Paraxial Approximation in CSR Modeling Using the Discontinuous Galerkin Method

UNM D. A. Bizzozero, J. A. Ellison, K. A. Heinemann, and S. R. Lau

Department of Mathematics and Statistics, University of New Mexico; FEL 2013, New York

Introduction and Outline

- Well-established paraxial approximation in CSR has been previously modeled with a finite difference (FD) method.
- Novel approach in applying a discontinuous Galerkin (DG) method to the same equations.
- Starting point: nonhomogeneous Schrödinger type equations which arise from a paraxial approximation to Maxwell's equations.
- Include brief overview of DG and its implementation into our algorithm.
- Apply DG on a 2 D transverse (x, y) grid and evolve the equations along the arclength s.
- Estimate the errors of our results and compute the longitudinal impedance.
- Discuss CPU vs GPU performance.
- Outline possible future work and new applications for DG.

Mathematical Problem

- Domain of problem

Consider rectangular domain with $(x, y) \in \Omega=$ $[-a, a] \times[-b, b]$ and $s \in[0, L]$. Additional parameters satisfy: $k \in \mathbb{R}$ and $\rho>0$.

- Paraxial PDEs for $\mathbf{E}^{r}(x, y, s ; k)$:
$\partial_{s} E_{x}^{r}=\frac{i}{2 k} \nabla_{\perp}^{2} E_{x}^{r}+\frac{i k x}{\rho} E_{x}^{r}+\frac{i k x}{\rho} E_{x}^{b}(x, y)$ $\partial_{s} E_{y}^{r}=\frac{i}{2 k} \nabla_{\perp}^{2} E_{y}^{r}+\frac{i k x}{\rho} E_{y}^{r}+\frac{i k x}{\rho} E_{y}^{b}(x, y)$
$E_{s}^{r}=\frac{i}{k}\left(\partial_{x} E_{x}^{r}+\partial_{y} E_{y}^{r}\right)$
- Known beam component of field \mathbf{E}^{b} :
$E_{x}^{b}=C \frac{x}{x^{2}+y^{2}}, \quad E_{y}^{b}=C \frac{y}{x^{2}+y^{2}} \quad$ (2)
- Boundary conditions for $E_{x, y}^{r}(x, y, s ; k)$:

$$
\begin{array}{rlll}
\partial_{x} E_{x}^{r}=\partial_{y} E_{y}^{b}, & \text { on } & x= \pm a \\
E_{x}^{r}=-E_{x}^{b}, & \text { on } & y= \pm b, \\
E_{y}^{r}=-E_{y,}^{b}, & \text { on } & x= \pm a \\
\partial_{y} E_{y}^{r}=\partial_{x} E_{x}^{b}, & \text { on } & y= \pm b .
\end{array}
$$

- Initial conditions for $E_{x, y}^{r}(x, y, s ; k)$:
$\nabla_{\perp}^{2} E_{x}^{r}=0, \quad \nabla_{\perp}^{2} E_{y}^{r}=0, \quad$ at $s=0 \quad$ (5)

Physical Problem

- Beam Setup

Consider a line charge moving at $v \approx c$, on a circular arc of radius ρ and length L, with perfectly conducting rectangular vacuum chamber.

- Beam coordinate system.

Adopt special case with line charge reduced to a single point. Maxwell's equations written in beam coordinates (x, y, s) where the arc is in the (x, s) plane, s is the distance along the arc, and (x, y) are perpendicular to arc.

- Electric field transformation.

Relate the electric field $\mathcal{E}(x, y, s, t)$ to frequency domain field $\mathbf{E}(x, y, s ; k)$ by Fourier-type transformation:

$$
\mathcal{E}(x, y, s, t) \propto \int_{-\infty}^{\infty} d k \mathbf{E}(x, y, s ; k) e^{i k(s-t)}
$$

- Initial condition of the electric field.

Assume fields reached steady-state from infinite straight prior to entering bend. Decompose electric field \mathbf{E} into two components: radiation and beam field denoted by \mathbf{E}^{r} and \mathbf{E}^{b} respectively. \mathbf{E}^{b} reduces the effect of the singularity.

