Quasiperiodic Method of Averaging Applied to Planar Undulator Motion Excited by a Fixed Traveling Wave

<u>K. A. Heinemann¹</u>, J. A. Ellison¹, M. Vogt² 1 Department of Mathematics and Statistics, UNM, Albuquerque, NM, USA 2 Deutsches Elektronen Synchrotron (DESY), Hamburg, Germany

(8)

• Topic: Summary of our mathematical study in [1] of planar motion of energetic electrons moving through planar dipole undulator, excited by fixed planar polarized plane wave Maxwell field in X-Ray

• ODE's (15),(16) now become

 $\theta' = \varepsilon f_1(\chi, \zeta) + O(\varepsilon^2) ,$ $\chi' = \varepsilon f_2(\theta, \zeta, \nu) + O(\varepsilon^2) ,$

(20)

(21)

• Normal form approximation of (24),(25) in Near-to-resonant case: drop the $O(\varepsilon^2)$ and average the $O(\varepsilon)$ terms by holding slowly varying quantities $\theta, \chi, \varepsilon a \zeta$ fixed:

 $v_1' = 2\varepsilon v_2 \; , \qquad$

(27)

FEL regime

• Tool: Normal form analysis via first-order Method of Averaging (MoA) which is long time perturbation theory for ODE's Normal forms are obtained by averaging over in-

dependent variable

- Feature 1: Starting from exact 6D equations of motion, MoA gives explicit error bounds relating exact and normal form solutions
- Feature 2: Near-to-resonant normal form analysis generalizes ponderomotive phase and FEL pendulum system
- Feature 3: Far from resonance Δ -nonresonant normal form is used

The planar undulator motion

• 6D Lorentz equations of motion in SI units with z as the independent variable:

 $\frac{dx}{dz} = \frac{p_x}{p_z}, \quad \frac{dy}{dz} = \frac{p_y}{p_z}, \quad \frac{dt}{dz} = \frac{m\gamma}{p_z}, \quad (1)$ $\frac{dp_x}{dz} = -\frac{e}{c}[cB_u\cosh(k_u y)\sin(k_u z)]$ $-\frac{p_y}{c}B_u\sinh(k_u y)\cos(k_u z)$ $+E_r(rac{m\gamma c}{p_z}-1)h(\check{lpha}(z,t))],$ (2)

with p_x and p_z replaced by

 $p_x = p_x(0) + mcK$ $\cdot \left(\cos(k_u z) - 1 + \frac{E_r}{cB_u} \frac{k_u}{k_r} [H(\alpha) - H(\alpha(0))] \right) ,$ $p_z = \sqrt{m^2 c^2 (\gamma^2 - 1) - p_x^2} ,$ $K = \frac{eB_u}{mck_u} =$ undulator parameter

- Transform (7),(8) to standard form for MoA \implies introduce normalized energy deviation η and its O(1) counterpart χ via
- $\gamma = \gamma_c (1 + \eta) = \gamma_c (1 + \varepsilon \chi)$ (9)• γ_c is characteristic value of γ and ε is characteristic spread of η
- χ new O(1) dependent variable replacing γ
- Do asymptotic analysis for γ_c large and ε small $\implies \gamma_c$ large and η small as in an X-Ray FEL \implies (7),(8) become

 $\left[\alpha + Q(\zeta)\right]' = \varepsilon K_r q(\zeta) \chi + O(\frac{1}{\gamma_{\epsilon}^2}) + O(\varepsilon^2) , (10)$ $\chi' = -K^2 \frac{\mathcal{E}}{\varepsilon \gamma_c^2} (\cos \zeta + \Delta P_{x0}) h(\alpha)$ $+O(1/\gamma_c^2)+O(1/\varepsilon\gamma_c^4)$, (11)

 $f_1(\chi,\zeta) = \frac{2q(\zeta)}{\bar{q}}\chi$, $f_2(\theta, \zeta, \nu) = -K^2(\cos \zeta + \Delta P_{x0})$ $\cdot \cos\left(\nu\theta - \nu\zeta - \nu\Upsilon_0\sin\zeta - \nu\Upsilon_1\sin 2\zeta\right)$ $= -\frac{K^2}{2}e^{i\nu\theta}\sum \hat{jj}(n;\nu,\Delta P_{x0})e^{i(n-\nu)\zeta} + cc ,$

and where

where

• $f_1(\chi,\zeta)$ and $f_2(\theta,\zeta,\nu)$ are quasiperiodic in ζ • f_1 is 2π periodic, i.e., has base periodicity, 2π • f_2 has two base periodicities, 2π and $2\pi/\nu$ • Averages needed for normal form analysis:

