit vector of the ISF on the

CO is denoted by n̂0(θ) and it is easily obtained as an eigenvector of the one-turn
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spin-transport map on the CO.26 There are many methods for computing the full

invariant spin field but none are trivial (for a recent technique see Ref. 19). In fact

the existence, in general, of the invariant spin field is a mathematical issue which

is only partially resolved, see, e.g., Ref. 20. The standard approach assumes that a

function PDK = PDK(θ) exists such that

~Ploc(θ, y) ≈ PDK(θ)~n(θ, y) . (3)

Thus, by (1) and (3),

~P (θ) =

∫

dy f(θ, y)~Ploc(θ, y) ≈ PDK(θ)

∫

dy f(θ, y)~n(θ, y) . (4)

The approximation (3) leads to2

PDK(θ) = PDK(∞)(1 − e−θ/τDK) + PDK(0)e
−θ/τDK , (5)

where τDK and PDK(∞) are given by the Derbenev-Kondratenko formulas

PDK(∞) :=
τ−1
0

τ−1
DK

, (6)

τ−1
DK :=

5
√
3

8

reγ
5
0~

m

C

4π2

∫ 2π

0

dθ
〈 1

|ρ|3 [1−
2

9
(~n · β̂)2 + 11

18

∣

∣

∣
∂y6

~n
∣

∣

∣

2

]
〉

θ
, (7)

τ−1
0 :=

reγ
5
0~

m

C

4π2

∫ 2π

0

dθ
〈 1

|ρ|3 b̂ · [~n− ∂y6
~n]
〉

θ
, (8)

with

•
〈

· · ·
〉

θ
≡
∫

dy f(θ, y) · · ·
• b̂ = b̂(θ, y) ≡ normalized magnetic field, β̂ = β̂(θ, y) ≡ normalized velocity

vector, γ0 ≡ Lorentz factor of the reference particle, ρ(θ, y) ≡ radius of curvature

in the external magnetic field, re ≡ classical electron radius, m ≡ rest mass of

electrons or positrons.

By (4), the equilibrium polarization vector is

~P (∞) ≈ PDK(∞)

∫

dy f(θ, y)~n(θ, y) , (9)

where PDK(∞) is given by (6). Defining

τ−1
dep :=

5
√
3

8

reγ
5
0~

m

C

4π2

∫ 2π

0

dθ
〈 1

|ρ|3
11

18

∣

∣

∣
∂y6

~n
∣

∣

∣

2〉

θ
, (10)

we can write (7) as

τ−1
DK = τ−1

dep +
5
√
3

8

reγ
5
0~

m

C

4π2

∫ 2π

0

dθ
〈 1

|ρ|3 [1−
2

9
(~n · β̂)2]

〉

θ
. (11)

For details on (6), (7), (8), (10) and (11) see, e.g., Refs. 25 and 26.

We now briefly characterize the various terms in the Derbenev-Kondratenko

formulas. First, τ−1
dep is the radiative depolarization rate. Secondly, the term
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reγ
5
0~

m
C
4π2

∫ 2π

0
dθ
〈

1
|ρ|3 b̂ ·~n

〉

θ
in τ−1

0 and the term 5
√
3

8
reγ

5
0~

m
C
4π2

∫ 2π

0
dθ
〈

1
|ρ|3
〉

θ
in τ−1

DK

cover the Sokolov-Ternov effect. Lastely, the term − reγ
5
0~

m
C
4π2

∫ 2π

0
dθ
〈

1
|ρ|3 b̂ · [∂y6

~n]
〉

θ

in τ−1
0 covers the kinetic polarization effect and the term in τ−1

DK which is propor-

tional to 2/9 covers the Baier-Katkov correction.

We now sketch three approaches for computing PDK(∞) via the Derbenev-

Kondratenko formulas. All three approaches use (6) but they differ in how τ−1
0

and τ−1
DK are computed.

(i) Compute τ−1
0 via (8) and τ−1

DK via (7) by computing f and ~n as accurately as

needed.

(ii) Approximate τ−1
0 by neglecting the usually-small kinetic polarization term in

(8) and by approximating the remaining term in (8) by replacing ~n by ~n0.

