Quasiperiodic Method of Averaging Applied to Planar Undulator Motion Excited by a Fixed Traveling Wave

UNM

K. A. Heinemann ${ }^{1}$, J. A. Ellison ${ }^{1}$, M. Vogt ${ }^{2}$
${ }^{1}$ Department of Mathematics and Statistics, UNM, Albuquerque, NM, USA
${ }^{2}$ Deutsches Elektronen Synchrotron (DESY), Hamburg, Germany

Introduction

- Topic: Summary of our mathematical study in [1] of planar motion of energetic electrons moving through planar dipole undulator, excited by fixed planar polarized plane wave Maxwell field in X-Ray FEL regime
- Tool: Normal form analysis via first-order Method of Averaging (MoA) which is long time perturbation theory for ODE's
Normal forms are obtained by averaging over dependent variable
- Feature 1: Starting from exact 6D equations of motion, MoA gives explicit error bounds relating exact and normal form solutions
- Feature 2: Near-to-resonant normal form analysis generalizes ponderomotive phase and FEL pendulum system
- Feature 3: Far from resonance Δ-nonresonant normal form is used

The planar undulator motion
-6D Lorentz equations of motion in SI units with z as the independent variable:
$\frac{d x}{d z}=\frac{p_{x}}{p_{z}}, \quad \frac{d y}{d z}=\frac{p_{y}}{p_{z}}, \quad \frac{d t}{d z}=\frac{m \gamma}{p_{z}}$
$\frac{d p_{x}}{d z}=-\frac{e}{c}\left[c B_{u} \cosh \left(k_{u} y\right) \sin \left(k_{u} z\right)\right.$
$-\underline{p_{y}} c B_{u} \sinh \left(k_{u}\right) \cos \left(k_{u} z\right)$
p_{z}
$\left.+E_{r}\left(\frac{m \gamma c}{p_{z}}-1\right) h(\check{\alpha}(z, t))\right]$
$\frac{d p_{y}}{d z}=-\frac{e p_{x}}{c p_{z}} c B_{u} \sinh \left(k_{u} y\right) \cos \left(k_{u} z\right)$
$\frac{d p_{z}}{d z}=-\frac{e}{c}\left[-\frac{p_{x}}{p_{z}} c B_{u} \cosh \left(k_{u} y\right) \sin \left(k_{u} z\right)\right.$

- x, y, z are Cartesian coordinates
- z distance along undulator
- $t(z)$ arrival time at z
- p_{x}, p_{y}, p_{z} Cartesian momenta
- $\gamma^{2}=1+\mathbf{p} \cdot \mathbf{p} / m^{2} c^{2}$
$m=$ electron mass
$c=$ vacuum speed of light
- Undulator magnetic field:

$$
\mathbf{B}_{u}=-B_{u}\left(\begin{array}{c}
0 \\
\cosh \left(k_{u} y\right) \sin \left(k_{u} z\right) \\
\sinh \left(k_{u} y\right) \cos \left(k_{u} z\right)
\end{array}\right)
$$

- $B_{u}>0$ undulator field strength
- $k_{u}>0$ undulator wave number
- Traveling wave radiation field:
$\mathrm{E}_{r}=E_{r} h(\hat{\alpha}$
$\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$
$\mathbf{B}_{r}=\frac{1}{c}\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right) \times \mathbf{E}_{r}$
- $E_{r}>0, h: \mathbb{R} \rightarrow \mathbb{R}$
- $\check{\alpha}(z, t)=k_{r}(z-c t)$ with $k_{r}>0$

The 2D System

- We confine to planar motion with no approxima-
tion since:
$y(0)=p_{y}(0)=0 \Longrightarrow y(z)=p_{y}(z)=0$
\Longrightarrow the six ODE's (1)-(4) reduce to four ODE's
- Righthand sides of (1)-(4) x-independent $\Longrightarrow x$ equation need not be considered
- $\frac{p_{x}}{m c K}-\cos \left(k_{u} z\right)-\frac{E_{r}}{c B_{u}} \frac{k_{u}}{k_{r}} H(\alpha)$, is conserved where H is any antiderivative of h, i.e., $H^{\prime}=h$
$\Longrightarrow p_{x}$ can be eliminated
- Two equations remain \Longrightarrow everything determined from equations for t and p_{z}
- Natural scaling for z is $z=\zeta / k_{u}$
- Replace dependent variable t by $\check{\alpha}$ and define