 $\bar{f}_1(\chi) = \lim_{T \to \infty} \left[\frac{1}{T} \int_0^T f_1(\chi, \zeta) d\zeta\right] = 2\chi ,$ $\bar{f}_2(\theta,\nu) = \lim_{T \to \infty} \left[\frac{1}{T} \int_0^T f_2(\theta,\zeta,\nu) d\zeta\right]$ $= \begin{cases} 0 & \text{if } \nu \notin \mathbb{N} \\ -K^2 \widehat{jj}(k; k, \Delta P_{x0}) \cos(k\theta) & \text{if } \nu = k \in \mathbb{N} \end{cases},$ where $\mathbb{N}=$ set of positive integers

 Δ -nonresonant normal form

$\hat{v_2} = -\varepsilon K^2 \hat{jj}(k;k,\Delta P_{x0})\cos(kv_1 - \varepsilon a\zeta)$ (28)

- Near-to-resonant case is natural if $|\nu k|$ "small"
- Resonant case is special case when a = 0
- [1] gives error bounds:
 - $|\theta(\zeta,\varepsilon) v_1(\zeta,\varepsilon)| \le C_R(T)\varepsilon ,$ $|\chi(\zeta,\varepsilon) - v_2(\zeta,\varepsilon)| \le C_R(T)\varepsilon ,$
- for $0 \leq \zeta \leq T/\varepsilon$ with ε sufficiently small and where $C_R(T)$ is positive constant
- A phase plane portrait for the system (27), (28) is shown in figure below with k = 1 and $K^2 \widehat{jj}(k;k,\Delta P_{x0}) = 2$
- Phase plane orbits on resonance, i.e., a = 0 are marked in figure by solid magenta, blue, red curves and five black fixed points
- Near-to-resonant phase plane orbits, for a =1/3, are marked in figure by green solid and dotted magenta and red curves and are computed with ode45 solver of Matlab

 $\frac{dp_y}{dz} = -\frac{e p_x}{c p_z} c B_u \sinh(k_u y) \cos(k_u z) , \quad (3)$ $\frac{dp_z}{dz} = -\frac{e}{c} \left[-\frac{p_x}{p_z} cB_u \cosh(k_u y) \sin(k_u z)\right]$ $+E_r \frac{p_x}{\alpha} h(\check{\alpha}(z,t))]$ (4)

• x, y, z are Cartesian coordinates

- z distance along undulator
- t(z) arrival time at z
- p_x, p_y, p_z Cartesian momenta • $\gamma^2 = 1 + \mathbf{p} \cdot \mathbf{p}/m^2 c^2$
- m=electron mass; -e=electron charge; c=vacuum speed of light
- Undulator magnetic field:

 $\mathbf{B}_{u} = -B_{u} \left(\begin{array}{c} \cosh(k_{u}y)\sin(k_{u}z) \\ \sinh(k_{u}y)\cos(k_{u}z) \end{array} \right) , \quad (5)$

- $B_u > 0$ undulator field strength • $k_u > 0$ undulator wave number
- Traveling wave radiation field:

$$\mathbf{E}_r = E_r h(\check{\alpha}) \begin{pmatrix} 1\\0\\0 \end{pmatrix} , \quad \mathbf{B}_r = \frac{1}{c} \begin{pmatrix} 0\\0\\1 \end{pmatrix} \times \mathbf{E}_r$$

• $E_r > 0$, $h : \mathbb{R} \to \mathbb{R}$ • $\check{\alpha}(z,t) = k_r(z-ct)$ with $k_r > 0$

• \mathcal{E} not necessarily small \implies our results may be even relevant in high gain saturation regime • Transform (10),(11) into standard form for MoA \implies need slowly varying dependent variables. Clearly, $lpha+Q(\zeta)$ is slowly varying and we anticipate that χ will be slowly varying, i.e., ${\cal E}/\varepsilon\gamma_c^2$ small

• Thus define $\theta = \alpha + Q(\zeta) \implies (10), (11)$ become $\theta' = \varepsilon K_r q(\zeta) \chi + O(1/\gamma_c^2) + O(\varepsilon^2) , \qquad (12)$ $\chi' = -K^2 \frac{\mathcal{E}}{\varepsilon \gamma_e^2} (\cos \zeta + \Delta P_{x0}) h(\theta - Q(\zeta))$ $+O(1/\gamma_c^2)+O(1/\varepsilon\gamma_c^4)$ (13)

Distinguished case: To obtain pendulum behavior, heta and χ need to interact in (12),(13) first-order ε $\implies \varepsilon$ and γ_c related by $\varepsilon = \frac{\varepsilon}{\varepsilon \alpha^2} \implies$ $\varepsilon = \sqrt{\mathcal{E}}^{\perp}$ (14)

 \implies (12),(13) can be written in standard form: $\theta' = \varepsilon K_r q(\zeta) \chi + O(\varepsilon^2) ,$ (15) $\chi' = -\varepsilon K^2(\cos\zeta + \Delta P_{x0})h(\theta - Q(\zeta))$

