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Abstract

In this paper we summarize and refine our results from [1, 2] where we extended our studies in [3] on polarized beams
by introducing a new approach, started in [4], to the understanding of invariant fields. For this we distill tools from the
theory of bundles and present five major theorems, one which addresses how invariant fields behave off orbital resonance,
one which ties invariant fields with the notion of normal form, one which allows one to compare different invariant fields,
and two that relate the existence of invariant fields to the existence of certain invariant sets and relations between them.
We then apply the theory to the dynamics of spin-1/2 and spin-1 particles and their density matrix functions, describing
statistically the particle-spin content of bunches. Our approach thus unifies the spin-vector dynamics from the T-BMT
equation with the spin-tensor dynamics and other dynamics. This unifying aspect of our approach relates the examples
elegantly and uncovers relations between the various underlying dynamical systems in a transparent way.
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1. Introduction

The spin polarizations of particles in storage rings are
best systematized in a statistical description in terms of in-
variant spin fields (ISFs) and invariant polarization-tensor
fields (IPTFs). The ISF is essential for estimating the
maximal attainable proton and deuteron vector polariza-
tions and the IPTF describes the equilibrium tensor po-
larization of deuterons (spin-1). Moreover, the invariant
spin field appears in estimates of the electron and positron
equilibrium polarization due to synchrotron radiation.

In this paper we summarize and refine our results from
[1, 2], the latter being an extension of our study [3] of spin
dynamics in storage rings, by introducing a new approach,
started in [4], to the understanding of invariant fields. The
new approach employs a method with origins in bundle
theory developed in the 1980s by R. Zimmer, R. Feres and
others for dynamical-systems theory [5, 6, 7]. In particular,
our treatment will be centered on so-called SO(3)-spaces
denoted by (E, l) and on the associated dynamics given
by (j, A), both to be defined in due course. In contrast to
[3], we now employ a discrete-time treatment rather than
continuous-time but this is a minor point.

We present five major theorems, the Topological Tran-
sitivity Theorem (TTT) on the behavior of invariant fields
off orbital resonance, the Normal Form Theorem (NFT),
tying invariant fields with generalized invariant frame fields,
the SO(3)-Mapping Theorem (SMT), allowing comparison
of different invariant fields, the Invariant Reduction The-
orem (IRT), giving new insights into the question of the
existence of invariant fields and which is supplemented by
the Cross Section Theorem (CST) giving new insights into
the question of the existence of invariant frame fields. In
addition we also mention a conjecture, the ISF conjecture.

It turns out[1] that the well-established notions of in-
variant frame field, spin tune, and spin-orbit resonance are
augmented by the normal-form concept whereas the well-
established notions of invariant spin field and invariant
polarization-tensor field are examples of so-called invari-
ant (E, l)-fields. In fact we have a flexibility in the choice
of (E, l) which provides a unified way to study the dynam-
ics of spin-1/2 and spin-1 particles and their bunch density
matrix functions and which provides a route to the defi-
nition of new invariant fields. Accordingly several (E, l)s
are discussed in some detail. The origins of our formal-
ism, in bundle theory, are pointed out. We thus open a
significant new area of research in our field by bringing in
techniques from bundle theory used hitherto in very differ-
ent research areas. We believe that all five of our theorems
are important and new.

We begin in Section 2 by briefly reviewing the famil-
iar treatment of spin-1/2 particles and ISFs and we also
mention algorithms for the calculation of ISFs. With this
foundation we are then in a position to rewrite our con-
cepts in the language that we need for the rest of the pa-
per, namely in the language of our SO(3)-spaces, (E, l).
In Section 2 we employ both the continuous-time variable

θ as well as the discrete-time variable n where θ is the
angular position around the ring and n is the number of
turns around the ring. In the remaining sections we focus
on the discrete-time treatment.

In Section 3 we discuss particle and field motion in
(E, l) and we define (E, l) for the case of spin-1/2 particles.
Then in Section 4 we present the five main Theorems. In
Section 5 we discuss the five main Theorems for the case
of spin-1/2 particles. In Section 6 we discuss the five main
Theorems for the case of spin-1 particles and in Section 7
we sketch the bundle-theoretic origins of our approach.

2. Recapitulation of the Spin-1/2 Dynamics

Throughout this text we will assume integrable orbital
motion in a model with 2d-dimensional phase space and
with J ∈ Rd and φ ∈ Rd being the sets of actions and
angles respectively. As is common, our model explicitly
does not contain Stern-Gerlach back-reaction of the spin
degrees of freedom onto the orbital motion. All exter-
nal vector fields (“forces”) are assumed to be 2π periodic
in the free (continuous-time) parameter θ, which may be
interpreted as the generalized azimuth related to the lon-
gitudinal position s in a storage ring of circumference C
by θ := 2πs

C . The orbital equations of motion read

dφ

dθ
= ω(J) ,

dJ

dθ
= 0 (1)

and are solved for initial conditions J(θ0) = J0, φ(θ0) = φ0

by
φ(θ) = φ0 + ω(J0)(θ − θ0) , J(θ) = J0 . (2)

The integrable orbital motion foliates the 2d-dimensional
phase space into a d parameter family of invariant tori,
identified by J on which the angles perform uniform cir-
cular motion with the tunes (rotation frequencies) ω(J).

The spin-expectation value, called the spin vector ~S ∈ R3,
evolves along particle trajectories given by (2) according
to the Thomas-BMT equation:

d~S

dθ
= ~Ω(θ; J0, φ(θ)) × ~S , (3)

where the local precession vector ~Ω is of course 2π-periodic
in θ and in φ1, . . . , φd. The general solution of (3) to initial

conditions J(θ0) = J0, φ(θ0) = φ0, and ~S(θ0) = ~S0 can be
written as

~S(θ) = R(θ, θ0; J0, φ0) ~S0 , (4)

where R is the 3 × 3 (orthogonal) rotation matrix for the
spin transport from θ0 to θ on a trajectory on the torus
specified by J0 and starting at φ0. R(θ, θ0; J, φ) is an
SO(3)-valued function of (θ, θ0; J, φ) [3, 8], where SO(3) is
the group of real orthogonal 3×3-matrices of determinant
1. We assume that R is continuous in φ and 2π-periodic
in φ1, . . . , φd but we do not assume that R is continuous
in θ and θ0 in order to allow for hard-edged and thin-lens
electromagnetic fields.
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Here we are interested in the discrete-time dynamics
and introduce, in a way that includes the case of storage
rings, the one-turn (θ − θ0 = 2π) maps

φ 7→ Pω(φ) = φ + 2πω (5)

~S 7→ A(φ) ~S (6)

A(φ) := R(θ0 + 2π, θ0; J0, φ) , (7)

where we have suppressed the dependence of A on the
starting azimuth θ0 and on J0 on the invariant torus. From
now on we will suppress almost always any reference to the
invariant torus on which the dynamics is studied as well
as any reference to the reference azimuth for the one-turn
maps. By the properties of R, A is continuous in φ and
2π-periodic in φ1, . . . , φd. We note that Pω(φ) in (5) is
easily inverted to P−1

ω (φ) = φ − 2πω.

We call a sequence of fields ~Sn : Rd → R3, n ∈ Z a
trajectory of polarization fields, iff the sequence evolves
via

~Sn+1(Pω(φ)) = A(φ) ~Sn(φ) , (8)

or equivalently

~Sn+1(φ) = A(P−1
ω (φ)) ~Sn(P−1

ω (φ)) , (9)

i.e. when the n + 1st generation of the field is constructed
by propagating the 3-vectors with the spin/orbit one-turn
map. Equation (8) describes evolution in the forward di-
rection of the orbit map, while (9) uses the inverse (back-
ward) orbit map and can serve as an explicit evolution

equation for the sequence ~Sn 7→ ~Sn+1. The ~Sn are con-

tinuous in φ and 2π-periodic in φ1, . . . , φd if ~S0 has these
properties.

A spin field is a polarization field which is normalized
to 1, i.e. | ~S| = 1. It is then denoted by Ŝ.

A polarization field ~N is called an invariant polariza-
tion field (IPF), iff it is mapped to itself by the spin/orbit

one-turn map, i.e. when ~Nn+1 = ~Nn for all n in (8) and
(9) or, more explicitly, in the forward direction

~N (Pω(φ)) = A(φ) ~N (φ) , (10)

or equivalently in the backward direction

~N (φ) = A(P−1
ω (φ)) ~N (P−1

ω (φ)) , (11)

Trivially ~N = ~0 is an IPF representing vanishing polar-
ization on the torus. An invariant spin field (ISF) is an
invariant polarization field which is normalized to 1, i.e.
| ~N| = 1. It is then denoted 2 by N̂ .

For thorough accounts of the concept of the continuous-
time IPFs and ISFs we refer to [3, 9, 11, 8]. In Section
5.1 we will study the dynamics of spin/polarization vector
fields in greater detail.

2In much of the literature (e.g. in [3, 9, 11, 8] ) one finds the

symbol n̂ instead of bN .

The above description of spin-vector motion and the
definition of the IPFs/ISFs applies not only to spin-1/2
particles such as electrons and protons but also to the
vector polarization of spin-1 particles such as deuterons.
However, for spin-1 particles the spin expectation values
for some pure states can be zero. Nevertheless the ISF can
still be defined as above since it is a concept which is in-
dependent of the statistical state of the bunch. Moreover,
for the complete description of the polarization state of
a beam of spin-1 particles additional degrees of freedom,
namely the tensor polarization and invariant polarization
tensor fields (IPTFs) [12, 13, 14], are required (see also
Section 6 below).

For small d (namely d = 1, 2) the general spin fields
admit a useful pictorial representation. Figure 1 shows a
field N̂ : T1 → S2 (S2 being the unit sphere in R3) that
assigns a 3-vector of unit Euclidean norm, represented by
a point on the closed blue curve on the sphere, to every
point of the 1-torus which is identical to the 1-sphere S1

in R2. So far the field could be just any field, but here it
is in fact the numerical approximation for an ISF of a dy-
namical system (Pω, A) describing a specific model of the
former proton storage ring HERA-p [11]. The invariance of
the ISF means that the curve on the sphere is reproduced
under the combined spin/orbit one-turn map, while for a
non-invariant spin field iteration of the map would create
a sequence of not-identical, potentially strongly differing
curves.

R3S2 inT1

N

Figure 1: Example of an ISF bN : T1 → R3: 1996-luminosity-optics
of HERA-p with non-resonant vertical tune of about 32.272532721
(rounded) . The beam reference momentum is 805 GeV. Only ver-
tical orbital motion with amplitude of 50.0 · 10−6 m is excited. The
view-point is the East interaction point. Computed with the code
SPRINT using the SODOM2 [16] algorithm with 127 particles uniformly
distributed over the torus.

The equivalence of spin propagation using the full spin
orbit map and evaluation of the ISF at a propagated orbit
point is sketched in Figure 2 for a simplified dynamical
system in which the image of the 1-torus under the ISF
is just a line of latitude on the sphere with the vertical
direction as the North pole. The left column of green 1-tori
shows, from top to bottom, the invariance of the 1-torus
under the iterated (bijective) orbit map Pω. In addition it
shows the trajectory of a single point under the iteration
of Pω. In each step (row) the last propagated position of
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the point is in blue while the sequence of the preceding
points is displayed in black. The right column of green
ISFs on the sphere shows the invariance of the ISF under
the combined spin/orbit map (10). In addition it shows the
trajectory of the spin-vector attached to the point on the
torus (left) under the iteration of the combined spin/orbit
map. In each step (row) the last propagated spin vector is
shown as a blue arrow while the sequence of the preceding
spins is displayed in black. Thus the figure depicts how
the iteration of Pω on a single initial point on the torus
will asymptotically produce a dense subset of the torus,
i.e. get arbitrarily close to any point, for ω irrational. It
also depicts how the iteration of the combined spin/orbit
map on a single value of the ISF on some point on the
torus asymptotically produces a dense subset of the locus
of the ISF.