Replace p_{z} by $\gamma \Longrightarrow$ basic 2D system:

$$
\begin{aligned}
& \frac{d \alpha}{d \zeta}=\frac{k_{r}}{k_{u}}\left(1-\frac{m \gamma c}{p_{z}}\right), \\
& \frac{d \gamma}{d \zeta}=-\frac{e E_{r} p_{x}}{k_{u} m c^{2} p_{z}} h(\alpha),
\end{aligned}
$$

with p_{x} and p_{z} replaced by
$p_{x}=p_{x}(0)+m c K$
$\left(\cos \left(k_{u} z\right)-1+\frac{E_{r}}{c B_{u}} \frac{k_{u}}{k_{r}}[H(\alpha)-H(\alpha(0))]\right)$
$p_{z}=\sqrt{m^{2} c^{2}\left(\gamma^{2}-1\right)-p_{x}^{2}}$,
$K=\frac{e B_{u}}{m c k_{u}}=$ undulator parameter

- Transform (7),(8) to standard form for MoA \Longrightarrow introduce normalized energy deviation η and its $O(1)$ counterpart χ via
- γ_{c} is characteristic value of γ and ε is characteristic spread of η
- χ new $O(1)$ dependent variable replacing γ
- Do asymptotic analysis for γ_{c} large and ε small $\Longrightarrow \gamma_{c}$ large and η small as in an X-Ray FEL
\Longrightarrow (7),(8) become
$[\alpha+Q(\zeta)]^{\prime}=\varepsilon K_{r} q(\zeta) \chi+O\left(\frac{1}{\gamma_{c}^{2}}\right)+O\left(\varepsilon^{2}\right),(10)$
$\chi^{\prime}=-K^{2} \frac{\mathcal{E}}{\varepsilon \gamma^{2}}\left(\cos \zeta+\Delta P_{x 0}\right) h(\alpha)$
$+O\left(1 / \gamma_{c}^{2}\right)+O\left(1 / \varepsilon \gamma_{c}^{4}\right)$

where

$K_{r}=\frac{k_{r}}{k_{u} \gamma_{c}^{2}}, \mathcal{E}=\frac{E_{r}}{c B_{u}}, \Delta P_{x 0}=\frac{p_{x}(0)}{m c K}-1$,
$q(\zeta)=1+K^{2}\left(\cos \zeta+\Delta P_{x 0}\right)^{2}$
$Q^{\prime}(\zeta)=\frac{K_{r}}{2} q(\zeta), \quad Q(0)=0$

- \mathcal{E} not necessarily small \Longrightarrow our results may be even relevant in high gain saturation regime
- Transform (10),(11) into standard form for MoA \Longrightarrow need slowly varying dependent variables. Clearly, $\alpha+Q(\zeta)$ is slowly varying and we anticipate that χ will be slowly varying, i.e, $\mathcal{E} / \mathcal{\varepsilon}$ small
- Thus define $\theta=\alpha+Q(\zeta) \Longrightarrow(10),(11)$ become
$\theta^{\prime}=\varepsilon K_{r} q(\zeta) \chi+O\left(1 / \gamma_{c}^{2}\right)+O\left(\varepsilon^{2}\right), \quad$ (12)
$\chi^{\prime}=-K^{2} \frac{\mathcal{E}}{\varepsilon \gamma_{c}^{2}}\left(\cos \zeta+\Delta P_{x 0}\right) h(\theta-Q(\zeta))$
$+O\left(1 / \gamma_{c}^{2}\right)+O\left(1 / \varepsilon \gamma_{c}^{4}\right)$
Distinguished case: To obtain pendulum behavior, θ and χ need to interact in (12),(13) first-order ε $\Longrightarrow \varepsilon$ and γ_{c} related by $\varepsilon=\frac{\mathcal{E}}{\varepsilon \gamma_{c}^{2}} \Longrightarrow$
$\varepsilon=\sqrt{\mathcal{E}} \frac{1}{\gamma_{c}}$
$\Longrightarrow(12),(13)$ can be written in standard form:
$\theta^{\prime}=\varepsilon K_{r} q(\zeta) \chi+O\left(\varepsilon^{2}\right)$
$\chi^{\prime}=-\varepsilon K^{2}\left(\cos \zeta+\Delta P_{x 0}\right) h(\theta-Q(\zeta))$
(16)