Compute τ−1
DK via (11) where τ−1

dep is not computed via (10) but via Monte-

Carlo spin tracking and where the remaining terms in (11) are approximated

by using the ~n0-axis.
a

(iii) Compute τ−1
0 via (8) and τ−1

DK via (7) by linear approximation in orbit and spin

variables via the so-called SLIM formalism.26

Approach (ii) is the most practiced while approach (i) is only feasible if one can com-

pute f and ~n as accurately as needed (which is not easy!). Approach (iii), which is

historically the first, is very simple and is often used for ballparking PDK(∞). Since

the inception of the Derbenev-Kondratenko formulas one suspects correction terms

to the rhs of (10). See Ref. 4 as well as Z. Duan’s contribution to this workshop.

These correction terms, associated with so-called resonance crossing, in turn associ-

ated with large energy spread, are not as well understood as the rhs of (10), partly

because of their peculiar form. Nevertheless, careful observation of spin motion dur-

ing the Monte-Carlo tracking in approach (ii), might provide a way to investigate

their existence and form.

3. The Full Bloch equation and the Reduced Bloch equation in

laboratory frame

In the previous section we used the beam frame and we will do so later. However

the FBE was first presented in Ref. 3 for the laboratory frame and in that frame it

also has its simplest form. In this section we focus on the laboratory frame.

aProminent Monte-Carlo spin tracking codes are SLICKTRACK by D.P. Barber,21 SITROS by
J. Kewisch,21 Zgoubi by F. Meot,22 PTC/FPP by E. Forest,23 and Bmad by D. Sagan.24 This
approach provides a useful first impression avoiding the computation of f and ~n. For more details
on this approach see Ref. 26. Monte-Carlo tracking can also be extended beyond integrable orbital
motion to include, as just one example, beam-beam forces. Note that Monte-Carlo tracking just

gives an estimate of τ−1

dep
but it does not provide an explanation. Nevertheless, insights into sources

of depolarization can be obtained by switching off terms in the Thomas-BMT equation. In principal
such diagnoses can also be applied in approach (i). Such investigations can the systematized under
the heading of “spin matching”.26
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In a semiclassical probabilistic description of an electron or positron bunch the

spin-orbit dynamics is described by the spin-1/2 Wigner function ρ (also called the

Stratonovich function) written as

ρ(t, z) =
1

2
[flab(t, z)I2×2 + ~σ · ~ηlab(t, z)] , (12)

with z = (~r, ~p) where ~r and ~p are the position and momentum vectors of the

phase space and t is the time, and where flab is the phase-space density of par-

ticles normalized by
∫

flab(t, z)dz = 1, ~ηlab is the polarization density of the

bunch and ~σ is the vector of the three Pauli matrices. As explained in Ref. 18,

~ηlab is proportional to the spin angular momentum density. In fact it is given by

~ηlab(t, z) = flab(t, z)~Ploc,lab(t, z) where ~Ploc,lab is the local polarization vector. Thus

flab = Tr[ρ] and ~ηlab = Tr[ρ~σ]. The polarization vector ~Plab(t) of the bunch is
~Plab(t) =

∫

~ηlab(t, z)dz =
∫

flab(t, z)~Ploc,lab(t, z).

Then, by neglecting collective effects and after several other approximations, the

phase-space density evolves according to Ref. 3 via

∂tflab = Llab
FP (t, z)flab . (13)

Using the units as in Ref. 3 the Fokker-Planck operator Llab
FP is defined by

Llab
FP (t, z) := Llab

Liou(t, z) + ~Frad(t, z) + ~Qrad(t, z) +
1

2

3
∑

i,j=1

∂pi
∂pj

Eij(t, z) , (14)

where

Llab
Liou(t, z) := −∂~r ·

1

mγ(~p)
~p− ∂~p · [e ~E(t, ~r) +

e

mγ(~p)
(~p× ~B(t, ~r))] , (15)

~Frad(t, z) := −2

3

e4

m5γ(~p)
|~p× ~B(t, ~r)|2~p , (16)

~Qrad(t, z) :=
55

48
√
3

3
∑

j=1

∂[λ(t, z)~ppj]

∂pj
, (17)

Eij(t, z) :=
55

24
√
3
λ(t, z)pipj , λ(t, z) := ~

|e|5
m8γ(~p)

|~p× ~B(t, ~r)|3 , (18)

γ(~p) :=
1

m

√

|~p|2 +m2 , (19)

and with e being the electric charge of the electron or positron and ~E and ~B being

the external fields.