In general ω is said to be off orbital resonance if (1, ω)
is non resonant, which we now define for future reference:

Definition 2.1 (Non-resonant (NR)). Let ω ∈ R
d. We

say (1, ω) is NR (non-resonant) iff no non-zero integer vec-
tor k ∈ Zd+1 exists such that k · (1, ω) = 0.

In the following we will not use the phrase off orbital res-
onance, instead we will write: (1, ω) is NR. We note that
for NR (1, ω), the map Pω fills the d−torus densely. Later
we will introduce the term topologically transitive.

Since r ∈ SO(3) does not change the norm of a spin

vector, i.e., |r~S| = |~S|, Figure 2 also depicts how, if (1, ω)
is NR, the norm of an IPF must be constant on each torus
(for each fixed J). Since iteration of Pω yields a dense
subset on the torus, evaluation of the continuous IPF on
the iterated points yields a dense subset of the locus of
the ISF. But since evaluation of the IPF at transported
orbit points is equivalent to transporting the field value
by the norm preserving map ~S 7→ A(φ)~S, the norms of
the IPF values must be constant on a dense subset. It can
then only be continuous if it is constant everywhere (on
the torus).

Figure 3 depicts a field N̂ : T2 → S2 ∈ R3 that assigns
a 3-vector of unit norm, represented by a point on the blue
shaded area on the sphere, to every point of the 2-torus. At
this stage the field could be just any field, but is is fact the
numerical approximation for an ISF of a dynamical system
(Pω , A) describing a model of the storage ring HERA-p,
similar to Figure 1 but now with both transverse orbital
modes excited. The invariance of the ISF entails that the
blue shaded area on the sphere is reproduced under the
combined spin/orbit one-turn map.

The invariance condition (10) or equivalently (11) and
the continuity and periodicity constraints in φ make the
question of existence of an ISF or nowhere vanishing IPF
a nontrivial issue. While there is so far no rigorous ex-
istence theorem, there are several numerical algorithms
which compute numerical approximations to the ISF that
are very stable under long-term tracking, given that the
spin/orbit dynamical system is reasonably well behaved.

ωP

ωP

ωP

A

A

A

N

N

N

N

...
.

...
.

Figure 2: The motion of a point on the torus under the action of
Pω samples the ISF at a sequence of points on the torus. This is
equivalent to the motion of a spin vector under the action of the
combined spin/orbit map, given that the spin vector was initialized
with the value of the ISF at the initial point on the torus. The ISF
is that of the single resonance model [9, 15].
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T2

N

R3S2 in

Figure 3: Example of a slightly more complex ISF bN : T2 → R3:
same optics and energy as in Figure 1 but this time with vertical
and horizontal orbital motion with amplitudes of 5.0 · 10−6 m and
10.0·10−6 m respectively. The rounded horizontal and vertical tunes
are 31.278984723 and 32.272532721 respectively. Computed with the
code SPRINT using stroboscopic averaging to compute the ISF for 1
particle at an arbitrary point on the torus and then tracking it for
1 · 105 turns.

There are cases however, when for whatever reason, spin
motion becomes too “wild” and the algorithms tend to fail
to compute reasonable (stable) approximations to ISFs at
least with achievable computational effort. There is a per-
turbative method [15] from the mid 1980s (implemented in
the code SMILE). Then there are Fourier-methods [16] and
[17] (implemented in the codes SODOM, SODOM2, SPRINT,
and MILES). The ISF can also be computed via a normal-
form algorithm based on Truncated Power Series Alge-
bra (TPSA) from the 1990s (implemented in the code
COSY-Infinity [18] and in the PTC/FPP code [19]). Per-
haps the most flexible and general algorithm uses so-called
stroboscopic averaging [9]. This was invented in the mid-
1990s and was first implemented in the code SPRINT [11].
It has now been implemented in many other codes. For
mathematical details on stroboscopic averaging, see [8].
Stroboscopic averaging can also be used to obtain the
IPTF [12, 13]. For more details on these four algorithms,
see [20]. The numerical evidence produced by the above
mentioned codes indicates that invariant fields can be rather
complex entities. Moreover, as already mentioned, the
question of existence, although resolvable in some simple
cases, is up to this day, unresolved in general and, as evi-
denced by the simulation codes, situations can occur where
ISFs might not exist or might be extremely ill-conditioned.
It is in the light of these facts that we present a new ap-
proach here, started in [4], to the understanding of invari-
ant fields. In any case we conjecture that an ISF exists if
(1, ω) is NR. This is a special case of the “ISF Conjecture”
mentioned in the Introduction and defined in Section 5.1.1.

The importance of the ISF can be best explained by
the key role which polarization fields play in the statisti-
cal description of a bunch of spin-1/2 particles where the
bunch can be described in terms of a semiclassical spin-
1/2 density matrix function ρ which is a function whose
values are hermitian matrices. The function ρ arises from
the semiclassical treatment of Dirac’s equation where ρ

is the semiclassical approximation of a spin-1/2 Wigner
function. Thus the particle variables J and φ are purely
classical whereas the spin-degrees-of-freedom are treated
fully quantum mechanically (see [21] and the references
therein). For simplicity we suppress the term “semiclassi-
cal” when we talk about ρ.

The spin-1/2 density matrix function is a complex her-
mitian 2 × 2 matrix and it is given by

ρ(φ) := ρorb(φ)
1

2

(
I2×2 + ~σ · ~S(φ)

)
, (12)

where again we have suppressed the implicit dependence
on J . Here ρorb is the orbital phase space density of the
bunch, I2×2 is the 2 × 2 unit matrix, ~σ is the vector of

the three spin-1/2 Pauli matrices, and ~S, | ~S| ≤ 1, is the
polarization field describing the spin state of the bunch.

The orbital density ρorb is a real nonnegative field de-
fined on the (J, φ) phase space and it is preserved along
orbital trajectories for every measure preserving map (or
flow, in the continuous-time case), in particular for the
symplectic flow of (2). Therefore the one-turn map Pω in
(5) maps ρorb into

ρ′orb(φ) = ρorb(P−1
ω (φ)) . (13)

Because (13) is based on the Liouville flow associated with
(1) we refer to this as the Liouville one-turn map associ-
ated with (1). We will use this terminology in the following
and in particular in Section 3.2. We assume that ρorb and
~S are continuous in φ and, being defined on the torus, are
periodic in the φ1, . . . , φd. Thus ρ in (12) is continuous in
φ and 2π-periodic in φ1, . . . , φd. Also the phase space den-
sity ρorb is normalized to one, i.e.

∫
dφ dJ ρorb = 1. We call

ρorb in (12) “invariant”, if ρ′orb = ρorb. One can show that
if (1, ω) is NR, then every invariant ρorb is independent of
φ.

The polarization field evolves according to (9), and
thus the spin-1/2 density matrix function is transported
by the combined spin/orbit one-turn map as

ρ′(φ) = ρ′orb(φ)
1

2

(
I2×2 + ~σ · ~S′(φ)

)

= ρorb(P−1
ω (φ))

1

2

×
(
I2×2 + ~σ · A(P−1

ω (φ)) ~S(P−1
ω (φ))

)
.(14)

If ρorb in (12) is invariant, i.e., ρ′orb = ρorb, then one
speaks of orbital equilibrium of the bunch and if in addi-
tion ρ is invariant, i.e., ρ′ = ρ then we say that the beam
is in spin equilibrium. If ρ is invariant and if (1, ω(J)) is
NR for all J for which ρorb(J, ·) is not the zero function
then ρ can be rewritten as

ρequi(J, φ) = ρ0(J)
1

2

(
I2×2 + P (J)

(
~σ · N̂ (J, φ)

))
,

(15)

where N̂ (J, ·) is an ISF and 0 ≤ P (J) ≤ 1 is the degree of
polarization on the torus with J and where we have briefly
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reinstated the explicit dependence on J with ρ0(J) =
ρorb(J, ·). Every physical observable O of the bunch can be

written as O(J, φ) = o0(J, φ)I2×2 +
∑3

i=1 oi(J, φ)σi where
the functions o0 and oi are real valued. Then its expecta-
tion value 〈O〉(n) at turn n is given by

〈O〉(n) =

∫
dφ dJ Tr[ρnO] , (16)

in obvious notation and where Tr is the trace operation.
If the beam is in spin equilibrium, i.e., ρ is invariant, then
ρ does not vary from turn to turn and neither does 〈O〉.
Experimenters at colliders and fixed-target storage rings
then have the all-important stable conditions.

In the statistical description the polarization vector ~P
of the particle bunch is defined as the expectation value of
~σ whence, by (16),

~P =

∫
dφ dJ Tr[~σρ(J, φ)]

=

∫
dφ dJ ρorb(J, φ) ~S(J, φ) , (17)

whence the polarization |~P | of the bunch satisfies

|~P | ≤
∫

dφ dJ ρorb(J, φ) | ~S(J, φ)| . (18)

In spin equilibrium, when ~P does not vary from turn to
turn, and using (15),(18) (and setting P (J) = 1 for all J)

we get |~P | ≤ Pmax where the maximum attainable equi-
librium polarization Pmax is given by

Pmax =

∫
dJ ρ0(J) |

∫
dφ N̂ (J, φ)|

= (2π)d

∫
dJ ρ0(J) Plim(J) , (19)

where the static polarization limit on each torus is given
by

Plim(J) =
1

(2π)d
|
∫

dφ N̂ (J, φ)| . (20)

The five major theorems of this work are rigorously
stated and applied in Sections 4-6, but we now briefly dis-
cuss them in the more common wording of this introduc-
tory section. We begin with the Topological Transitivity
Theorem (TTT) to be introduced in Section 4.2 which
states that, if (1, ω) is NR, then invariant fields are func-
tions whose range is severely restricted. For example if
ρorb is an invariant orbital density and if (1, ω) is NR then
ρorb is independent of φ (we used this property above).

Moreover if ~N is an IPF and if (1, ω) is NR then | ~N| is
independent of φ (we used also this property above). More-
over if M is an IPTF and if (1, ω) is NR then Tr[M2] and
det(M) are independent of φ.

The Normal Form Theorem (NFT) will be introduced
in Section 4.3. An important example for spin-1/2 parti-

cles is the following. Let Ŝ be a spin field, let T = T (φ)

be an SO(3)-valued function which is continuous in φ and

2π-periodic in φ1, . . . , φd and such that Ŝ(φ) is the third
column of T (φ). Let

A′(φ) := T t(Pω(φ)) A(φ) T (φ) (21)

where the superscript t denotes the transpose. Then an
application of the NFT gives A′ is SO(2)-valued iff Ŝ is an

ISF, i.e. iff Ŝ fulfills (10) or equivalently (11). Here SO(2)
is the subgroup of SO(3), defined by

SO(2) :=









cos(y) − sin(y) 0
sin(y) cos(y) 0

0 0 1



 : y ∈ R




 . (22)

In Section 5.3 we will see that T is a so-called invariant
frame field. In fact the NFT (see Section 4.3) allows one
to transform invariant fields to invariant frame fields (or
to generalized invariant frame fields) and vice versa.

We now discuss the SO(3)-Mapping Theorem (SMT)
to be introduced in Section 4.4 which allows one to trans-
form invariant fields to invariant fields. It is in the spirit
of the SMT to transform known invariant fields into previ-
ously unrecognized invariant fields or vice versa. However
the SMT also transforms known invariant fields into known
invariant fields as the following simple example shows. If
~N is an IPF then | ~N| satisfies

| ~N|(Pω(φ)) = | ~N|(φ) , (23)

i.e., | ~N| behaves, dynamically, as an invariant Liouville
density.

The remaining two theorems, the Invariant Reduction
Theorem (IRT) and the Cross Section Theorem (CST) are
presented in Section 4.5. They give, for spin-1/2 particles,
a topological criterion for the existence of an ISF and a
topological criterion for the existence of an invariant frame
field.

This completes our brief look at the standard knowl-
edge of the dynamics of spin-1/2 particles.

