
Paraxial Approximation in CSR Modeling

Using the Discontinuous Galerkin Method

D. A. Bizzozero, J. A. Ellison, K. A. Heinemann, and S. R. Lau
Department of Mathematics and Statistics, University of New Mexico; FEL 2013, New York

Introduction and Outline

•Well-established paraxial approximation in CSR
has been previously modeled with a finite differ-
ence (FD) method.

•Novel approach in applying a discontinuous
Galerkin (DG) method to the same equations.

• Starting point: nonhomogeneous Schrödinger
type equations which arise from a paraxial ap-
proximation to Maxwell’s equations.

• Include brief overview of DG and its implemen-
tation into our algorithm.

•Apply DG on a 2D transverse (x, y) grid and
evolve the equations along the arclength s.

• Estimate the errors of our results and compute
the longitudinal impedance.

•Discuss CPU vs GPU performance.

•Outline possible future work and new applica-
tions for DG.

Mathematical Problem

•Domain of problem.

Consider rectangular domain with (x, y) ∈ Ω =
[−a, a] × [−b, b] and s ∈ [0, L]. Additional pa-
rameters satisfy: k ∈ R and ρ > 0.

•Paraxial PDEs for Er(x, y, s; k):

∂sE
r
x =

i

2k
∇2
⊥E

r
x +

ikx

ρ
Er
x +

ikx

ρ
Eb
x(x, y)

(1a)

∂sE
r
y =

i

2k
∇2
⊥E

r
y +

ikx

ρ
Er
y +

ikx

ρ
Eb
y(x, y)

(1b)

Er
s =

i

k
(∂xE

r
x + ∂yE

r
y) (1c)

•Known beam component of field Eb:

Eb
x = C

x

x2 + y2
, Eb

y = C
y

x2 + y2
(2)

•Boundary conditions for Er
x,y(x, y, s; k):

∂xE
r
x = ∂yE

b
y, on x = ±a

Er
x = −Eb

x, on y = ±b,
(3)

Er
y = −Eb

y, on x = ±a

∂yE
r
y = ∂xE

b
x, on y = ±b.

(4)

• Initial conditions for Er
x,y(x, y, s; k):

∇2
⊥E

r
x = 0 , ∇2

⊥E
r
y = 0 , at s = 0 (5)

Physical Problem

•Beam Setup.

Consider a line charge moving at v ≈ c, on a cir-
cular arc of radius ρ and length L, with perfectly
conducting rectangular vacuum chamber.

•Beam coordinate system.

Adopt special case with line charge reduced to
a single point. Maxwell’s equations written in
beam coordinates (x, y, s) where the arc is in the
(x, s) plane, s is the distance along the arc, and
(x, y) are perpendicular to arc.

•Electric field transformation.

Relate the electric field E(x, y, s, t) to frequency
domain field E(x, y, s; k) by Fourier-type trans-
formation:

E(x, y, s, t) ∝

∫ ∞

−∞
dkE(x, y, s; k)eik(s−t)

• Initial condition of the electric field.

Assume fields reached steady-state from infinite
straight prior to entering bend. Decompose elec-
tric field E into two components: radiation and
beam field denoted by Er and Eb respectively.
Eb reduces the effect of the singularity.

DG Overview

•DG shares similarities with the finite element and
finite volume methods.

•Rescale to dimensionless variables:

x → ax, y → ay, s → 2ka2s, Er
x,y → Cu/a

• Equations (1a) and (1b) become:

−i∂su = ∂xqx + ∂yqy + F

qx = ∂xu, qy = ∂yu
(6)

• Split Ω into K elements, select single element D.

• Local solution u ∈ PN (D).

•Multiply (6) by test functions v ∈ PN (D), inte-
grate by parts overD, adjust boundary terms for
fluxes (u∗, q∗x, q

∗
y), and integrate by parts again:

− i

∫

D
dA(v∂su) =

∫

D
dAv(∂xqx + ∂yqy + F )

−

∫

∂D
dLv

[

nx(qx − q∗x) + ny(qy − q∗y)
]

(7a)
∫

D
dA(vqx,y) =

∫

D
dAv(∂x,yu)

−

∫

∂D
dLvnx,y(u− u∗) (7b)

• Expand local solution in nodal Lagrange basis:

u(x, y) =

Np
∑

j=1

ujℓj(x, y), v(x, y) = ℓi(x, y)

•Vectors for nodal values u = (u1, u2, . . . , uNp
)T

with Np = (N + 1)(N + 2)/2.

• Similarly for qx,y, F , ℓ, then (7a)-(7b) become:

−iM
du

ds
= Sxqx + Syqy +MF

−

∫

∂D
dLnx(qx − q∗x)ℓ (8a)

−

∫

∂D
dLny(qy − q∗y)ℓ

Mqx = Sxu−

∫

∂D
dLnx(u− u∗)ℓ (8b)

Mqy = Syu−

∫

∂D
dLnx(u− u∗)ℓ (8c)

•Mass and stiffness matrices:

Mij =

∫

D
dAℓiℓj, (Sx,y)ij =

∫

D
dA(∂x,yℓi)ℓj

(9)

•Numerical fluxes depend on adjacent elements:

q∗x,y = {{qx,y}} − τ [[u]]x,y, u∗ = {{u}}

• Full details found in Nodal Discontinuous

Galerkin Methods, (New York: Springer, 2008)
by J. Hesthaven and T. Warburton.