DG Overview

- DG shares similarities with the finite element and finite volume methods.
- Rescale to dimensionless variables:
$x \rightarrow a x, y \rightarrow a y, s \rightarrow 2 k a^{2} s, E_{x, y}^{r} \rightarrow C u / a$
- Equations (1a) and (1b) become:
$-i \partial_{s} u=\partial_{x} q_{x}+\partial_{y} q_{y}+F$
$q_{x}=\partial_{x} u, \quad q_{y}=\partial_{y} u$
- $\operatorname{Split} \Omega$ into K elements, select single element D.
- Local solution $u \in P^{N}(D)$.
- Multiply (6) by test functions $v \in P^{N}(D)$, integrate by parts over D, adjust boundary terms for fluxes $\left(u^{*}, q_{x}^{*}, q_{y}^{*}\right)$, and integrate by parts again:
$-i \int_{D} d A\left(v \partial_{s} u\right)=\int_{D} d A v\left(\partial_{x} q_{x}+\partial_{y} q_{y}+F\right)$ $-\int_{\partial D} d L v\left[n_{x}\left(q_{x}-q_{x}^{*}\right)+n_{y}\left(q_{y}-q_{y}^{*}\right)\right] \quad$ (7a) $\int_{D} d A\left(v v_{x, y}\right)=\int_{D} d A v\left(\partial_{x, y}, v^{2}\right.$
$-\int_{\partial D} d L n_{x, y}\left(u-u^{*}\right)$
- Expand local solution in nodal Lagrange basis:
$u(x, y)=\sum_{i=1}^{N_{n}} w_{f}(x, v, v) v(x, y)=\ell_{f}(x, y)$
- Vectors for nodal values $\mathbf{u}=\left(u_{1}, u_{2}, \ldots, u_{N_{p}}\right)^{T}$ with $N_{p}=(N+1)(N+2) / 2$.
- Similarly for $q_{x, y}, F, \ell$, then (7a)-(7b) become:

$$
\begin{aligned}
&-i \mathcal{M} \frac{d \mathbf{u}}{d s}=\mathcal{S}_{x} \mathbf{q}_{x}+\mathcal{S}_{y} \mathbf{q}_{y}+\mathcal{M} \mathbf{F} \\
&-\int_{\partial D} d L n_{x}\left(\mathbf{q}_{x}-\mathbf{q}_{x}^{*}\right) \boldsymbol{\ell} \\
&-\int_{\partial D} d L n_{y}\left(\mathbf{q}_{y}-\mathbf{q}_{y}^{*}\right) \boldsymbol{\ell} \\
& \mathcal{M} \mathbf{q}_{x}=\mathcal{S}_{x} \mathbf{u}-\int_{\partial D} d L n_{x}\left(\mathbf{u}-\mathbf{u}^{*}\right) \boldsymbol{\ell} \\
& \mathcal{M} \mathbf{q}_{y}=\mathcal{S}_{y} \mathbf{u}-\int_{\partial D} d L n_{x}(\mathbf{u}) \\
&\left.\mathbf{u}-\mathbf{u}^{*}\right) \boldsymbol{\ell}
\end{aligned}
$$

- Mass and stiffness matrices:
$\mathcal{M}_{i j}=\int_{D} d A \ell_{i} \ell_{j}, \quad\left(\mathcal{S}_{x, y}\right)_{i j}=\int_{D} d A\left(\partial_{x, y} \ell_{i}\right) \ell_{j}$
- Numerical fluxes depend on adjacent elements:

$$
q_{x, y}^{*}=\left\{\left\{q_{x, y}\right\}\right\}-\tau[u]_{x, y}, \quad u^{*}=\{\{u\}\}
$$

- Full details found in Nodal Discontinuous Galerkin Methods, (New York: Springer, 2008) by J. Hesthaven and T. Warburton.

DG Algorithm

Step 1: Build Elements and Matrices

- Partition Ω into $K=2 N_{x}^{\text {res }} N_{y}^{\text {res }}$ triangles and space nodes optimally for matrix conditioning.

Figure 1: Mesh of $N_{x}^{\text {res }}=6, N_{y}^{\text {res }}=2, N=4$.

- Build collocation derivative matrices: \mathcal{D}_{x} $\mathcal{M}^{-1} \mathcal{S}_{x}$ and $\mathcal{D}_{y}=\mathcal{M}^{-1} \mathcal{S}_{y}$.
Step 2: Compute Initial Conditions
- Use sparse DG Poisson solver on (5) with (3), (4) to obtain initial $E_{x, y}^{r}$.
- Generate initial E_{s}^{r} with derivative matrices:

$$
E_{s}^{r}=\frac{i}{k}\left(\mathcal{D}_{x} E_{x}^{r}+\mathcal{D}_{y} E_{y}^{r}\right)
$$ (10)

DG Algorithm Cont.