3. SO(3)-Spaces (E, l) and the Associated (j, A)
Dynamics

We now introduce the SO(3)-spaces (E, l) and the as-
sociated particle and field dynamics with parameters (j, A)
where j is defined below. Starting from this chapter we
will use a different, slightly more formal definition of the
angle variables and their domain, the d-torus, Td. We
do this because this definition conveniently simplifies the
statement and proofs of the theorems. In the main course
of the text we will replace functions like A(φ), Pω(φ), ~S(φ),

ρ(φ), N̂ (φ), etc. defined for φ ∈ Rd and continuous and
periodic as in Section 2, with “new” continuous functions
A(z), Pω(z), ~S(z), ρ(z), N̂ (z), etc. defined for z ∈ Td.
An immediate gain of this notation is that from now on
we will never again have to state or require explicit peri-
odicity in the angles. Since Pω(z) takes values on Td its
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computation needs a little explanation. To a given z there
correspond countably many φ ∈ Rd. So we pick one and
let φ′ = φ + 2πω. There is then a unique z′ corresponding
to φ′ for all choices of φ and we define Pω(z) = z′.

3.1. SO(3)-spaces (E, l)

The 2-tuple (E, l) denotes an SO(3)-space defined as
follows:

Definition 3.1 (SO(3)-space). We denote the space of
continuous functions from X → Y by C(X, Y ), where X
and Y are topological spaces [22]. Then (E, l) is said to be
an SO(3)-space if E is a topological space, l ∈ C(SO(3) ×
E, E) and

l(I3×3; x) = x . (24)

l(r1r2; x) = l(r1; l(r2; x)) , (25)

where r1, r2 ∈ SO(3), x ∈ E, and I3×3 ∈ SO(3) is the
unit matrix. We call l an SO(3)-action on E or just an
SO(3)-action if E is clear.

We note that the identity function lid defined by lid(r; x)
:= x is a (trivial) SO(3)-action for every E. Even though
it’s trivial it will be useful in Sections 5 and 6. In the
following we need the notion of a homeomorphism. A ho-
meomorphism is a continuous bijective map with continu-
ous inverse [23]. Let X, Y be topological spaces then here
and in the following Homeo(X, Y ) will denote the set of
homeomorphisms X → Y , and Homeo(X) will denote the
set of homeomorphisms X → X .

In general our topological spaces do not need to be
Hausdorff so we will mention it when needed. For a dis-
cussion of Hausdorff see, e.g., [24].

3.2. (j, A) dynamics on (E, l)

For every (E, l) and (j, A) we define two dynamical
systems, a particle dynamics and a field dynamics. We
think of a particle moving on the d-torus T

d via

z → z′ = j(z) , j ∈ Homeo(Td) , (26)

with an associated E-valued quantity x (an “E-spin”) which
evolves via

x → x′ = l(A(z); x) , A ∈ C(Td, SO(3)) . (27)

and we have a “one-turn particle-E-spin map” P [E, l, j, A]
∈ C(Td×E, Td×E) defined by P [E, l, j, A](z, x) := (z′, x′),
i.e.,

P [E, l, j, A](z, x) = (j(z), l(A(z); x)) . (28)

The inverse of P [E, l, j, A] is

P [E, l, j, A]−1 = P [E, l, j−1, At ◦ j−1] , (29)

where ◦ denotes composition. Since j−1 ∈ Homeo(Td)
and (At ◦ j−1) ∈ C(Td, SO(3)) it follows from (29) that
P [j, A]−1 is continuous whence the bijection P [E, l, j, A]
is a homeomorphism.

In all physical applications we have in mind, j = Pω

and so in this case j is just a shorthand. However, our
theorems work for general j. Note that Pω is continuous
and since P−ω is its inverse, Pω ∈ Homeo(Td).

We are primarily interested in the field dynamics in-
duced by the particle-spin dynamics. So let f : Td → E
be an E-valued field on T

d and set x = f(z) in (28), i.e.
an E-spin is assigned to each point on the torus. Then,
after one turn, z becomes j(z) and the field value at j(z)
becomes l(A(z); f(z)) whence, (27) reads in this case as,

(z, f(z)) 7→ (j(z), l(A(z); f(z))) . (30)

Thus after one turn the field f becomes the field f ′ : Td →
E where f ′(z) := l(A(j−1(z)); f(j−1(z))) whence we have
the one-turn field map

f 7→ f ′ := l(A ◦ j−1; f ◦ j−1) . (31)

Note, by (31), that

f ′ ◦ j = l(A; f) . (32)

We work in the framework of topological dynamics. So
A, j, l, f, f ′ are continuous functions whence we formalize
(31) by the one-turn field map P̃ [E, l, j, A] : C(Td, E) →
C(Td, E) defined by P̃ [E, l, j, A](f) := f ′, i.e. by (31),

P̃[E, l, j, A](f) := l(A ◦ j−1; f ◦ j−1) , (33)

where f ∈ C(Td, E). The inverse is

P̃[E, l, j, A]−1 = P̃[E, l, j−1, At ◦ j−1] , (34)

as is easily checked. While we work in the framework of
topological dynamics, weaker or stronger conditions than
continuity would be possible.

Two simple cases increase the insight into P̃. If A =
I3×3, (33) becomes

P̃[E, l, j, I](f) := l(I; f ◦ j−1) = f ◦ j−1 , (35)

which is a generalized Liouville one-turn field map. If l =
lid then

P̃ [E, lid, j, A](f) := lid(A ◦ j−1; f ◦ j−1) = f ◦ j−1 , (36)

for all A, which is the same generalized Liouville one-turn
field map.

We call an f ∈ C(Td, E) an invariant (E, l)-field of
(j, A), or invariant (E, l)-field or just invariant field, if
it is mapped by (33) into itself, i.e. P̃ [E, l, j, A](f) = f
which, by (33), is equivalent to the condition

f ◦ j = l(A; f) . (37)

Of course this means that in the iteration f → f ′ →
f ′′ · · · the fs are the same, i.e., f = f ′ = f ′′ = · · · .

Our main focus is on exploring invariant fields as these
describe the spin equilibrium of a bunch [3] and as we will
see in Section 5.1 below, the well-established notions of
IPF and ISF are invariant (E, l)-fields for a special choice
of (E, l). Analogously we will see in Section 6 below that
the notion of invariant polarization-tensor field are (E, l)-
field and invariant (E, l)-fields for another special choice
of (E, l).
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3.3. Topological transitivity

Let us define

Definition 3.2.

Ex := l(SO(3); x) := {l(r; x) : r ∈ SO(3)} , (38)

where x ∈ E.

If (z, y) ∈ Td × Ex then an r ∈ SO(3) exists such that
y = l(r; x) whence, by (25) and (28),

P [E, l, j, A](z, y) = (j(z), l(A(z); y))

= (j(z), l(A(z); l(r; x)))

= (j(z), l(A(z)r; x)) (39)

so that each set T
d ×Ex is invariant under the particle-E-

spin motion. Thus E is “decomposed” naturally into the
Ex. Note also that the Ex partition E, i.e. for all x, y ∈ E,
either Ex = Ey or Ex∩Ey = ∅ and ∪xEx = E (here trivial
since x ∈ Ex).

Of central interest are invariant (E, l)-fields in the sit-
uation when j is topologically transitive:

Definition 3.3 (Topological Transitivity). A map j ∈
C(Td, Td) is said to be topologically transitive when a z0 ∈
Td exists such that the jn(z0) are dense in Td, i.e., when
Cl({jn(z0) : n = 0,±1,±2, ...}) = Td where Cl indicates
topological closure [25].

If j = Pω then j is topologically transitive iff (1, ω) is
NR. Topological transitivity is an important notion for two
reasons: firstly Pω is generically topologically transitive
since a NR (1, ω) is “generic” and secondly, by the TTT
in Section 4.2, the topological transitivity has a strong
impact on the possible form of any invariant (E, l)-field
f since it restricts the possible range of f . Here a NR
(1, ω) is generic in two senses, topological and measure-
theoretic. Firstly, the set of ω such that (1, ω) is NR is a
dense subset of Rd. Secondly and with respect to Lebesgue
measure almost every ω has the property that (1, ω) is NR.
See [26] on “Generic Property” also.

4. The Main Theorems

4.1. Introduction

We now present the five theorems. Some of our results
will require the Hausdorff condition and when needed that
will be made clear. The theorems may appear abstract at
a first reading but their application to the familiar spin-
1/2 and spin-1 dynamics in Sections 5 and 6 respectively
will render them more concrete.

We first define two notions that are crucial in the course
of this section.

Definition 4.1 (Isotropy Group).
Let (E, l) be an SO(3)-space and x ∈ E. We denote by
Hx the set of those r ∈ SO(3) for which x is a fixed point
of l(r; ·) i.e.,

Hx ≡ Iso(E, l; x) := {r ∈ SO(3) : l(r; x) = x} . (40)

One can show that Hx is a subgroup of SO(3), and it is
called the isotropy group of (E, l) at x. Note, by (38) and
(40), that for any SO(3)-space (E, l) and any x ∈ E we
have Iso(E, l; x) = SO(3) iff Ex = {x}.

Definition 4.2 (SO(3)-map).
Let (E, l) and (Ě, ľ) be SO(3)-spaces and let γ ∈ C(E, Ě)
be a continuous function: E → Ě. γ is called an SO(3)-
map from (E, l) to (Ě, ľ) iff

ľ(r; γ(x)) = γ(l(r, x)) , ∀r ∈ SO(3), x ∈ E . (41)

If γ ∈ Homeo(E, Ě), i.e. if γ−1 exists and is continu-
ous, then one can show directly by applying γ−1 to both
sides of (41) and identifying γ(x) = x̌, that γ−1(ľ(r; x̌)) =
l(r; γ−1(x̌)), i.e. that γ−1 is an SO(3)-map from (Ě, ľ) to
(E, l).

Let x ∈ E be mapped to x′ = l(r; x) for some r ∈
SO(3) and let x̌ := γ(x) ∈ Ě, γ being an SO(3)-map, be
mapped to x̌′ = ľ(r; x̌). Then by (41) x̌′ = ľ(r; γ(x)) =
γ(l(r, x)) = γ(x′). In other words, an SO(3)-map pre-
serves the time evolution.

4.2. The Topological Transitivity Theorem (TTT)

Theorem 1 (Topological Transitivity Theorem).
[1] Let (E, l) be an SO(3)-space and let E be Hausdorff.
Moreover, let j ∈ Homeo(Td) be topologically transitive
and A ∈ C(Td, SO(3)). If f is an invariant (E, l)-field of
(j, A) then an x ∈ E exists such that f is Ex-valued.

In the following we will often refer to the Topological Tran-
sitivity Theorem as the TTT. Recall from Section 3.3 that
Ex = l(SO(3); x)). The proof [1] of the TTT uses the
compactness [27] of SO(3).

The Hausdorff condition on E is very weak and it is
satisfied by almost all examples which are important for
us and satisfied for all examples in this work. The TTT
implies that the topological transitivity of j has a strong
impact on invariant (E, l)-fields of any (j, A). Since Pω

is generically topologically transitive and because of the
TTT, most of our remaining theorems are formulated for
fields taking values in only one Ex (though all theorems
could be restated without this restriction). One key aspect
of the TTT is that it guarantees, for topologically transi-
tive motion on the torus, that our fairly abstract invari-
ant (E, l)–fields cannot violate certain fundamental facts
of spin dynamics. In particular we will see in subsections
5.2 and 6.2 that the norms of the values of the invariant
vector/tensor polarization fields must be constant over a
torus with topologically transitive motion. If (1, ω) is reso-
nant for ω ∈ Rd, then either the motion is periodic or there
are so-called sub-tori on which the motion is topologically
transitive.

Since the TTT emphasizes the Ex we now mention
one property of Ex which, due to lack of space, cannot
be covered in this work but which is too important to be
left unmentioned. Let (E, l) be an SO(3)-space and let
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E be Hausdorff and x ∈ E. As before let us abbreviate
Hx ≡ Iso(E, l; x). Then we define

rHx := {rh : h ∈ Hx} , (r ∈ SO(3))

SO(3)/Hx := {rHx : r ∈ SO(3)} .