The Fokker-Planck operator Llab
FP whose explicit form is taken from Ref. 3 is a

linear second-order partial differential operator and, with some additional approxi-

mations, is commonly used for electron synchrotrons and storage rings, see Ref. 27

and Section 2.5.4 in Ref. 21. As usual, since it is minuscule compared to all other

forces, the Stern-Gerlach effect from the spin onto the orbit is neglected in (13).
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The polarization density ~ηlab evolves via eq. 2 in Ref. 3, i.e., via that which we call

the Full Bloch equation (FBE), namely

∂t~ηlab = Llab
FP(t, z)~ηlab +M(t, z)~ηlab

+[1 + ∂~p · ~p]λ(t, z)
1

mγ(~p)

~p× ~a(t, z)

|~a(t, z)| flab(t, z) , (20)

where

M(t, z) := Ωlab(t, z)− λ(t, z)
5
√
3

8
[I3×3 −

2

9m2γ2(~p)
~p~pT ] , (21)

~a(t, z) :=
e

m2γ2(~p)
(~p× ~B(t, ~r)) . (22)

The FBE was derived in Ref. 3 from the semiclassical approximation of quantum

electrodynamics and it is a generalization, to the whole phase space, of the Baier-

Katkov-Strakhovenko equation which just describes the evolution of polarization

along a single deterministic trajectory.28 Note also that, while the FBE was new in

1975, the orbital Fokker-Planck equation (13) was already known thanks to research

of the 1950s, e.g., Schwinger’s paper on quantum corrections to synchrotron radia-

tion.29 The skew-symmetric matrix Ωlab(t, z) takes into account the Thomas-BMT

spin-precession effect. Thus in the laboratory frame the Thomas-BMT-equation (2)

reads as

∂t~nlab = Llab
Liou(t, z)~nlab +Ωlab(t, z)~nlab . (23)

The quantum aspect of (13) and (20) is embodied by the factor ~ in λ(t, z). For

example ~Qrad is a quantum correction to the classical radiation reaction force ~Frad.

The terms −λ(t, z)5
√
3

8 ~ηlab and λ(t, z) 1
mγ(~p)

~p×~a(t,z)
|~a(t,z)| flab(t, z) take into account spin

flips due to synchrotron radiation and encapsulate the Sokolov-Ternov effect. The

term λ(t, z)5
√
3

8
2

9m2γ2(~p)~p~p
T ~ηlab encapsulates the Baier-Katkov correction, and the

term ∂~p · ~p λ(t, z) 1
mγ(~p)

~p×~a(t,z)
|~a(t,z)| flab(t, z) encapsulates the kinetic-polarization effect.

The only terms in (20) which couple the three components of ~ηlab are the Thomas-

BMT term and the Baier-Katkov correction term.

As mentioned above, there exists a system of SDEs underlying (20) (for details,

see Ref. 6). In particular, flab and ~ηlab are related to a spin-orbit density Plab =

Plab(t, z, ~s) via

flab(t, z) =

∫

R3

d~sPlab(t, z, ~s) , (24)

~ηlab(t, z) =

∫

R3

d~s~sPlab(t, z, ~s) , (25)

where Plab satisfies the Fokker-Planck equation corresponding to the system of SDEs

in Ref. 6. These SDEs can be used as the basis for a Monte-Carlo spin tracking

algorithm, i.e., for Method 2 mentioned in Section 1 above. This would extend the

standard Monte-Carlo spin tracking algorithms, which we mentioned in Section 2
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above, by taking into account all physical effects described by (20), like the Sokolov-

Ternov effect, the Baier-Katkov correction, the kinetic-polarization effect and, of

course, spin diffusion.

