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Introduction

• Topic: Summary of our mathematical study in
[1] of planar motion of energetic electrons moving
through planar dipole undulator, excited by fixed
planar polarized plane wave Maxwell field in X-Ray
FEL regime

• Tool: Normal form analysis via first-order Method
of Averaging (MoA) which is long time perturba-
tion theory for ODE’s
Normal forms are obtained by averaging over in-
dependent variable

• Feature 1: Starting from exact 6D equations of
motion, MoA gives explicit error bounds relating
exact and normal form solutions

• Feature 2: Near-to-resonant normal form analysis
generalizes ponderomotive phase and FEL pendu-
lum system

• Feature 3: Far from resonance ∆-nonresonant
normal form is used

The planar undulator motion

• 6D Lorentz equations of motion in SI units with
z as the independent variable:
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• x, y, z are Cartesian coordinates

• z distance along undulator

• t(z) arrival time at z

• px, py, pz Cartesian momenta

• γ2 = 1 + p · p/m2c2

•m=electron mass; −e=electron charge;
c=vacuum speed of light

• Undulator magnetic field:

Bu = −Bu
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•Bu > 0 undulator field strength

• ku > 0 undulator wave number

• Traveling wave radiation field:

Er = Erh(α̌)
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•Er > 0, h : R → R

• α̌(z, t) = kr(z − ct) with kr > 0

The 2D System

•We confine to planar motion with no approxima-
tion since:
y(0) = py(0) = 0 =⇒ y(z) = py(z) = 0
=⇒ the six ODE’s (1)-(4) reduce to four ODE’s

• Righthand sides of (1)-(4) x-independent =⇒ x
equation need not be considered

• px

mcK−cos(kuz)− Er
cBu

ku
kr

H(α), is conserved where

H is any antiderivative of h, i.e., H ′ = h
=⇒ px can be eliminated

• Two equations remain =⇒ everything determined
from equations for t and pz

•Natural scaling for z is z = ζ/ku

• Replace dependent variable t by α̌ and define

α(ζ) = α̌(z, t(z)) = kr(z − ct(z)) (6)

Replace pz by γ =⇒ basic 2D system:
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with px and pz replaced by
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• Transform (7),(8) to standard form for MoA
=⇒ introduce normalized energy deviation η and
its O(1) counterpart χ via

γ = γc(1 + η) = γc(1 + εχ) (9)

• γc is characteristic value of γ and ε is character-
istic spread of η

• χ new O(1) dependent variable replacing γ

•Do asymptotic analysis for γc large and ε small
=⇒ γc large and η small as in an X-Ray FEL
=⇒ (7),(8) become
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• E not necessarily small =⇒ our results may be
even relevant in high gain saturation regime

• Transform (10),(11) into standard form for MoA
=⇒ need slowly varying dependent variables.
Clearly, α + Q(ζ) is slowly varying and we an-
ticipate that χ will be slowly varying, i.e., E/εγ2

c
small

• Thus define θ = α + Q(ζ) =⇒ (10),(11) become
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Distinguished case: To obtain pendulum behavior,
θ and χ need to interact in (12),(13) first-order ε
=⇒ ε and γc related by ε = E
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c
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=⇒ (12),(13) can be written in standard form:

θ′ = εKrq(ζ)χ + O(ε2) , (15)

χ′ = −εK2(cos ζ + ∆Px0)h(θ − Q(ζ))

+O(ε2) (16)

The 2D system

in monochromatic case

•Monochromatic case:

H(α̌) = (1/ν) sin(να̌) , h(α̌) = cos(να̌) ,(17)
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•ODE’s (15),(16) now become

θ′ = εf1(χ, ζ) + O(ε2) , (20)
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• f1(χ, ζ) and f2(θ, ζ, ν) are quasiperiodic in ζ