Figure 2: E_{x}^{r} initial state prior to entering bend
Step 3: Evolve the Fields

- Estimate step size for evolution by
$\Delta s=C_{s} \cdot k \cdot r_{\text {min }}^{2}$
$r_{\text {min }}$ is the minimum distance between all nodes, C_{s} is CFL-like constant of $\mathcal{O}(1)$. Note: $r_{\text {min }} \propto$ $1 /\left(K N^{2}\right)$
- Compute $\mathbf{q}_{x, y}$ with (8b)-(8c) and insert into (8a) for right-hand-side of $d \mathbf{u} / d s$.
- Use 4th order explicit Runge-Kutta to evolve
- At each step, compute E_{s}^{r} with (10).

${ }^{y(\text { mim })}$ Figure 3: Real (top) ${ }^{x(\text { man })}$ and imaginary (bottom) parts of E_{x}^{r} after bend for $a=30 \mathrm{~mm}, b=10 \mathrm{~mm}$, $L=200 \mathrm{~mm}, \rho=1 \mathrm{~m}$, and $k=8 \mathrm{~mm}^{-1}$
Step 4: Compute Impedance
- Evaluate impedance Z in two parts:

$$
\begin{aligned}
Z & =Z_{b}+Z_{s} \\
Z_{b} & =-\frac{Z_{0}}{2 \pi C} \int_{0}^{L} d s E_{s}(0,0, s ; k) \\
Z_{s} & =-\frac{Z_{0}}{2 \pi C} \int_{L}^{\infty} d s E_{s}(0,0, s ; k)
\end{aligned}
$$

- For details on the evaluation of Z, see D. Zhou's paper: Jpn. J. Appl. Phys. 51016401 (2012).

Numerical Results: DG

DG E_{x}^{r} Error and Computation Time | $\mathbf{N} \backslash \mathbf{K}$ | $\mathbf{1 5 0}$ | $\mathbf{6 0 0}$ | $\mathbf{1 3 5 0}$ | $\mathbf{2 4 0 0}$ |
| :---: | ---: | ---: | ---: | ---: |
| | $8.107 \mathrm{e}-1$ | $3.915 \mathrm{e}-1$ | $7.471 \mathrm{e}-2$ | $2.453 \mathrm{e}-2$ |

 \begin{tabular}{r|r|r|r|}
\hline 9 s \& 28 s \& 49 s \& 81 s

122 \& 486 \& 1093 \& 1943

\hline

 $1.265 \mathrm{e}-14.897 \mathrm{e}-3 \quad 9.344 \mathrm{e}-4 \quad 3.590 \mathrm{e}-4$ 8.017e-2 $3.427 \mathrm{e}-39.462 \mathrm{e}-44.342 \mathrm{e}-4$

29 s \& 88 s \& 202 s \& 392 s

539 \& 2156 \& 4850 \& 8622

 $\begin{array}{rrrrr}539 & 2156 & 4850 & 8622 \\ 1.122 e-2 & 5.177 e-4 & 1.407 e-4 & 5.483 e-5\end{array}$ $6 \quad 6.974 \mathrm{e}-36.187 \mathrm{e}-41.932 \mathrm{e}-48.045 \mathrm{e}-5$

83 s \& 283 s \& 677 s \& 1319 s

1691 \& 6764 \& 1518 \& 270

1691 \& 6764 \& 15218 \& 27054

\hline

$1.569 e-3$ \& $1.672 e-4$ \& $5.612 e-5$ \& $\mathrm{~N} \backslash \mathrm{~A}^{*}$

$1.493-3$ \& $2.09 \mathrm{~B}^{2}-4$ \& $7.47 \mathrm{e}-5$ \& $\mathrm{~N} \backslash \mathrm{~A}^{*}$

 $\begin{array}{rrrr}1.493 \mathrm{e}-3 & 2.098 \mathrm{e}-4 & 7.473 \mathrm{e}-5 & \mathrm{~N}^{2} \backslash \mathrm{~A}^{*} \\ 208 \mathrm{~s} & 723 \mathrm{~s} & 1867 \mathrm{~s} & 3630 \mathrm{~s}\end{array}$

208 s \& 723 s \& 1867 s \& 3630 s

4174 \& 16693 \& 37559 \& 66771

\hline
\end{tabular}