- Δ -nonresonant case is example of quasiperiodic averaging with a small divisor problem of very simple structure
- Δ -nonresonant case defined by: $\nu \in [k + \Delta, k + \Delta]$ $[1 - \Delta]$ with $\Delta \in (0, 0.5)$ and $k \in \mathbb{N}$
- Normal form approximation of (20),(21) in Δ -nonresonant case: drop the $O(\varepsilon^2)$ terms and average the $O(\varepsilon)$ terms by holding slowly varying quantities θ, χ fixed
- $\implies \Delta$ -nonresonant normal form system:
- $v_1' = \varepsilon 2 v_2 , \quad v_2' = 0$ (23)• Δ -nonresonant case is natural if |
 u - k| "big " • [1] gives error bounds:

 $|\theta(\zeta,\varepsilon,\nu) - v_1(\zeta,\varepsilon)| \le C(T)\frac{\varepsilon}{\Lambda},$ $|\chi(\zeta,\varepsilon,\nu) - v_2(\zeta,\varepsilon)| \le C(T)\frac{\varepsilon}{\Lambda} ,$

- for $0 \leq \zeta \leq T/\varepsilon$ with ε sufficiently small and where C(T) is positive constant
- Error bound increases as $\Delta \rightarrow 0$, i.e., as ν moves toward resonance

Near-to-resonant normal form

Near-to-resonant case is an example of periodic

• θ generalizes so-called ponderomotive phase since, if $a = 0, \Delta P_{x0} = 0$, it is the ponderomotive phase which in standard treatments is introduced heuristically to maximize energy transfer

• For $\Delta P_{x0} = 0$:

- $\widehat{jj}(k;k,0) =$ $\begin{cases} \frac{1}{2}(-1)^n [J_n(x_n) - J_{n+1}(x_n)] & \text{if } k = 2n+1 \\ \text{if } k \text{ over} \end{cases}$ if k even ,
- where $x_n = (2n + 1)\Upsilon_1$ and n = 0, 1, ... with $J_m = m$ -th-order Bessel function of first kind \implies for $a = 0, \Delta P_{x0} = 0$, (27),(28) give standard FEL pendulum system for odd k (see references in [1] and [2])
- Remark on non-monochromatic case: If Fourier transform $\tilde{h}(\xi)$ of h is continuous, e.g., narrow Gaussian centered on resonance $\xi = k$, the resonant effect may be washed out and thus FEL pendulum behavior disappears in first order averaging

• We confine to planar motion with no approximation since: $y(0) = p_y(0) = 0 \Longrightarrow y(z) = p_y(z) = 0$ \implies the six ODE's (1)-(4) reduce to four ODE's • Righthand sides of (1)-(4) x-independent $\implies x$ equation need not be considered

The 2D System

• $\frac{p_x}{mcK} - \cos(k_u z) - \frac{E_r}{cB_u} \frac{k_u}{k_u} H(\alpha)$, is conserved where H is any antiderivative of h, i.e., H' = h $\implies p_x$ can be eliminated

• Two equations remain \implies everything determined from equations for t and p_z

• Natural scaling for z is $z = \zeta/k_u$

The 2D system in monochromatic case

• Monochromatic case:

- averaging. It is defined by: $\nu = k + \varepsilon a$ where $k \in \mathbb{N}$ and $a \in [-1/2, 1/2]$
- Near-to-resonant case explores $O(\varepsilon)$ neighborhoods of $\nu = k$ resonances

• Write (20),(21) as:

 $\theta' = \varepsilon f_1(\chi, \zeta) + O(\varepsilon^2) ,$ (24) $\chi' = \varepsilon f_2^R(\theta, \varepsilon\zeta, \zeta, k, a) + O(\varepsilon^2) ,$ (25) $f_2^R(\theta, \tau, \zeta, k, a) = -K^2(\cos\zeta + \Delta P_{x0})$ $\cdot \cos\left(k[\theta - \zeta - \Upsilon_0 \sin \zeta - \Upsilon_1 \sin 2\zeta] - a\tau\right)$ $= -\frac{K^2}{2} \exp(i[k\theta - a\tau])$ $\cdot \sum \hat{jj}(n;k,\Delta P_{x0})e^{i\zeta[n-k]} + cc$ (26)

• $f_1(\chi,\zeta)$, $f_2^R(\theta,\tau,\zeta,k,a)$ are 2π periodic in ζ

The work was supported by DOE under DE-FG-99ER41104 and by DESY. Discussions with M. Dohlus, H.S. Dumas, M. Gooden, Z. Huang, K-J Kim, R. Lindberg, B.F. Roberts, R. Warnock and I. Zagorodnov are gratefully acknowledged. Special thanks to R. Lindberg for helpful comments during formulation of our approach

[1] K.A. Heinemann; J.A. Ellison; M. Vogt; M. Gooden, "Planar undulator motion excited by a fixed traveling wave: Quasiperiodic Averaging, normal forms and the FEL pendulum", arXiv:1303.5797 (2013). Submitted for publication.

[2] K.A. Heinemann; J.A. Ellison; M. Vogt, "Quasiperiodic Method of Averaging Applied to Planar Undulator Motion Excited by a Fixed Traveling Wave", Proceedings of FEL 2013.