The sets rHx are known as the “left cosets” of Hx [28].
We define the function λ : SO(3)/Hx → Ex by λ(rHx) :=
l(r, x). Note that λ is a function, i.e., single-valued due
to (40). The point to be made is that one can show that
λ ∈ Homeo(SO(3)/Hx, Ex). Thus Ex is determined, up
to homeomorphism, by Iso(E, l; x) alone! Note that the
natural topology on SO(3)/Hx is the final topology with
respect to the function p : SO(3) → SO(3)/Hx defined by
p(r) := rHx. For the notion of final topology, see [29]. A
simple example, occurring for example in Section 5.3, is
when Iso(E, l; x) = SO(2) whence SO(3)/SO(2) and Ex

are homeomorphic. On the other hand one can show that
SO(3)/SO(2) is homeomorphic to the unit sphere S2 in
R3 whence Ex is homeomorphic to S2. Note that some
of the topological spaces Ex arising in Sections 5 and 6
are more complex than S2 and thus worth a study but we
must leave the details to the reader.

4.3. The Normal Form Theorem (NFT)

The NFT relates invariant (E, l)-fields to invariant
(E, l)-frame fields (the latter will be defined below).

Theorem 2 (Normal Form Theorem (NFT)). [1]
Let T ∈ C(Td, SO(3)), j ∈ Homeo(Td), A ∈ C(Td, SO(3)),
x ∈ E and define both the field f ∈ C(Td, E) and A′ ∈
C(Td, SO(3)) by

f(z) := l(T (z); x) , (42)

A′(z) := T t(j(z))A(z)T (z) . (43)

Then f is an invariant (E, l)-field, i.e. f ◦ j = l(A; f) as
in (37), iff

A′(z) ∈ Hx ≡ Iso(E, l; x) , ∀z ∈ T
d . (44)

The proof of “left implies right” is simple: Let f ◦ j =
l(A; f), then l(T (j(z)); x) = l(A(z); l(T (z); x)). Now ap-
plying l(T t(j(z)); ·) to both sides yields
l(T t(j(z)); l(T (j(z)); x)) = l(T t(j(z)); l(A(z); l(T (z); x)))
⇔ x = l(T t(j(z))A(z)T (z); x) = l(A′(z); x) whence A′(z) ∈
Hx∀z. The proof of the NFT is completed in [1].

In Sections 5.3 and 6.3 we will identify the isotropy
groups for various important SO(3)-spaces in order to ap-
ply the NFT. Note also that the scope of the NFT is very
large since one can show that for every subgroup H of
SO(3) an SO(3)-space (E, l) and an x ∈ E exist such that
H = Hx ≡ Iso(E, l; x).

The NFT leads to the concept of the invariant (E, l)-
frame field. In fact we call a T ∈ C(Td, SO(3)) an invariant
(E, l)-frame field of (j, A) at x if the A′ in (43) satisfies
(44). Thus the NFT can also be reformulated as: The
function f is an invariant (E, l)-field iff T is an invariant

(E, l)-frame field at x. Thus, by the NFT, if an invariant
(E, l)-frame field exists at x, then an invariant (E, l)-field
exists which takes values only in Ex. We will find a partial
converse of this statement in Section 4.5. The notion of
the invariant (E, l)-frame field generalizes the notion of
the invariant frame field, the latter being introduced in
Section 5.3.

The NFT also leads to an important concept in our
work, the normal form. If A′(z) in (43) belongs to a sub-
group H of SO(3) for all z then we call (j, A′) an H-normal
form of (j, A). Thus the NFT can be reformulated as: The
function f is an invariant (E, l)-field of (j, A) iff (j, A′) is
an Hx−normal form of (j, A). The normal form concept
also captures the notions of spin tune and spin-orbit reso-
nance [30] which, due to lack of space, cannot be covered in
this work. We finally note that the transformation A 7→ A′

in (43) which underlies the notion of normal form also has
the important property [30] that

P̃[E, l, j, A′] = P̃ [E, l, idTd , T ]−1

◦ P̃ [E, l, j, A] ◦ P̃[E, l, idTd , T ] , (45)

where idTd ∈ Homeo(Td) is the identity function on Td

and where T ∈ C(Td, SO(3)) is arbitrary. For example
(45) implies that a function f ∈ C(Td, E) is an invariant
(E, l)-field of (j, A) iff P̃[E, l, idTd , T ]−1(f) is an invariant
(E, l)-field of (j, A′).

4.4. The SO(3)-Mapping Theorem (SMT)

The SMT and its corollary enable comparison of the
dynamics of different SO(3)-spaces for the same (j, A).

Theorem 3 (SO(3)-Mapping Theorem (SMT)).
Let γ be an SO(3)-map from the SO(3)-space (E, l) to the
SO(3)-space (Ě, ľ). Let f be arbitrary in C(Td, E) and
transport it by the one-turn map of (E, l) and (j, A) to
f ′ := P̃ [E, l, j, A](f). Furthermore let f̌ ∈ C(Td, Ě) be
defined by f̌(z) := γ(f(z)) and transport it by the one-
turn map of (Ě, ľ) and (j, A) to f̌ ′ := P̃[Ě, ľ, j, A](f̌).
Then f̌ ′(z) = γ(f ′(z)) for all (j, A), or equivalently

P̃ [Ě, ľ, j, A](γ ◦ f) = γ ◦ (P̃[E, l, j, A](f)) ∀(j, A) . (46)

The proof is too short to be omitted: Let f 7→ f ′ = l(A ◦
j−1; f ◦ j−1) and f̌ 7→ f̌ ′ = ľ(A ◦ j−1; f̌ ◦ j−1). Now let
f̌ = γ ◦ f . Then f̌ ′ = ľ(A ◦ j−1; γ ◦ f ◦ j−1) = γ(l(A ◦
j−1; f ◦ j−1)) = γ ◦ f ′, q.e.d.
The SMT has several essential implications.

Firstly, if f is an invariant (E, l)-field of (j, A), then f̌
is an invariant (Ě, ľ)-field of (j, A).

Secondly, if the SO(3)-map γ is a homeomorphism
then, by recalling the discussion after Definition 4.2, γ−1

is an SO(3)-map from (Ě, ľ) to (E, l) whence f is an in-
variant (E, l)-field of (j, A) iff f̌ is an invariant (Ě, ľ)-field
of (j, A).

Thirdly, the SMT has a converse. In fact if γ ∈ C(E, Ě)
and if, for all f ∈ C(Td, E) and for all (j, A), f̌ ′(z) =
γ(f ′(z)) then γ is an SO(3)-map from (E, l) to (Ě, ľ).
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Fourthly, we now state a corollary to the SMT, the De-
composition Theorem (DT). For that purpose let x ∈ E
and x̌ ∈ Ě. One can show that (Ex, lx) is an SO(3)-space
where the function lx : SO(3)×Ex → Ex is the restriction
of l from SO(3) × E to SO(3) × Ex, i.e. lx(r; y) := l(r; y)
and where the natural topology of Ex is its subspace topol-
ogy [25] as a subset of E. Analogously, (Ěx̌, ľx̌) is an
SO(3)-space. Now let β ∈ C(Ex, Ěx̌) and let the field
f ∈ C(Td, E) take values only in Ex whence, by (38) and
for every z ∈ Td, there exists an rz ∈ SO(3) such that
f(z) = l(rz; x). Moreover f is mapped after one turn
to f ′ := P̃ [E, l, j, A](f) which takes values only in Ex

too because, by (25) and (32), f ′(j(z)) = l(A(z); f(z)) =
l(A(z); l(rz ; x)) = l(A(z)rz ; x). On the other hand f̌ ∈
C(Td, Ě), defined by f̌(z) := β(f(z)), takes values only
in Ěx̌. And, f̌ is analogously mapped after one turn to
f̌ ′ := P̃[Ě, ľ, j, A](f̌) which, again by using (25) and (32),
takes values only in Ěx̌.

Corollary 1 (Decomposition Theorem (DT)). [1]
If β is an SO(3)-map from (Ex, lx) to (Ěx̌, ľx̌), then f̌ ′(z) =
β(f ′(z)) for all (j, A).

One can prove the DT by setting γ = β in the SMT.
The terminology DT refers to E being “decomposed”,

i.e., partitioned, into the Ex (similarly for Ě). The DT
is an important corollary to the SMT, because if Ex and
Ěx̌ are Hausdorff (which they are, whenever E and Ě are
Hausdorff) then, for any (Ex, lx) and (Ěx̌, ľx̌), there is a
way to construct any SO(3)-map β, given that it exists. In
fact one can show [1] that an SO(3)-map β from (Ex, lx) to
(Ěx̌, ľx̌) exists, iff the group Hx ≡ Iso(E, l; x) is conjugate
to a subgroup of Ȟx̌ ≡ Iso(Ě, ľ; x̌), i.e. iff an r0 ∈ SO(3)
exists so that r0Hxrt

0 ⊂ Ȟx̌. Then β can be defined by

β(l(r; x)) = ľ(r rt
0; x̌) . (47)

There is an alternative construction of β ∈ C(Ex, Ěx̌) for
the case that an SO(3)-map γ ∈ C(E, Ě) is already given.
The restriction of γ from E to any Ex is an SO(3)-map β
from (Ex, lx) to (Ěx̌, ľx̌) if x̌ ∈ ľ(SO(3); γ(x)). If Ex and
Ěx̌ are Hausdorff both methods yield the same β.

Note that every SO(3)-map β from (Ex, lx) to (Ěx̌, ľx̌)
is a homeomorphism if Hx and Ȟx̌ are conjugate. In con-
trast, if Hx and Ȟx̌ are not conjugate then no SO(3)-map
β can be a homeomorphism [1].

We will apply the SMT in Sections 5 and 6 to SO(3)-
spaces defined in those sections. It is also in the spirit of
the SMT to design SO(3)-spaces in order to learn more
about invariant fields but this aspect is beyond the scope
of this work.

4.5. The Invariant Reduction Theorem (IRT) and the
Cross Section Theorem (CST)

Throughout this section we consider a fixed SO(3)-
space (E, l) and suppress reference to it whenever it helps
to keep the notation concise. We also assume a field f ∈

C(Td, E) to be Ex-valued for some x ∈ E. For y ∈ Ex

define
Rx(y) := {r ∈ SO(3) : l(r; x) = y} , (48)

and let

Σx[f ] ≡ Σx[E, l, f ]

:=
⋃

z∈Td

{z} ×Rx(f(z)) (49)

= {(z, r) ∈ (Td × SO(3)) :

l(r; x) = f(z)} . (50)

Here we mostly use the shorthand Σx[f ], in Sections 5,6
and 7 we will use Σx[E, l, f ]. As usual let j ∈ Homeo(Td)
and A ∈ C(Td, SO(3)). We introduce an evolution of Σx[f ]
under (j, A) by defining a one-turn map on Td ×SO(3) as
a special case of (28) in Section 3.2. In fact we define the
function lSO(3) ∈ C(SO(3) × SO(3), SO(3)) by

lSO(3)(r
′; r) := r′r . (51)

One can show that (SO(3), lSO(3)) is an SO(3)-space

whence P [SO(3), lSO(3), j, A] ∈ Homeo(Td ×SO(3)) reads
as

P [SO(3), lSO(3), j, A](z, r) := (j(z), A(z)r) . (52)

Theorem 4 (Invariant Reduction Theorem (IRT)).
[4, 1] f is an invariant (E, l)-field iff the set Σx[f ] is in-
variant under P [SO(3), lSO(3), j, A], i.e. iff
P [SO(3), lSO(3), j, A](Σx[f ]) = Σx[f ].

To sketch the IRT proof, one first shows, by (25) and
(50), that

P [SO(3), lSO(3), j, A](Σx[f ]) = Σx[f ′] , (53)

where f ′ is f after one turn, i.e., f ′ = P̃[E, l, j, A](f).
Thus if f is invariant, i.e., f ′ = f then, by (53), Σx[f ] is
invariant under P [SO(3), lSO(3), j, A].
Conversely if P [SO(3), lSO(3), j, A](Σx[f ]) = Σx[f ] then,
by (53), Σx[f ] = Σx[f ′] which leads to f ′ = f .