The 2D system in monochromatic case

- Monochromatic case
$H(\check{\alpha})=(1 / \nu) \sin (\nu \check{\alpha}), \quad h(\check{\alpha})=\cos (\nu \check{\alpha}),(17)$
$K_{r}=\frac{2}{\bar{q}}$,
where $\nu \geq 1 / 2$ and

$$
\bar{q}=\lim _{T \rightarrow \infty}\left[\frac{1}{T} \int_{0}^{T} q(\zeta) d \zeta\right]
$$

$=1+\frac{1}{2} K^{2}+K^{2}\left(\Delta P_{x 0}\right)^{2}$
(19)

- ODE's (15),(16) now become
$\theta^{\prime}=\varepsilon f_{1}(\chi, \zeta)+O\left(\varepsilon^{2}\right)$
$\chi^{\prime}=\varepsilon f_{2}(\theta, \zeta, \nu)+O\left(\varepsilon^{2}\right)$

where

$f_{1}(\chi, \zeta)=\frac{2 q(\zeta)}{\bar{q}} \chi$
$f_{2}(\theta, \zeta, \nu)=-K^{2}\left(\cos \zeta+\Delta P_{x 0}\right)$
$\cos \left(\nu \theta-\nu \zeta-\nu \Upsilon_{0} \sin \zeta-\nu \Upsilon_{1} \sin 2 \zeta\right)$
$=-\frac{K^{2}}{2} e^{i \nu \theta} \sum_{n \in \mathbb{Z}} \widehat{j j}\left(n ; \nu, \Delta P_{x 0}\right) e^{i(n-\nu) \zeta}+$
and where
$\Upsilon_{0}=\frac{2}{\bar{q}} K^{2} \Delta P_{x 0}, \quad \Upsilon_{1}=\frac{\bar{q} K^{2}}{4}$
(22)

- $f_{1}(\chi, \zeta)$ and $f_{2}(\theta, \zeta, \nu)$ are quasiperiodic in ζ
- f_{1} is 2π periodic, i.e., has base periodicity, 2π
- f_{2} has two base periodicities, 2π and $2 \pi / \nu$
- Averages needed for normal form analysis:
$\bar{f}_{1}(\chi)=\lim _{T \rightarrow \infty}\left[\frac{1}{T} \int_{0}^{T} f_{1}(\chi, \zeta) d \zeta\right]=2 \chi$, $\bar{f}_{2}(\theta, \nu)=\lim _{T \rightarrow \infty}\left[\frac{1}{T} \int_{0}^{T} f_{2}(\theta, \zeta, \nu) d \zeta\right]$
$= \begin{cases}0 & \text { if } \nu \notin \mathbb{N} \\ -K^{2} \widehat{j j}\left(k ; k, \Delta P_{x 0}\right) \cos (k \theta) & \text { if } \nu=k \in \mathbb{N}\end{cases}$
where $\mathbb{N}=$ set of positive integers
Δ-nonresonant normal form
- Δ-nonresonant case is example of quasiperiodic averaging with a small divisor problem of very simple structure
- Δ-nonresonant case defined by: $\nu \in[k+\Delta, k+$ $1-\Delta]$ with $\Delta \in(0,0.5)$ and $k \in \mathbb{N}$
- Normal form approximation of (20), (21) in Δ-nonresonant case: drop the $O\left(\varepsilon^{2}\right)$ terms and average the $O(\varepsilon)$ terms by holding slowly varying quantities θ, χ fixed
$\Longrightarrow \Delta$-nonresonant normal form system:
- Δ-nonresonant case is natural if $|\nu-k|$ "big "
- [1] gives error bounds:
$\left|\theta(\zeta, \varepsilon, \nu)-v_{1}(\zeta, \varepsilon)\right| \leq C(T) \frac{\varepsilon}{\Delta}$
$\left|\chi(\zeta, \varepsilon, \nu)-v_{2}(\zeta, \varepsilon)\right| \leq C(T) \frac{\varepsilon}{\Delta}$
for $0 \leq \zeta \leq T / \varepsilon$ with ε sufficiently small and where $C(T)$ is positive constant
- Error bound increases as $\Delta \rightarrow 0$, i.e., as ν moves toward resonance

