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[Introduction]

e Topic: Summary of our mathematical study in
[1] of planar motion of energetic electrons moving
through planar dipole undulator, excited by fixed
planar polarized plane wave Maxwell field in X-Ray
FEL regime

e Tool: Normal form analysis via first-order Method
of Averaging (MoA) which is long time perturba-
tion theory for ODE'’s
Normal forms are obtained by averaging over in-
dependent variable

e Feature 1: Starting from exact 6D equations of
motion, MoA gives explicit error bounds relating
exact and normal form solutions

e Feature 2: Near-to-resonant normal form analysis
generalizes ponderomotive phase and FEL pendu-
lum system

e Feature 3: Far from resonance /A-nonresonant
normal form is used

[The planar undulator motion]

e 6D Lorentz equations of motion in Sl units with
2 as the independent variable:
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e 1.y, 2 are Cartesian coordinates

e 2 distance along undulator

e t(z) arrival time at z

® Dz, Py, Pz Cartesian momenta

e’ =1+4p-p/mc

e m=electron  mass; —e=electron  charge;
c=vacuum speed of light

e Undulator magnetic field:

0
B, = —By | cosh(kyy)sin(kyz) | , (5)
sinh(kyy) cos(ky 2)

e B, > 0 undulator field strength
e k,, > 0 undulator wave number

e Traveling wave radiation field:
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[The 2D System]

e \We confine to planar motion with no approxima-
tion since:
y(0) = py(0) =0 = y(2) = py(z) =0
—> the six ODE's (1)-(4) reduce to four ODE's
e Righthand sides of (1)-(4) x-independent —
equation need not be considered

o Lo —cos(kyz)— C%U%H(oz), is conserved where
H is any antiderivative of h, i.e., H = h
—> p, can be eliminated

e [ wo equations remain = everything determined
from equations for ¢t and p,

e Natural scaling for z is z = (/ky,

e Replace dependent variable ¢ by & and define
a(G) = a(z,t(2)) = kr(z —ct(z))  (6)

Replace p, by v = basic 2D system:
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with p, and p, replaced by

-(COS(/@U,Z) — 1+ CBU/Q_T[H(Q) — H(“@))]) 7
p: = \/m2(y2 — 1)~ p?,

o eB,,
mcky,

= undulator parameter

e Transform (7),(8) to standard form for MoA

—> introduce normalized energy deviation 1 and
its O(1) counterpart x via

7 =Ye(l+ 1) =7l +ex) 9)
® 7. is characteristic value of v and ¢ is character-
istic spread of 7

e Y new O(1) dependent variable replacing ~

e Do asymptotic analysis for 7. large and ¢ small
—> 7. large and 1 small as in an X-Ray FEL
—> (7),(8) become

o+ Q) = eKrg(C)x + o%) +O(),(10)
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e £ not necessarily small = our results may be
even relevant in high gain saturation regime

e Transform (10),(11) into standard form for MoA
—> need slowly varying dependent variables.
Clearly, o + Q(() is slowly varying and we an-
ticipate that x will be slowly varying, i.e., £/ev?
small

e Thus define § = a+ Q(() = (10),(11) become

0 = eKrq(Q)x + O(1/42) + O(e?),  (12)

, E
Y = —K28—72(COSC: + APy0)h(0 — Q(C))

+0(1/7) + O(1/e7;) (13)

Distinguished case: To obtain pendulum behavior,
0 and x need to interact in (12),(13) first-order ¢

— € and . related by € = 52 —>
1 C
e=VE— (14)
Ye

—> (12),(13) can be written in standard form:

0" = eKrq({)x + O(e?) (15)
X' = —eK*(cos ¢ + APy)h(6 — Q(())
+0(?) (16)

e ODE's (15),(16) now become

0" =efi(x, )+ O(e?), (20)
X' =efa0,¢,v) + O(e7) . (21)
where
f1x,¢) = QQTUX ,

f2(8,¢, v) = = K*(c0s ¢ + APy)
+ COS (V@ —v( —vYTgsin( —vYsin 2()
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and where
2 7K ?
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e f1(x, () and fo(0,(,v) are quasiperiodic in

e f1 is 27 periodic, i.e., has base periodicity, 27
e f5 has two base periodicities, 27 and 27 /v

e Averages needed for normal form analysis:
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where N=set of positive integers

[A-nonresonant normal form]

e A-nonresonant case is example of quasiperiodic
averaging with a small divisor problem of very sim-
ple structure

e A-nonresonant case defined by: v € [k + Ak +
1 — Al with A € (0,0.5) and k£ € N

e Normal form approximation of (20),(21) in
A-nonresonant case: drop the O(g?) terms and
average the O(e) terms by holding slowly varying
quantities 6, y fixed
—> A-nonresonant normal form system:

v =e2u9, vh=0 (23)
e A-nonresonant case is natural if | — k| “big "

e |1] gives error bounds:

0(G,2v) —i(Ge)| < CD)
X(G,2v) = sl e) < C(T)

for 0 < ¢ < T/e with ¢ sufficiently small and
where C(T") is positive constant

e Error bound increases as A — 0, i.e., as  moves
toward resonance

e Normal form approximation of (24),(25) in
Near-to-resonant case: drop the O(c?) and av-
erage the O(e) terms by holding slowly varying
quantities 6, x, ca( fixed:

v = 2ev9 (27)
vy = —eK?%jj(k: k, APy) cos(kvy — eal) (28)

e Near-to-resonant case is natural if | — k| “small”
e Resonant case is special case when a = (

e [1] gives error bounds:

0(¢, €) —vi(C,e)| < Cr(T)e
x(¢,€) —v2(¢,€)] < CRr(T)e

for 0 < ( < T/e with ¢ sufficiently small and
where C'r(T) is positive constant

e A phase plane portrait for the system (27), (28)
is shown in figure below with & = 1 and
K27 (k; k, APyg) = 2

e Phase plane orbits on resonance, i.e., a = 0 are

marked in figure by solid magenta, blue, red curves
and five black fixed points

e Near-to-resonant phase plane orbits, for a =
1/3, are marked in figure by green solid
and dotted magenta and red curves and
are computed with ode45 solver of Matlab

e () generalizes so-called ponderomotive phase since,
ifa=0,AP,) =0, itis the ponderomotive phase
which in standard treatments is introduced heuris-
tically to maximize energy transfer

e For AP{EO = 0:
L) Jn(zn) — Jpsr(an)] if k= 2n+ 1
0 if k even ,

where x, = (2n + 1)T; and n = 0,1, ... with
Jm=m-th-order Bessel function of first kind

— fora = 0,AP,o =0, (27),(28) give standard
FEL pendulum system for odd k (see references
in [1] and [2])

e Remark on non-monochromatic case: If Fourier
transform A(€) of h is continuous, e.g., narrow
Gaussian centered on resonance £ = k, the res-
onant effect may be washed out and thus FEL
pendulum behavior disappears in first order aver-

aging

The 2D system
iIn monochromatic case

e Monochromatic case:
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where v > 1/2 and
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[Near-to-resonant normal form]

e Near-to-resonant case is an example of periodic
averaging. It is defined by: v = k + ca where

keNandac|[-1/2,1/2]

e Near-to-resonant case explores O(g) neighbor-
hoods of v = k resonances

e Write (20),(21) as:

0" =efi(x,¢) + O(e?), (24)
X = eff9,e¢, ¢, k,a) + O, (25)
£250,7,¢, k,a) = —K*(cos ¢ + APy)

- COS (k[@ — (—Tpsin¢ — Tysin2¢] — a7'>

2
— —K? exp(z|k6 — at])
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nez

e f1(x, (), fQR(G,T,C, k,a) are 21 periodic in
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