If we ignore the spin flip terms and the kinetic-polarization term in the FBE

then (20) simplifies to the RBE

∂t~ηlab = Llab
FP (t, z)~ηlab +Ωlab(t, z)~ηlab . (26)

The RBE models spin diffusion due to the effect of the stochastic orbital motion on

the spin and thus contains those terms of the FBE which are related to the radiative

depolarization rate τ−1
dep. This effect is clearly seen in the SDEs (see, e.g., (28) and

(29)).

4. The reduced Bloch equation in the beam frame

In the beam frame, i.e., in the accelerator coordinates y of Section 2, the RBE (26)

becomes

∂θ~η = LFP(θ, y)~η +Ω(θ, y)~η . (27)

Because the coefficients of LFP are θ-dependent, the RBE (27) is numerically and

analytically quite complex. So we first approximate it by treating the synchrotron

radiation as a perturbation. Then, in order to solve it numerically for the large

time intervals that we need, we address the system of SDEs underlying (27) and

apply the refined averaging technique presented in Ref. 30 (see also 7), for the

orbital dynamics, and extend it to include spin. The averaged SDEs are then used

to construct an approximate RBE which we call the effective RBE.

The system of SDEs underlying (27) reads as b

dY

dθ
= (A(θ) + ǫRδA(θ))Y +

√
ǫR
√

ω(θ)e6ξ(θ) , (28)

d~S

dθ
= [Ω0(θ) + ǫSC(θ, Y )]~S , (29)

where the orbital dynamics has been linearized in Y and Ω = Ω0 + ǫSC has been

linearized in Y so that

C(θ, Y ) =

6
∑

j=1

Cj(θ)Yj . (30)

Also, A(θ) is the Hamiltonian part of the orbital dynamics, Y has been scaled so

that ǫR is the size of the orbital effect of the synchrotron radiation. Thus ǫRδA(θ)

represents the orbital damping effects due to synchrotron radiation and the cavi-

ties,
√
ǫRξ(θ) represents the associated quantum fluctuations, ξ is the white noise

process and e6 := (0, 0, 0, 0, 0, 1)T . In the spin equation (29), Ω0 is the closed-orbit

contribution to Ω so that ǫSC(θ, Y ) is what remains and C(θ, Y ) is chosen O(1).

bWe denote the dependent variables by capital letters.
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Hence ǫS estimates the size of Ω−Ω0. Both Ω0(θ) and C(θ, Y ) are, of course, skew-

symmetric 3 × 3 matrices. We are interested in the situation where ǫR and ǫS are

small in some appropriate sense.

Eqs. (28) and (29) can be obtained by transforming the system of SDEs in Ref.

6 from the laboratory frame to the beam frame.31 However, since in this section we

only deal with the RBE (not with the FBE), (28) and (29) can also be found in

older expositions on spin in high-energy electron storage rings, e.g., Ref. 32. Note

that these expositions make approximations as for example with the linearity of

(28) in Y and the linearity of C(θ, Y ) in Y .

With (28) and (29) the evolution equation for the spin-orbit joint probability

density P = P(θ, y, ~s) is the following Fokker-Planck equation

∂θP = LFP(θ, y)P − ∂~s ·
(

(

Ω(θ, y)~s

)

P
)

, (31)

where Ω = Ω0 + ǫSC. The phase-space density f and the polarization density ~η

corresponding to P are defined by

f(θ, y) =

∫

R3

d~s P(θ, y, ~s) , ~η(θ, y) =

∫

R3

d~s ~s P(θ, y, ~s) , (32)

which are the beam-frame analogs of (24) and (25). The local polarization vector
~Ploc from Section 2 above is related to f and ~η by

~η(θ, y) = f(θ, y)~Ploc(θ, y) . (33)

The RBE (27) follows from (31) by differentiating (32) w.r.t. θ and by using the

Fokker-Planck equation for P . This proves that (28) and (29) is the system of SDEs

which underlie the RBE (27). For (27), see also Ref. 18.

5. The effective reduced Bloch equation in the beam frame

The effective RBE is, by definition, an approximation of the RBE (27) obtained by

approximating the system of SDEs (28) and (29) by an effective system of SDEs

using the method of averaging, see Refs. 7-12. In other words the system of SDEs

underlying the effective RBE is the effective system of SDEs. We now discuss first-

order averaging in the case where ǫ := ǫS = ǫR is small.