Near-to-resonant normal form

- Near-to-resonant case is an example of periodic averaging. It is defined by: $\nu=k+\varepsilon a$ where $k \in \mathbb{N}$ and $a \in[-1 / 2,1 / 2]$
- Near-to-resonant case explores $O(\varepsilon)$ neighbor hoods of $\nu=k$ resonances
- Write (20),(21) as:
$\theta^{\prime}=\varepsilon f_{1}(\chi, \zeta)+O\left(\varepsilon^{2}\right)$

> (24)
 $\cdot \cos \left(\left[\theta \theta-\zeta-r_{0} \sin \zeta-r_{1} \sin 2 \zeta\right]-a \tau\right)$
$=-\frac{K^{2}}{2} \exp (i k \theta-a \tau)$
$\sum_{n \in \mathbb{Z}}^{\hat{j}^{2}\left(n ; k, \Delta P_{x t}\right) e^{i \epsilon[\mid n-k]}+\infty}$

- Normal form approximation of (24),(25) in Near-to-resonant case: drop the $O\left(\varepsilon^{2}\right)$ and av erage the $O(\varepsilon)$ terms by holding slowly varying quantities $\theta, \chi, \varepsilon a \zeta$ fixed:
\qquad
- Near-to-resonant case is natural if $|\nu-k|$ "small" - Resonant case is special case when $a=0$ - [1] gives error bounds:
$\left|\theta(\zeta, \varepsilon)-v_{1}(\zeta, \varepsilon)\right| \leq C_{R}(T) \varepsilon$
$\left|\chi(\zeta, \varepsilon)-v_{2}(\zeta, \varepsilon)\right| \leq C_{R}(T) \varepsilon$
for $0 \leq \zeta \leq T / \varepsilon$ with ε sufficiently small and where $C_{R}(T)$ is positive constant
- A phase plane portrait for the system (27), (28) is shown in figure below with $k=1$ and $K^{2} \widehat{j}\left(k ; k, \Delta P_{x 0}\right)=2$
- Phase plane orbits on resonance, i.e., $a=0$ are marked in figure by solid magenta, blue, red curves and five black fixed points
- Near-to-resonant phase plane orbits, for $a=$ $1 / 3$, are marked in figure by green solid and dotted magenta and red curves and are computed with ode45 solver of Matlab

- θ generalizes so-called ponderomotive phase since, if $a=0, \Delta P_{x 0}=0$, it is the ponderomotive phase which in standard treatments is introduced heuristically to maximize energy transfer
- For $\Delta P_{x 0}=0$:
$\widehat{j j}(k ; k, 0)=$
$\left\{\frac{1}{2}(-1)^{n}\left[J_{n}\left(x_{n}\right)-J_{n+1}\left(x_{n}\right)\right] \quad\right.$ if $k=2 n+1$
$\begin{cases}\frac{1}{2}(-1) \\ 0 & \text { if } k \text { even }\end{cases}$
where $x_{n}=(2 n+1) \Upsilon_{1}$ and $n=0,1, \ldots$ with
$J_{m}=m$-th-order Bessel function of first kind \Longrightarrow for $a=0, \Delta P_{x 0}=0,(27),(28)$ give standard FEL pendulum system for odd k (see references in [1] and [2])
- Remark on non-monochromatic case: If Fourier transform $h(\xi)$ of h is continuous, e.g., narrow Gaussian centered on resonance $\xi=k$, the resonant effect may be washed out and thus FEL pendulum behavior disappears in first order averaging

Acknowledgment

The work was supported by DOE under DE-FG $99 E R 41104$ and by DESY. Discussions with M. Dohlus, H.S. Dumas, M. Gooden, Z. Huang, K-J Kim, R. Lindberg, B.F. Roberts, R. Warnock and I. Zagorodnov are gratefully acknowledged. Special thanks to R. Lindberg for helpful comments during formulation of our approach

References

[1] K.A. Heinemann; J.A. Ellison; M. Vogt; M. Gooden, "Pla nar undulator motion excited by a fixed traveling wave Quasiperiodic Averaging, normal forms and the FEL pendu lum", arXiv:1303.5797 (2013). Submitted for publication
K.A. Heinemann; J.A. Ellison; M. Vogt, "Quasiperiodic Method of Averaging Applied to Planar Undulator Motion Excited by a Fixed Traveling Wave", Proceedings of FEL 2013.