Let (z0, y) ∈ Td × Ex and define

Σx[z0, y] :=
⋃

n∈Z

P [SO(3), lSO(3), j, A]n
(
{z0} ×Rx(y)

)
.

(54)
Then a corollary [1] to the IRT states:

Corollary 2. If Σx[f ] = Cl(Σx[z0, y] ) then j is topologi-
cally transitive and f is an invariant (E, l)-field.

Furthermore if (z, r) ∈ Cl(Σx[z0, y] ), then f(z) = l(r; x)
so that y ∈ Ex explicitly determines the invariant (E, l)-
field f via the set Cl(Σx[z0, y] ). Note that (54) does not
depend on f (but see the partial converse below).

Let px[E, l, f ] : Σx[E, l, f ] → T
d be defined by

px[f ](z, r) ≡ px[E, l, f ](z, r) := z. Hence px[f ] is continu-
ous with respect to the subspace topology on Σx[f ]. One
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calls σ ∈ C(Td, Σx[f ]) a cross section of px[f ] if px[f ](σ(z))
= z, i.e. if σ is a right inverse of px[f ].

Remark: let σ ∈ C(Td, Σx[f ]), then σ(z) = (ξ(z), r(z)),
with ξ ∈ C(Td, Td). Therefore l(r(z); x) = f(ξ(z)) and
px[f ](σ(z)) = ξ(z). Thus a necessary condition for σ to
be continuous right inverse of px[f ] is, ξ(z) = z and r ∈
C(Td, SO(3)) so that l(r(z); x) = f(z). The converse of
this is true and gives Theorem 5 which we now state.

Theorem 5 (Cross Section Theorem (CST)). [1]
px[f ] has a cross section iff T ∈ C(Td, SO(3)) exists such
that f(z) = l(T (z); x).

The proof [1] uses the fact that σ(z) := (z, T (z)) is a cross
section if T is continuous. Note that, under the assump-
tions of the NFT, px[f ] has a cross section. For more
relations between the NFT and CST see the discussion af-
ter (55). The definition of px[f ] and the name CST are
suggested by bundle theory, as discussed in Section 7.

We now state a partial converse to Corollary 2. Let j
be topologically transitive, let px[f ] have a cross section
and let f be an invariant (E, l)-field. Then

Σx[f ] = Cl(Σx[z0, f(z0)] ) . (55)

Thus, as mentioned after Corollary 2, f(z0) explicitly de-
termines the invariant field f via the set
Cl(Σx[j, A, z0, f(z0)] ). The fact that f can be determined
by the single value f(z0) is not surprising since the jn(z0)
are dense in Td and since the iteration f(jn+1(z0)) =
l(A(jn(z0))r; f(jn(z0))) gives f on a dense subset of Td

and, by continuity, everywhere. Recall the discussion of
Figure 2 in Section 2. In contrast, (55) is an alternative
method for obtaining an explicit form of f from f(z0) and
it does so for arbitrary (E, l). If the jn(z0) are not dense in
Td then f(z0) does not necessarily determine f . For exam-
ple let j(z) = z and A(z) := I3×3 then every f ∈ C(Td, E)
is an invariant (E, l)-field and hence it is not determined
by f(z0).

Recall from Section 4.3 that, by the NFT, an invari-
ant (E, l)-frame field at x provides an invariant (E, l)-field
which takes values only in Ex. The NFT and the CST
give us a partial converse namely the claim that an in-
variant (E, l)-frame field at x exists iff an invariant (E, l)-
field f exists which takes values only in Ex and such that
px[E, l, f ] has a cross section. To prove the claim, let
first an invariant (E, l)-frame field T at x exist whence,
by the NFT, the function f ∈ C(Td, SO(3)) defined by
f(z) = l(T (z); x) is an invariant (E, l)-field which takes
values only in Ex and, by the CST, px[E, l, f ] has a cross
section. Conversely if an invariant (E, l)-field f exists
which takes values only in Ex and such that px[E, l, f ]
has a cross section then, by the CST, a T ∈ C(Td, SO(3))
exists such that f(z) = l(T (z); x). Thus, by the NFT,
T is an invariant (E, l)-frame field at x which proves the
claim. Note also that through this claim the CST gives us
new insights into the question of the existence of invariant
(E, l)-frame fields.

The IRT gives a topological interpretation to the in-
variant (E, l)-fields. Moreover it is of interest for the study
of the problems of existence of the invariant (E, l)-fields,
in particular via Corollary 2. The CST on the other hand
gives a topological interpretation to the invariant (E, l)-
frame fields. The topological interpretations of the IRT
and the CST have their origins in bundle theory since the
topological spaces Σx[E, l, f ] are the bundle spaces of prin-
cipal bundles if E is Hausdorff. For more details see Sec-
tion 7.

5. Applying the Main Theorems to Spin-1/2 Dy-
namics

5.1. Reconsidering the spin-1/2 dynamics in terms of (E, l)

In this section we introduce and study the SO(3)-spaces
(R3, lv) and (E1/2, l1/2) which play the leading role for
the spin-1/2 dynamics. We also introduce (R, lid) and
(R4, l1/2), which are useful for understanding (E1/2, l1/2).
Although the results from some of the examples are obvi-
ous in the context of standard spin dynamics, the examples
still serve to illustrate our methods.

5.1.1. (R3, lv) for particle and field dynamics

We begin by defining the SO(3)-space (E, l) = (R3, lv)
for which the one-turn particle-E-spin map P [E, l, j, A]
in (28) reproduces the discrete-time spin vector motion
(5) - (7), and for which the one-turn field-E-spin map
P̃ [E, l, j, A] reproduces the discrete-time polarization field
motion (8) - (9).

We define lv ∈ C(SO(3) × R3, R3) by

lv(r; ~S) := r~S , (56)

where r ∈ SO(3). The spin vector ~S is an R3-spin variable.
It follows from (28) and (56) that for every

j ∈ Homeo(Td) and every A ∈ C(Td, SO(3))

P [R3, lv, j, A](z, ~S) = (j(z), A(z)~S) . (57)

With j = Pω this reproduces (5) - (7).

The field motion ~f → ~f ′ in (32) is given by ~f ′(j(z)) =

lv(A(z); ~f(z)) = A(z)~f(z), so that the field map of (33)
gives

P̃ [E, lv, j, A](~f ) := lv(A ◦ j−1; ~f ◦ j−1) , (58)

which reproduces (8) - (9). By iteration we have ~f →
~f ′ → ~f ′′ = (~f ′)′ = lv(A ◦ j−1; ~f ′ ◦ j−1) · · · .

From (37), ~f ∈ C(Td, R3) is an invariant (R3, lv)-field

of (j, A), i.e. P̃ [R3, lv, j, A](~f) = ~f , iff

~f ◦ j = A~f . (59)

In consistency with Section 2 we call every invariant
(R3, lv)-field an invariant polarization field (IPF) and a
unit IPF is called an invariant spin field (ISF).
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The required continuity of the ISF and the fact that it
is nowhere zero make the existence of the ISF a nontrivial
issue, as we mentioned before. But as we mentioned in
the Introduction and in Section 2, on the basis of much
computational and analytical experience we propose the
“ISF-conjecture”, namely: If j is topologically transitive
then (j, A) has an ISF for every A ∈ C(Td, SO(3)).

5.1.2. (E1/2, l1/2) for density matrix dynamics

We now define the SO(3)-space (E, l) = (E1/2, l1/2)

for which the one-turn field map P̃ [E, l, j, A] in (33) re-
produces the discrete-time motion of the spin-1/2 density
matrix function in (14).

We also introduce the SO(3)-spaces (R, lid) and (R4, lv)
which facilitate computations and help in the understand-
ing of (E1/2, l1/2).

From Section 2 we recall that the orbital dynamics is
given by the one-turn maps

ρorb → ρ′orb via ρ′orb(z) = ρorb(j−1(z)) , (60)

where j = Pω, and that the spin field dynamics is given
by

~S → ~S′ via ~S′(z) = A(j−1(z)) ~S(j−1(z)) , (61)

where | ~S| ≤ 1 whence | ~S′| ≤ 1. Note that, in our Stern-
Gerlach-free model, the spin motion does not impact the
orbital densities.

The density matrix function that starts at

ρ(z) := ρorb(z)
1

2

(
I2×2 + ~σ · ~S(z)

)
(62)

is mapped to

ρ′(z) = ρ′orb(z)
1

2

(
I2×2 + ~σ · ~S′(z)

)
. (63)

We now define E1/2 as the set of hermitian 2 × 2-

matrices, i.e., E1/2 := {R ∈ C2×2 : R† = R}, with †

denoting the hermitian conjugate. Thus ρ is E1/2 valued.
The natural topology of E1/2 is its subspace topology as a

subset of C2×2. Since ρorb, ρ′orb and ~S, ~S′ are continuous,
ρ, ρ′ ∈ C(Td, E1/2).

The dynamics of ρ, given by (63), is described by a
field dynamics given by the SO(3)-space (E, l) where E =
E1/2 and l = l1/2 with l1/2 ∈ C(SO(3)×E1/2, E1/2) being
defined by

l1/2(r; γ1/2(S0, ~S)) = γ1/2(S0, r~S) , (64)

where S0 ∈ R and ~S ∈ R3, and γ1/2 ∈ Homeo(R4, E1/2) is
defined by

γ1/2(S0, ~S) =
1

2

(
S0I2×2 + ~σ · ~S

)
. (65)

It follows [12] from (65) that if h ∈ E1/2 then γ−1
1/2(h) =

(S0, ~S) where S0 ∈ R and ~S ∈ R3 are defined by

S0 := Tr[h] , Si := Tr[σih] , (i = 1, 2, 3) , (66)

which can be used to show that γ1/2 ∈ Homeo(R4, E1/2).
It follows from (62),(63) and (65) that

ρ(z) = γ1/2

(
ρorb(z), ρorb(z) ~S(z)

)
,

ρ′(z) = γ1/2

(
ρ′orb(z), ρ′orb(z) ~S′(z)

)
,

whence, by (60),(61) and (64),

l1/2(A(z); ρ(z)) = γ1/2

(
ρorb(z), ρorb(z)A(z) ~S(z)

)

= γ1/2

(
ρ′orb(j(z)), ρ′orb(j(z))

= ~S′(j(z))
)

= ρ′(j(z)) , (67)

so that, by comparing with (32), the field dynamics of
(E1/2, l1/2) indeed reproduces (63), i.e., P̃ [E1/2, l1/2, j, A]
(ρ) = ρ′. The density matrix function ρ is an invariant

(E1/2, l1/2)-field if ~S is an invariant (R3, lv)-field and if ρ0

is an invariant (R, lid)-field, i.e., if ρ0(j(z)) = ρ0(z) (recall
the definition of lid in Section 3.1).

To gain further insights we define the SO(3)-space
(R4, l1/2), with

l1/2(r; S0, ~S) := (lid(r; S0), lv(r; ~S)) = (S0, r~S) . (68)

With these SO(3)-spaces γ1/2 is an SO(3)-map from

(R4, l1/2) to (E1/2, l1/2) and γ−1
1/2 is an SO(3)-map from

(E1/2, l1/2) to (R4, l1/2) and l1/2 is given by

l1/2(r; h) = γ1/2(l1/2(r; γ
−1
1/2(h))) . (69)

One can use (69) to show that l1/2 is an SO(3)-action.

Note also that the functions in C(Td, E1/2) are in one-one

correspondence with the functions in C(Td, R4) because
γ1/2 is a homeomorphism whence f ∈ C(Td, R4) can be

mapped bijectively to g ∈ C(Td, E1/2), defined by g :=
γ1/2 ◦ f . It is shown in Section 5.4 below by using the

SMT and for any f ∈ C(Td, R4) that γ1/2◦f is an invariant

(E1/2, l1/2)-field iff f is an invariant (R4, l1/2)-field. Note

also that if f0 ∈ C(Td, R) and ~f ∈ C(Td, R3) then (f0, ~f)
is an invariant (R4, l1/2)-field iff f0 is an invariant (R, lid)-

field and ~f is an invariant (R3, lv)-field.