To apply the method of averaging to (28) and (29) we must transform them to

a standard form for averaging, i.e., we must transform the variables Y, ~S to slowly

varying variables. We do this by using a fundamental solution matrix X of the

unperturbed ǫ = 0 part of (28), i.e.,

X ′ = A(θ)X , (34)

and a fundamental solution matrix Φ of the unperturbed ǫ = 0 part of (29), i.e.,

Φ′ = Ω0(θ)Φ . (35)
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We thus transform Y and ~S into the slowly varying U and ~T via

Y (θ) = X(θ)U(θ) , ~S(θ) = Φ(θ)~T (θ) . (36)

Hence (28) and (29) are transformed to

U ′ = ǫD(θ)U +
√
ǫ
√

ω(θ)X−1(θ)e6ξ(θ) , (37)

~T ′ = ǫD(θ, U)~T , (38)

where D and D are defined by

D(θ) := X−1(θ)δA(θ)X(θ) , (39)

D(θ, U) := Φ−1(θ)C(θ,X(θ)U)Φ(θ) . (40)

Of course, (37) and (38) carry the same information as (28) and (29). Now, applying

the method of averaging to (37) and (38), we obtain the following effective system

of SDEs

V ′ = ǫD̄V +
√
ǫB(ξ1, ..., ξk)T , (41)

~T ′
a = ǫD̄(V )~Ta , (42)

where the bar denotes θ-averaging, i.e., the operation limT→∞(1/T )
∫ T

0
dθ · · · .

Moreover ξ1, ..., ξk are statistically independent versions of the white noise pro-

cess and B is a 6× k matrix which satisfies BBT = Ē with k = rank(Ē) and where

Ē is the θ-average of

E(θ) = ω(θ)X−1(θ)e6e
T
6 X

−T (θ) . (43)

For physically reasonable A and Ω the fundamental matrices X and Φ are quasiperi-

odic functions whence D,D(·, U) and E are quasiperiodic functions so that their θ

averages D̄, D̄(V ) and Ē exist.

Our derivation of (41) from (37) is discussed in some detail in Ref. 6. We are

close to showing that U = V + O(ǫ) on θ-intervals of length O(1/ǫ) and it seems

likely that this error is valid for 0 ≤ θ < ∞, because of the radiation damping. This

is a refinement of Ref. 30 and assumes a non-resonance condition. Since the sample

paths of U are continuous and U is slowly varying it seems likely that ~Ta is a good

approximation to ~T and we are working on the error analysis. Spin-orbit resonances

will be an important focus in the construction of D̄(V ) from (40) which contains

both the orbital frequencies in X and the spin precession frequency in Φ.

Since, by definition, the effective system of SDEs underly the effective RBE, the

latter can be obtained from the former in the same way as we obtained (27) from

(28) and (29) (recall the discussion after (32)). Thus the evolution equation for

the spin-orbit probability density PV = PV (θ, v,~t) is the following Fokker-Planck

equation:

∂θPV = LV
FP(v)PV − ǫ∂~t ·

(

(

D̄(v)~t

)

PV

)

, (44)
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where

LV
FP(v) = −ǫ

6
∑

j=1

∂vj
(D̄v)j +

ǫ

2

6
∑

i,j=1

Ēij∂vi
∂vj

. (45)

The polarization density ~ηV corresponding to PV is defined by

~ηV (θ, v) =

∫

R3

d~t~t PV (θ, v,~t) , (46)

so that, by (44), the effective RBE is

∂θ~ηV = LV
FP(v)~ηV + ǫD̄(v)~ηV . (47)

This then is the focus of our approach in Method 1. For more details on this section,

see Refs. 6, 16 and 17.

6. Next steps

• Further development of Bloch equation approach (numerical and theoretical),

i.e., of Method 1 and with a realistic lattice.

• Development of validation methods, i.e., Methods 2-4. Note that Method 2 is

an extension of the standard Monte-Carlo spin tracking algorithms and for that

matter we will study Refs. 13, 14 and 15.

• Comparing the Bloch equation approach with the standard approach using the

Derbenev-Kondratenko formulas, in particular the study of potential correction

terms4 to τ−1
DK by using the RBE.
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