DG Algorithm

Step 1: Build Elements and Matrices

• Partition Ω into K = 2Nres
x Nres

y triangles and
space nodes optimally for matrix conditioning.

Figure 1: Mesh of Nres
x = 6, Nres

y = 2, N = 4.

• Build collocation derivative matrices: Dx =
M−1Sx and Dy = M−1Sy.

Step 2: Compute Initial Conditions

•Use sparse DG Poisson solver on (5) with (3), (4)
to obtain initial Er

x,y.

•Generate initial Er
s with derivative matrices:

Er
s =

i

k
(DxE

r
x +DyE

r
y) (10)

DG Algorithm Cont.

Figure 2: Er
x initial state prior to entering bend.

Step 3: Evolve the Fields

• Estimate step size for evolution by:

∆s = Cs · k · r2min (11)

rmin is the minimum distance between all nodes,
Cs is CFL-like constant of O(1). Note: rmin ∝
1/(KN2).

• Compute qx,y with (8b)-(8c) and insert into (8a)
for right-hand-side of du/ds.

•Use 4th order explicit Runge-Kutta to evolve.

•At each step, compute Er
s with (10).

Figure 3: Real (top) and imaginary (bottom)
parts of Er

x after bend for a = 30mm, b = 10mm,
L = 200mm, ρ = 1m, and k = 8mm−1.

Step 4: Compute Impedance

• Evaluate impedance Z in two parts:

Z = Zb + Zs

Zb = −
Z0

2πC

∫ L

0
dsEs(0, 0, s; k) (12)

Zs = −
Z0

2πC

∫ ∞

L
dsEs(0, 0, s; k)

• For details on the evaluation of Z, see D. Zhou’s
paper: Jpn. J. Appl. Phys. 51 016401 (2012).

Numerical Results: DG

DG Er
x Error and Computation Time

N\K 150 600 1350 2400

8.107e-1 3.915e-1 7.471e-2 2.453e-2
8.032e-1 2.528e-1 4.291e-2 1.484e-2

2
9s 28s 49s 81s

122 486 1093 1943
1.265e-1 4.897e-3 9.344e-4 3.590e-4
8.017e-2 3.427e-3 9.462e-4 4.342e-4

4
29s 88s 202s 392s
539 2156 4850 8622

1.122e-2 5.177e-4 1.407e-4 5.483e-5
6.974e-3 6.187e-4 1.932e-4 8.045e-5

6
83s 283s 677s 1319s

1691 6764 15218 27054
1.569e-3 1.672e-4 5.612e-5 N\A*

1.493e-3 2.098e-4 7.473e-5 N\A*
8

208s 723s 1867s 3630s
4174 16693 37559 66771

*:Used for comparison to other tests.

Table 1: Point-wise (top), L2 error (upper mid-
dle), computation times (lower middle), and num-
ber of timesteps (bottom) for DG code using MAT-
LAB gpuArray implementation.

Numerical Results: FD

• FD MATLAB code is CPU-only based on Agoh
and Yokoya: PR-STAB 7 054403 (2004) which
uses 2nd-order stencil with leap-frog evolution.

FD Er
x Error and Computation Time

Grid 61× 21 121× 41 181× 61 241× 81

3.845e-1 1.126e-1 4.016e-2 3.440e-2
4.539e-1 1.223e-1 4.551e-2 2.840e-2

8s 125s 642s 2032s
200 800 1800 3200

Table 2: Point-wise (top), L2 error (upper mid-
dle), computation times (lower middle), and num-
ber of timesteps (bottom) for FD code using CPU.

Impedance Comparisons

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

350

k (mm−1)

R
e 

Z
 (

oh
m

s)

1 2 3 4 5 6 7 8 9 10
−40

−20

0

20

40

60

k (mm−1)

Im
 Z

 (
oh

m
s)

Figure 4: Real (top) and imaginary (bottom)
parts of the longitudinal impedance [DG (blue
solid), FD (red dashed)] for a = 30mm, b = 10mm,
L = 200mm, ρ = 1m, and k = 8mm−1. Agrees
with D .Zhou referenced above.

GPU Computing Comments

•GPU code was adapted from CPU code with
MATLAB’s gpuArray CUDA kernel.

•MATLAB’s GPU computing scales favorably for
larger problems with large matrix-matrix opera-
tions or highly parallel tasks.

•Observed ∼ 60% GPU usage for high resolution
run with matrices of size 45× 2400.

• CPU : Intel Xeon E5-1620 (∼ 80Gflops/sec)
GPU : NVIDIA GTX Titan (∼ 1.6Tflops/sec)

Future Work

• Examine spectral convergence order for DG.

•Design a higher order FD code with GPU imple-
mentation and compare performance with DG.

• Explore possible perturbation expansion of
2k2a3/ρ in rescaled versions of (1a) and (1b).

• Implement DG on Maxwell’s equations without
paraxial approximation and compare results.

• Consider DG on Vlasov-Maxwell’s equations for
future applications.

Acknowledgments

Our MATLAB DG code was built upon generic 2D
DG codes written by J. Hesthaven and T. Warbur-
ton (see nudg.org). We thank T. Agoh and D. Zhou
for sharing their work, D. Brewer for his timely help
in making our GPU system operational, and D. Ap-
pelo for his insightful comments. Work supported
by DOE under DE-FG-99ER41104.