5.2. The Topological Transitivity Theorem (TTT)

Let j be topologically transitive and A ∈ C(Td, SO(3)).
We first consider the SO(3)-space (R3, lv). By (38) and

(56) and for x = ~s ∈ R3,

E~s = lv(SO(3);~s) = {r~s : r ∈ SO(3)}
= {~S ∈ R

3 : |~S| = |~s|} , (70)

which is a sphere of radius |~s| centered at (0, 0, 0). By

the TTT (Theorem 1), if ~N is an invariant (R3, lv)-field of

(j, A), i.e. an IPF, then ~N is E~s-valued for some ~s ∈ R3

and thus | ~N (z)| is indeed independent of z as it should be.
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Next we briefly consider the SO(3)-space (R, lid) where
lid is defined in Section 3.1. Since lid represents the iden-
tity, every invariant (R, lid)-field f0 is constant, i.e., f0(z) ≡
s0 is an invariant (R, lid)-field and is Es0

-valued with Es0
=

lid(SO(3); s0) = {s0} for some real constant s0. Con-
versely if f is constant then f0 is an invariant (R, lid)-field.

Now we consider the SO(3)-space (R4, l1/2). Recall
that it is a construct invented to elegantly glue together
the orbital and spin components necessary to build density
matrix functions. Let x = (s0, ~s) ∈ R4, then

E(s0,~s) = l1/2(SO(3); s0, ~s)

= {(S0, ~S) ∈ R
4 : S0 = s0, |~S| = |~s|} . (71)

By the TTT, if (ρorb, ~N ) is an invariant (R4, l1/2)-field
of (j, A) then, it is E(s0,~s)-valued for some real s0 and

some ~s ∈ R3 and thus by (71), ρorb(z) and | ~N (z)| are
independent of z.

We finally consider the SO(3)-space (E1/2, l1/2). By
(38) and for x = γ1/2(s0, ~s) ∈ E1/2,

Ex = l1/2(SO(3); γ1/2(s0, ~s))

= γ1/2(l1/2(SO(3); s0, ~s))

= {γ1/2(S0, ~S) :

S0 ∈ R, ~S ∈ R
3, S0 = s0, |~S| = |~s|} . (72)

By the TTT, if g is an invariant (E1/2, l1/2)-field of (j, A)
then an x ∈ E1/2 exists such that g is Ex valued for some

x ∈ E1/2. Thus if we write) g = γ1/2 ◦ (f0, ~f) then, by

(72), the functions f0(z) and |~f(z)| are independent of z.

5.3. The Normal Form Theorem (NFT)

Following Section 4.3 we now identify the isotropy
groups for various important SO(3)-spaces in order to ap-
ply the NFT.

We first consider the SO(3)-space (R3, lv). Let T ∈
C(Td, SO(3)). Then we pick x = (0, 0, 1)t and define f̂ ∈
C(Td, R3) by

f̂(z) := lv(T (z); (0, 0, 1)t) = T (z)(0, 0, 1)t . (73)

With this, f̂(z) is the third column of T (z). One can
show, by (22),(40), and (73) and a small amount of linear
algebra, that

Iso(R3, lv; (0, 0, 1)t) = SO(2) , (74)

where SO(2) is defined by (22). The NFT (Theorem 2)
states that, for all z ∈ Td,

T t(j(z))A(z)T (z) ∈ SO(2) , (75)

iff f̂ is an invariant (R3, lv)-field, i.e. iff f̂ is an ISF (since

|f̂ | = 1).
Recalling the discussion in Section 4.3, we conclude

that the NFT states that a T ∈ C(Td, SO(3)) is an invari-
ant (R3, lv)-frame field at (0, 0, 1)t iff the third column of

T is an ISF. Note that an invariant (R3, lv)-frame field at
(0, 0, 1)t is also just called an invariant frame field (IFF)
whence invariant (E, l)-frame fields are generalized IFFs.
Thus the NFT states in this case that a T ∈ C(Td, SO(3))
is an IFF iff its third column is an ISF. For more details
on IFFs see also [30].

We now generalize x = (0, 0, 1)t to x = ~s ∈ R
3 where

~s 6= ~0 and we define ~h ∈ C(Td, R3) by ~h(z) := lv(T (z);~s) =
T (z)~s for some T ∈ C(Td, SO(3)). One can show that
Iso(R3, lv;~s) is conjugate to Iso(R3, lv; (0, 0, 1)t), in other
words that r0 ∈ SO(3) exists such that

Iso(R3, lv;~s) = r0SO(2)rt
0 . (76)

In complete analogy with the case of x = (0, 0, 1)t it

can be shown that ~h(z) is an IPF iff T t(j(z))A(z)T (z) ∈
(r0SO(2)rt

0).
In passing we note that because of Iso(R3, lv;~0) =

SO(3) and since the trivial IPF ~N0(z) := ~0 is an invariant
(R3, lv)-field, the NFT is trivial in the case x = ~0.

We now consider the SO(3)-space (E, l) = (R, lid). Let
x = s0 ∈ R. Then for any T ∈ C(Td, SO(3)) we may define
f0 ∈ C(Td, R) by

f0(z) := lid(T (z); s0) = s0 . (77)

Moreover Iso(R, lid; s0) = SO(3) so that for any (j, A) the
condition (T t ◦ j)AT ∈ Iso(R, lid; s0) holds. Also any
constant f0(z) is an invariant (R, lid)-field whence the NFT
is trivial here too.

Next we consider the SO(3)-space (R4, l1/2) that glues
together our (j, A)-dynamics on (R, lid) and on (R3, lv).
Let T ∈ C(Td, SO(3)). We only consider the case where
x = (s0, ~s) with s0 ∈ R, ~0 6= ~s ∈ R3 and define f ∈
C(Td, R4) by

f(z) := l1/2(T (z); (s0, ~s)) = (s0, T (z)~s) = (s0,~h(z)) .
(78)

With Iso(R, lid; s0) = SO(3) and Iso(R3, lv;~s) = r0SO(2)rt
0

for some r0 ∈ SO(3) one quickly finds that

Iso(R4, l1/2; (s0, ~s)) = Iso(R3, lv;~s) = r0SO(2)rt
0 . (79)

By the discussion after (76) it is no surprise that the NFT

states that f is an invariant (R4, l1/2)-field, i.e., that ~h is
an IPF, iff (T t ◦ j)AT ∈ (r0SO(2)rt

0).
Finally we consider the SO(3)-space (E1/2, l1/2). Let

T ∈ C(Td, SO(3)). We only consider the case where x =
γ1/2(s0, ~s) with s0 ∈ R, ~0 6= ~s ∈ R3. We define g ∈
C(Td, E1/2) by

g(z) := l1/2(T (z); γ1/2(s0, ~s))

= γ1/2(l1/2(T (z); (s0, ~s))

= γ1/2(s0,~h(z)) . (80)

Also one finds that

Iso(E1/2, l1/2; γ1/2(s0, ~s)) = Iso(R4, l1/2; (s0, ~s))

= r0SO(2)rt
0 . (81)
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Then in analogy with the case of the SO(3)-space (R4, l1/2)
the NFT states that g is an invariant (E1/2, l1/2)-field, i.e.,
~h is an IPF, iff (T t ◦ j)AT ∈ (r0SO(2)rt

0).

5.4. The SO(3)-Mapping Theorem (SMT)
Let j ∈ Homeo(Td) and A ∈ C(Td, SO(3)). We con-

sider three cases, in the first the SO(3) map is a homeo-
morphism and in the latter two not. Furthermore, al-
though the latter two are elementary applications of the
SMT, they are important illustrations of the theory.

First we consider the case where (E, l) = (R4, l1/2) and

(Ě, ľ) = (E1/2, l1/2). We recall from Section 5.1.2 that

γ1/2 is an SO(3)-map from (R4, l1/2) to (E1/2, l1/2). Let

f ∈ C(Td, R4) and let us define f̌ ∈ C(Td, E1/2) by f̌ :=
γ1/2 ◦ f . Since the SO(3)-map γ1/2 is a homeomorphism
and recalling the discussion after (46), the SMT (Theorem
3) implies that f is an invariant (R4, l1/2)-field iff f̌ is an
invariant (E1/2, l1/2)-field of (j, A). Thus we can study
the dynamics of the more important (E1/2, l1/2) space by

studying the simpler (R4, l1/2) space.
We now consider the case where (E, l) = (E1/2, l1/2)

and (Ě, ľ) = (R, lid). We define the function γ ∈ C(E1/2, R)
by γ(h) := Tr[h] and we compute, by (65),

γ(γ1/2(s0, ~s)) = Tr

[
1

2
(s0I2×2 + ~σ · ~s)

]
= s0 , (82)

where h = γ1/2(s0, ~s) and where we also used the fact that
0 = Tr[σi]. One can show by direct computation that
γ is an SO(3)-map from (E1/2, l1/2) to (R, lid). Let g ∈
C(Td, E1/2) and define ǧ ∈ C(Td, R) by ǧ(z) := γ(g(z)) =
Tr[g(z)]. The SMT states that if g is an invariant (E1/2,
l1/2)-field of (j, A) then Tr[g] is an invariant (R, lid)-field
of (j, A), i.e. Tr[g ◦ j] = Tr[g]. Since g and Tr[g] are con-
tinuous this implies that Tr[g] is constant for (E1/2, l1/2)-
invariant g if j is topologically transitive.

Lastly we consider the case where (E, l) = (R3, lv) and
(Ě, ľ) = (R, lid). We define the function γ ∈ C(E, Ě) =
C(R3, R) by γ(~s) := |~s|. One can show that γ is an SO(3)-

map from (R3, lv) to (R, lid). Let ~f ∈ C(Td, R3) and let us

define ~̌f ∈ C(Td, R) by ~̌f(z) := γ(~f(z)) = |~f |(z). Recall-

ing Section 4.4, the SMT states that if ~f is an invariant
(R3, lv)-field of (j, A), i.e., is an IPF then |~f | is an invariant
(R, lid)-field of (j, A).

5.5. The Invariant Reduction Theorem (IRT) and the Cross
Section Theorem (CST)

Let j ∈ Homeo(Td) and A ∈ C(Td, SO(3)).
We first consider the SO(3)-space (E, l) = (R, lid). So

let x ∈ E = R. Let f0 ∈ C(Td, R) take values only in Ex

whence for every z ∈ Td, f0(z) = x so that, by (50) and
(68),

Σx[R, lid, f0] = {(z, r) ∈ (Td × SO(3)) :

lid(r; x) = f0(z)}
= {(z, r) ∈ (Td × SO(3)) : x = x}
= T

d × SO(3) . (83)

Recalling Section 4.5, the IRT states that f0 is an invariant
(R, lid)-field iff P [SO(3), lSO(3), j, A](Td × SO(3)) = Td ×
SO(3). This claim of the IRT is no surprise because Td ×
SO(3) is the domain of the bijection P [SO(3), lSO(3), j, A]

whence P [SO(3), lSO(3), j, A](Td × SO(3)) = Td × SO(3)
and because, by the discussion after (77), f0 is an in-
variant (R, lid)-field. To discuss the CST we first recall
from Section 4.5 and (83) that the function px[R, lid, f0] ∈
C(Td × SO(3), Td) is defined by px[R, lid, f0](z, r) := z.
Thus recalling Section 4.5 the CST states that px[R, lid, f0]
has a cross section iff a T ∈ C(Td, SO(3)) exists such that
x = f0(z) = lid(T (z); x), i.e. that x = x. This claim of the
CST is no surprise because, for every T ∈ C(Td, SO(3)),
x = x and because the function σ ∈ C(Td, Td ×SO(3)) de-
fined by σ(z) := (z, I3×3) is a cross section of px[R, lid, f0]
since px[R, lid, f0](σ(z)) = px[R, lid, f0](z, I3×3) = z.