• f1 is 2π periodic, i.e., has base periodicity, 2π

• f2 has two base periodicities, 2π and 2π/ν

• Averages needed for normal form analysis:
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where N=set of positive integers

∆-nonresonant normal form

• ∆-nonresonant case is example of quasiperiodic
averaging with a small divisor problem of very sim-
ple structure

• ∆-nonresonant case defined by: ν ∈ [k + ∆, k +
1 − ∆] with ∆ ∈ (0, 0.5) and k ∈ N

• Normal form approximation of (20),(21) in
∆-nonresonant case: drop the O(ε2) terms and
average the O(ε) terms by holding slowly varying
quantities θ, χ fixed
=⇒ ∆-nonresonant normal form system:

v′1 = ε2v2 , v′2 = 0 (23)

• ∆-nonresonant case is natural if |ν − k| “big ”

• [1] gives error bounds:

|θ(ζ, ε, ν) − v1(ζ, ε)| ≤ C(T )
ε

∆
,

|χ(ζ, ε, ν) − v2(ζ, ε)| ≤ C(T )
ε

∆
,

for 0 ≤ ζ ≤ T/ε with ε sufficiently small and
where C(T ) is positive constant

• Error bound increases as ∆ → 0, i.e., as ν moves
toward resonance

Near-to-resonant normal form

• Near-to-resonant case is an example of periodic
averaging. It is defined by: ν = k + εa where
k ∈ N and a ∈ [−1/2, 1/2]

• Near-to-resonant case explores O(ε) neighbor-
hoods of ν = k resonances

•Write (20),(21) as:

θ′ = εf1(χ, ζ) + O(ε2) , (24)

χ′ = εfR
2 (θ, εζ, ζ, k, a) + O(ε2) , (25)
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• f1(χ, ζ), fR
2 (θ, τ, ζ, k, a) are 2π periodic in ζ

• Normal form approximation of (24),(25) in
Near-to-resonant case: drop the O(ε2) and av-
erage the O(ε) terms by holding slowly varying
quantities θ, χ, εaζ fixed:

v′1 = 2εv2 , (27)

v′2 = −εK2ĵj(k; k, ∆Px0) cos(kv1 − εaζ) (28)

• Near-to-resonant case is natural if |ν−k| “small”

• Resonant case is special case when a = 0

• [1] gives error bounds:

|θ(ζ, ε) − v1(ζ, ε)| ≤ CR(T )ε ,

|χ(ζ, ε) − v2(ζ, ε)| ≤ CR(T )ε ,

for 0 ≤ ζ ≤ T/ε with ε sufficiently small and
where CR(T ) is positive constant

• A phase plane portrait for the system (27), (28)
is shown in figure below with k = 1 and
K2ĵj(k; k, ∆Px0) = 2

• Phase plane orbits on resonance, i.e., a = 0 are
marked in figure by solid magenta, blue, red curves
and five black fixed points

• Near-to-resonant phase plane orbits, for a =
1/3, are marked in figure by green solid
and dotted magenta and red curves and
are computed with ode45 solver of Matlab
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• θ generalizes so-called ponderomotive phase since,
if a = 0, ∆Px0 = 0, it is the ponderomotive phase
which in standard treatments is introduced heuris-
tically to maximize energy transfer

• For ∆Px0 = 0:

ĵj(k; k, 0) ={
1
2(−1)n[Jn(xn) − Jn+1(xn)] if k = 2n + 1
0 if k even ,

where xn = (2n + 1)Υ1 and n = 0, 1, ... with
Jm=m-th-order Bessel function of first kind
=⇒ for a = 0, ∆Px0 = 0, (27),(28) give standard
FEL pendulum system for odd k (see references
in [1] and [2])

• Remark on non-monochromatic case: If Fourier
transform h̃(ξ) of h is continuous, e.g., narrow
Gaussian centered on resonance ξ = k, the res-
onant effect may be washed out and thus FEL
pendulum behavior disappears in first order aver-
aging
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