We now consider the SO(3)-space (E, l) = (R3, lv). We

first pick x = (0, 0, 1)t ∈ R
3. Let ~f ∈ C(Td, R3) take values

only in Ex whence for every z ∈ Td, by (50) and (56),

Σx[R3, lv, ~f ] = {(z, r) ∈ (Td × SO(3)) :

r(0, 0, 1)t = ~f(z)} . (84)

Recalling Section 4.5 and using (84) and the fact that

|~f | = 1, the IRT states that ~f is an ISF of (j, A) iff

P [SO(3), lSO(3), j, A](Σx[R3, lv, ~f ]) = Σx[R3, lv, ~f ]. To dis-
cuss the CST we first recall from Section 4.5 and (83)

that the function px[R3, lv, ~f ] ∈ C(Σx[R3, lv, ~f ], Td) is de-

fined by px[R3, lv, ~f ](z, r) := z. Thus recalling Section

4.5 and using (56) the CST states that px[R3, lv, ~f ] has
a cross section iff a T ∈ C(Td, SO(3)) exists such that
~f(z) = lv(T (z); x). Since x = (0, 0, 1)t and by (56) we

note that ~f(z) = lv(T (z); x) iff ~f(z) = T (z)(0, 0, 1)t, i.e.,

iff ~f is the third column of T . Thus recalling Section 4.5
the CST states that px[R3, lv, ~f ] has a cross section iff a

T ∈ C(Td, SO(3)) exists such that ~f is the third column
of T . One can show by some Topology [4] that if d = 1

then px[R3, lv, ~f ] always has a cross section while, if d ≥ 2,

there exist ~f such that px[R3, lv, ~f ] has a cross section and

there exist ~f such that px[R3, lv, ~f ] has no cross section.
The CST allows us to characterize IFFs in terms of

cross sections by claiming that a (j, A) has an IFF iff it

has an ISF ~f for which px[R3, lv, ~f ] has a cross section.
The claim is a special case of a claim made in Section 4.5
since an IFF is an invariant (R3, lv)-frame field at (0, 0, 1)t.
Thus the CST gives us new insights into the question of
the existence of IFFs.

We can summarize the case x = (0, 0, 1)t by saying that
the CST gives a topological criterion for the existence of
an IFF and that the IRT gives a topological criterion for
the existence of an ISF. The above discussion of the IRT
and CST, which was made for the choice (E, l) = (R3, lv)
and x = (0, 0, 1)t ∈ R3 can be generalized to the case when
0 6= x ∈ R3. Recalling from Section 5.3 that in the general
case Iso(R3, lv; x) is conjugate to Iso(R3, lv; (0, 0, 1)t) the
general case is just a minor modification of its subcase
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x = (0, 0, 1)t and so we leave the remaining details to the
reader as well as the trivial case when x = (0, 0, 0)t ∈ R3.
Moreover we must leave the SO(3)-spaces (R4, l1/2) and
(E1/2, l1/2) to the reader too.

6. Applying the Main Theorems to Spin-1 Dynam-
ics

6.1. The spin-1 dynamics in terms of (E, l)

In this section we introduce and study the SO(3)-spaces
(Et, lt), and (E1, l1), which play the leading role for the
spin-1 dynamics. We also introduce (R4 × Et, l1) which
along with (R, lid) is useful for understanding (E1, l1).

6.1.1. (Et, lt) for particle and field dynamics

The spin-1 density matrix function on a single torus
is a complex 3 × 3 hermitian matrix function whose val-
ues can be expressed in terms of the polarization vector
and the polarization tensor. As explained in [12, 13, 14]
the polarization tensor is a real 3 × 3 traceless matrix.
Then guided by these properties we define the SO(3)-space
(Et, lt) where

Et := {M ∈ R
3×3 : M t = M, Tr[M ] = 0} (85)

and the SO(3)-action lt ∈ C(SO(3) × Et, Et) by

lt(r; M) := rMrt , (86)

with r ∈ SO(3), M ∈ Et. The natural topology of Et is its
subspace topology as a subset of R3×3. Note that lt(r; M)
is a matrix similar to M for all r. The “spin tensor” M in
(85) is the Et-spin variable that we need. It follows from
(28) and (86) that, for every j ∈ Homeo(Td) and every
A ∈ C(Td, SO(3)),

P [Et, lt, j, A](z, M) = (j(z), A(z)MAt(z)) . (87)

The field motion M → M′ is given via (32) and (86)
by

M′(j(z)) = lt(A(z);M(z)) = A(z)M(z)At(z) , (88)

thus the field map of (33) reads as

P̃ [Et, lt, j, A](M) := lt(A ◦ j−1;M◦ j−1)

= (A ◦ j−1)(M◦ j−1)

× (At ◦ j−1) . (89)

The one-turn field-Et-spin map P̃ [Et, lt, j, A] in (89) repro-
duces the discrete-time polarization-tensor field motion of
[12, 13, 14].

Using (87), M ∈ C(Td, Et) is an invariant (Et, lt)-field
of (j, A), i.e. P̃[Et, lt, j, A](M) = M , iff

M(j(z)) = A(z)M(z)At(z) . (90)

We call every invariant (Et, lt)-field an invariant polariza-
tion-tensor field (IPTF).

6.1.2. (E1, l1) for density matrix dynamics

We now define the SO(3)-space (E, l) = (E1, l1) for
which the one-turn field map P̃[E, l, j, A] in (33) repro-
duces the discrete-time motion of the spin-1 density matrix
function. We also introduce the SO(3)-space (R4 ×Et, l1)
which facilitates computations and the understanding of
(E1, l1). In storage rings we need the semiclassical spin-
1 density matrix function ρ. This arises from the semi-
classical treatment of the Proca equation where ρ is a
semiclassical approximation of the spin-1 Wigner function.
Thus the particle-variables are purely classical whereas
the spin-degrees-of-freedom are treated fully quantum me-
chanically. For simplicity we suppress the term “semiclas-
sical” when we discuss ρ.

As in the fully quantum-mechanical case the values of
the spin-1 density matrix function ρ are complex hermitian
3 × 3 matrices and following [12, 13, 14] ρ reads as

ρ(z) = ρorb(z)
1

3

(
I3×3 +

3

2
~Σ · ~S(z)

+

√
3

2

3∑

i,k=1

Mik(z)(ΣiΣk + ΣkΣi)

)
, (91)

where again we have suppressed the implicit dependence
on J and θ. Here I3×3 is the 3 × 3 unit matrix and
Σ1, Σ2, Σ3 are the matrices:

Σ1 :=

√
1

2




0 −i 0
i 0 −i
0 i 0



 , Σ2 :=




1 0 0
0 0 0
0 0 −1



 ,

Σ3 :=

√
1

2




0 1 0
1 0 1
0 1 0



 ,

with the same axis asignments as in [12, 13, 14]. As before
ρorb is the coninuous orbital phase space density of the
bunch and ~S is the continuous polarization field describ-
ing the spin vector state of the bunch where | ~S| ≤ 1. The
Mik denote the (ik)-th matrix elements of the continu-
ous tensor-polarization field M describing the spin tensor
state of the bunch where Tr[M2] ≤ 1. The square of the
Euclidean norm (also called the Frobenius norm [31]) of

any M ∈ Et reads as
∑3

i,k=1 MikMik = Tr[M2] where we
used the fact that M is symmetric. Thus the Euclidean
norm of ~S(z) and the Frobenius norm of M(z) are ≤ 1.
We abbreviate the set of hermitian 3 × 3 matrices by E1,
i.e.,

E1 := {R ∈ C
3×3 : R† = R} , (92)

and we equip E1 with the subspace topology from C3×3.
Since ρorb, ~S and M are continuous, ρ ∈ C(Td, E1). The
observables and their expectation values with respect to
ρ are defined in analogy with the spin-1/2 case. For the
latter see the discussion after (15).

From Section 5.1.1 we recall that the orbital dynamics
is given by the one-turn maps

ρorb → ρ′orb via ρ′orb(z) = ρorb(j−1(z)) . (93)
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and the polarization field dynamics is given by

~S → ~S′ via ~S′(z) = A(j−1(z)) ~S(j−1(z)) . (94)

From Section 6.1.1 we recall that the polarization-tensor
field dynamics is given by the one-turn map M → M′ via

M′(z) = A(j−1(z))M(j−1(z))At(j−1(z)) . (95)

The spin-1 density matrix function ρ in (91) is mapped in
one turn to

ρ′(z) = ρ′orb(z)
1

3

(
I3×3 +

3

2
~Σ · ~S′(z)

+

√
3

2

3∑

i,k=1

M′
ik(z)(ΣiΣk + ΣkΣi)

)
. (96)

The condition | ~S| ≤ 1 is consistent with the dynamics since

it implies, by (94), that | ~S′(z)| = |A(j−1(z)) ~S(j−1(z))|
= | ~S(j−1(z))| ≤ 1. Moreover the condition Tr[M2] ≤ 1
is consistent with the dynamics since it implies, by (95),
that Tr[(M′(z))2] = Tr[A(j−1(z))M2(j−1(z))At(j−1(z))]
= Tr[M2(j−1(z))] ≤ 1. The dynamics of ρ given by (96)
is the same as that of the field dynamics given by the
SO(3)-space (E, l) where E = E1 and l = l1 and where
l1 ∈ C(SO(3) × E1, E1) is defined by

l1(r; γ1(S0, ~S, M)) := γ1(S0, r~S, rMrt) , (97)

where S0 ∈ R, ~S ∈ R3, M ∈ Et and where γ1 ∈ Homeo(R4×
Et, E1) is defined by

γ1(S0, ~S, M) =
1

3

(
S0I3×3 +

3

2
~Σ · ~S +

√
3

2

×
3∑

i,k=1

Mik(ΣiΣk + ΣkΣi)

)
. (98)

It follows from (98) that if h ∈ E1 then γ−1
1 (h) = (S0, ~S, M)

where S0 ∈ R, ~S ∈ R3 and M ∈ Et are defined by

S0 := Tr[h] , Si := Tr[Σih] , (99)

Mik := −Tr[h]

√
2

3
δik

+

√
3

8
Tr[(ΣiΣk + ΣkΣi)h] ,

(i, k = 1, 2, 3) (100)

which can be used to show that γ1 ∈ Homeo(R4×Et, E1).
It follows from (91),(96) and (98) that

ρ(z) = γ1

(
ρorb(z), ρorb(z) ~S(z), ρorb(z)M(z)

)
,

ρ′(z) = γ1

(
ρ′orb(z), ρ′orb(z) ~S′(z), ρ′orb(z)M′(z)

)
,

whence, by (93),(94),(95) and (97),

l1(A(z); ρ(z)) = γ1

(
ρorb(z), ρorb(z)A(z) ~S(z),

ρorb(z)A(z)M(z)At(z)
)

= γ1

(
ρ′orb(j(z)), ρ′orb(j(z)) ~S′(j(z)),

ρ′orb(j(z))M′(j(z))
)

= ρ′(j(z)) , (101)

so that, by comparing with (32), the field dynamics of
(E1, l1) indeed reproduces (96), i.e., P̃ [E1, l1, j, A](ρ) = ρ′.
Clearly ρ is an invariant (E1, l1)-field if the following hold:

ρorb is an invariant (R, lid)-field, ~S is an invariant (R3, lv)-
field, and M ∈ C(Td, Et) is an invariant (Et, lt)-field. Note
that in our Stern-Gerlach-free model, the SO(3)-actions lv
and lt do not impact the orbital densities.

To gain further insights we define the SO(3)-space (R4×
Et, l1), with

l1(r; S0, ~S, M) :=
(
lid(r; S0), lv(r; ~S), lt(r; M)

)

=
(
S0, r~S, rMrt

)
. (102)

With this SO(3)-space, γ1 is an SO(3)-map from (R4 ×
Et, l1) to (E1, l1) and γ−1

1 is an SO(3)-map from (E1, l1)
to (R4 × Et, l1) and l1 is given by

l1(r; h) = γ1(l1(r; γ
−1
1 (h))) . (103)

One can use (103) to show that l1 is an SO(3)-action.
Note that the functions in C(Td, E1) are in one-one corre-
spondence with the functions in C(Td, R4×Et) because f ∈
C(Td, R4×Et) can be mapped bijectively to g ∈ C(Td, E1),
defined by g := γ1 ◦ f since γ1 is a homeomorphism. It
is shown in Section 6.4 below by using the SMT and for
any f ∈ C(Td, R4 ×Et) that γ1 ◦ f is an invariant (E1, l1)-
field iff f is an invariant (R4 ×Et, l1)-field. Note also that

if f0 ∈ C(Td, R), ~f ∈ C(Td, R3) and M ∈ C(Td, Et) then

(f0, ~f ,M) is an invariant (R4 × Et, l1)-field iff the follow-

ing hold: f0 is an invariant (R, lid)-field, ~f is an invariant
(R3, lv)-field, and M is an invariant (Et, lt)-field.

6.2. The Topological Transitivity Theorem (TTT)

Let j be topologically transitive and A ∈ C(Td, SO(3)).
Although the results from some of the examples are obvi-
ous in the context of standard spin dynamics, the examples
still serve to illustrate our methods.

We first consider the SO(3)-space (R3, lt). With (38),
(86) and for x = m ∈ Et,

Em = lt(SO(3); m) = {rmrt : r ∈ SO(3)}
= {M ∈ Et : det(M) = det(m),

Tr[M2] = Tr[m2]} . (104)

If M ∈ Em then, by (86), the matrices m and M are
similar whence they have identical characteristic polyno-
mials which can be used to prove (104). Clearly all ma-
trices in Em have the same eigenvalues and thus have the
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same number of distinct eigenvalues as m. In fact the
characteristic polynomial of any m ∈ Et is the function
t 7→ t3 − (t/2)Tr[m2] − det(m). Moreover, by (86) and
since all matrices in Et are real and symmetric, the ei-
genvalues are real and Em contains at least one diagonal
matrix [32].

By the TTT (Theorem 1), if M is an invariant (Et, lt)-
field of (j, A), i.e. an IPTF, then M is Em-valued for some
m ∈ Et and thus det(M) and Tr[M2] are independent of
z. Recalling from Section 6.1.2 that Tr[m2] is the square
of the Frobenius norm of m ∈ Et we note, by (104), that
all M ∈ Em have the same Frobenius norm whence, by
the TTT, the Frobenius norm of an invariant (Et, lt)-field
is independent of z.

We next consider the SO(3)-space (R4×Et, l1). Recall
that it is a construct invented to elegantly glue together
the orbital and spin components necessary to build density
matrix functions. Let x = (s0, ~s, m) ∈ R4 × Et, then

E(s0,~s,m) = l1(SO(3); s0, ~s, m)

=
{
(S0, ~S, M) ∈ R

4 × Et :

S0 = s0, |~S| = |~s|,
det(M) = det(m),

Tr[M2] = Tr[m2]
}

. (105)

By the TTT, if (f0, ~N ,M) is an invariant (R4×Et, l1)-field
of (j, A) then it is E(s0,~s,m)-valued for some s0 ∈ R, ~s ∈
R3 and m ∈ Et and thus, by (104), f0(z) and | ~N (z)| as
well as det(M(z)) and Tr[M2(z)] are independent of z, in

particular the norms of ~N (z) and of M(z) are independent
of z.

We finally consider the SO(3)-space (E1, l1). By (38)
and (105) and for x = γ1(s0, ~s, m) ∈ E1,

Ex = l1(SO(3); γ1(s0, ~s, m))

= γ1(l1(SO(3); s0, ~s, m))

=
{
γ1(S0, ~S, M) :

S0 ∈ R, ~S ∈ R
3, M ∈ Et,

S0 = s0, |~S| = |~s|, det(M) = det(m),

Tr[M2] = Tr[m2]
}

. (106)

By the TTT, if g is an invariant (E1, l1)-field of (j, A)
then an x ∈ E1 exists such that g is Ex valued for some
x ∈ E1. Thus if we write g = γ1◦(f0, ~f ,M) then, by (106),

the functions f0(z) and | ~N (z)| as well as det(M(z)) and
Tr[M2(z)] are independent of z.

6.3. The Normal Form Theorem (NFT)

Let T ∈ C(Td, SO(3)). Following Section 4.3 we now
identify the isotropy groups for various important SO(3)-
spaces in order to apply the NFT.

6.3.1. (Et, lt)

Case 1 (x ∈ Et has two distinct eigenvalues)

We first consider the subcase of Case 1 where x = x0

is the diagonal matrix

x0 =




y 0 0
0 y 0
0 0 −2y



 , (0 6= y ∈ R) (107)

and define M0 ∈ C(Td, Et) by

M0(z) := lt(T (z); x0) = y(I3×3 − 3~f0(z)~f t
0(z)) , (108)

where in the second equality we used (86) and where the

function ~f0 ∈ C(Td, R3) is defined by

~f0(z) := T (z)(0, 0, 1)t . (109)

Note that x0 has two distinct eigenvalues: y and −2y. One
can show, by (40) and (86) and a small amount of linear
algebra, that

Iso(Et, lt; x0) = SO(2) ⊲⊳ Z2 , (110)

where

SO(2) ⊲⊳ Z2 := {rr′ : r ∈ Z2, r
′ ∈ SO(2)} , (111)

and where Z2 consists of the two elements

I3×3, and




1 0 0
0 −1 0
0 0 −1



 .

The NFT (Theorem 2) states that, for all z ∈ Td,

T t(j(z))A(z)T (z) ∈ (SO(2) ⊲⊳ Z2) , (112)

iff M0 is an invariant (Et, lt)-field, i.e. iff M0 is an IPTF.
Note every IFF is an invariant (Et, lt)-frame field at x0.

In fact if T is an IFF then, by the discussion after (75),
T satisfies (75), i.e., T t(j(z))A(z)T (z) ∈ SO(2) whence,
and since SO(2) ⊂ (SO(2) ⊲⊳ Z2), we get (112). One can
show that the converse does not hold. We see that if T
is an IFF then, by the NFT, the function M0 in (108)
is an invariant (Et, lt)-field. We will reconsider (108) in
Section 6.5. We now consider Case 1, i.e., when x has two
distinct eigenvalues, in full generality. Recalling from the
discussion after (104) that an r ∈ SO(3) exists such that
the matrix rtxr is diagonal, one can show that a unique
0 6= y ∈ R and an r0 ∈ SO(3) exist such that x = r0x0r

t
0.

We thus define M ∈ C(Td, Et) by

M(z) := lt(T (z); x) = y(I3×3 − 3~f(z)~f t(z)) , (113)

where in the second equality we used (86) and where the

function ~f ∈ C(Td, R3) is defined by

~f(z) := T (z)r0(0, 0, 1)t . (114)

One can show, by (24),(25),(40) and (110), that

Iso(Et, lt; x) = r0Iso(Et, lt; x0)r
t
0

= r0(SO(2) ⊲⊳ Z2)r
t
0 , (115)
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i.e., Iso(Et, lt; x) is conjugate to Iso(Et, lt; x0). Thus the
general Case 1 is just a minor modification of its subcase
x = x0 which was discussed above and so we leave the
remaining details to the reader.
Case 2 (x ∈ Et has three distinct eigenvalues)

We first consider the subcase of Case 2 where x = x0

with

x0 =




y1 0 0
0 y2 0
0 0 −y1 − y2



 , (116)

and where y1 ∈ (0,∞), y2 ∈ (−y1/2, y1) and where we
define M0 ∈ C(Td, Et) by

M0(z) := lt(T (z); x0)

= y1I3×3 − (2y1 + y2) ~f0(z)~f t
0(z)

+ ( y2 − y1 ) ~g0(z)~gt
0(z) , (117)

where in the second equality we used (86) and where the

functions ~f0, ~g0 ∈ C(Td, R3) are defined by (109) and by

~g0(z) := T (z)(0, 1, 0)t . (118)

Note that x0 has three eigenvalues: y1, y2,−y1 − y2. One
can show, by (40) and (86) and some linear algebra, that

Iso(Et, lt; x0) = SOdiag(3) , (119)

where SOdiag(3) is the set of the four diagonal matrices
in SO(3). The NFT (Theorem 2) then states that, for all
z ∈ Td,

T t(j(z))A(z)T (z) ∈ SOdiag(3) , (120)

iff M0 is an invariant (Et, lt)-field, i.e. iff M0 is an IPTF.
We now consider Case 2, i.e., when x has three distinct ei-
genvalues, in full generality. Recalling from the discussion
after (104) that an r ∈ SO(3) exists such that the matrix
rtxr is diagonal, one can show that a unique y1 ∈ (0,∞),
a unique y2 ∈ (−y1/2, y1) and an r0 ∈ SO(3) exist such
that x = r0x0r

t
0. We thus define M ∈ C(Td, Et) by

M(z) := lt(T (z); x)

= y1I3×3 − (2y1 + y2) ~f(z)~f t(z)

+ ( y2 − y1 ) ~g(z)~gt(z) , (121)

where in the second equality we used (86) and where the

functions ~f,~g ∈ C(Td, R3) are defined by (114) and by

~g(z) := T (z)r0(0, 1, 0)t . (122)

One can show, by (24),(25),(40) and (119), that

Iso(Et, lt; x) = r0Iso(Et, lt; x0)r
t
0

= r0SOdiag(3)rt
0 , (123)

i.e., Iso(Et, lt; x) is conjugate to Iso(Et, lt; x0). Thus the
general Case 2 is just a minor modification of its subcase
x = x0 which was discussed above and so we again leave
the remaining details to the reader.
Case 3 (x ∈ Et has only one eigenvalue)

Recalling from the discussion after (104) that an r ∈
SO(3) exists such that the matrix rtxr is diagonal, one can
show that x = 0 whence Iso(Et, lt; x) = SO(3) so that the
trivial IPTF M(z) := 0 is indeed an invariant (Et, lt)-field
for arbitrary (j, A).

6.3.2. (R4 × Et, l1), (E1, l1)

We leave the SO(3)-spaces (R4×Et, l1) and (E1, l1) to
the reader. In fact they can be handled in terms of the
SO(3)-spaces (R, lid), (R3, lv) and (Et, lt) in the same way
as we handled the SO(3)-spaces (R4, l1/2) and (E1/2, l1/2)
in terms of the SO(3)-spaces (R, lid), (R

3, lv) in Section
5.3. Note, by (40),(97) and (102) and for arbitrary s0 ∈
R, ~s ∈ R3 and m ∈ Et,

Iso(E1, l1; γ1(s0, ~s, m)) =

Iso(R4 × Et, l1; s0, ~s, m) =

Iso(R3, lv;~s) ∩ Iso(Et, lt; m) , (124)

where Iso(R3, lv;~s) and Iso(Et, lt; m) were identified in Sec-
tions 5.3 and 6.3. Thus Iso(R4×Et, l1; s0, ~s, m) and Iso(E1,
l1; h) can be computed by using (124) and some linear al-
gebra.

6.4. The SO(3)-Mapping Theorem (SMT)

Let j ∈ Homeo(Td) and A ∈ C(Td, SO(3)). We will
illustrate the SMT with four examples of SO(3)-maps be-
tween specific (E, l) and (Ě, ľ) spaces. In the first the
SO(3) map is a homeomorphism while in the second, third
and fourth examples it is not. Although the second and
third examples are elementary applications of the SMT,
they are important illustrations of the theory. The first
three examples are basically the same as those of Section
5.4 with spin-1/2 replaced by spin-1. The fourth example
in an interesting case involving both the SMT via the DT.

In the first case we consider (E, l) = (R4 × Et, l1)
and (Ě, ľ) = (E1, l1). We recall from Section 6.1.2 that
γ1 is an SO(3)-map from (R4 × Et, l1) to (E1, l1). Let
f ∈ C(Td, R4×Et) and define f̌ ∈ C(Td, E1) by f̌ := γ1◦f .
Since the SO(3)-map γ1 is a homeomorphism the (j, A)
dynamics of the two SO(3)-spaces are equivalent. Thus
we can study the dynamics of the more important (E1, l1)
space by studying the simpler (R4×Et, l1) space. Further-
more, recalling Section 4.4, the SMT (Theorem 3) implies
that f is an invariant (R4 ×Et, l1)-field of (j, A) iff f̌ is an
invariant (E1, l1)-field of (j, A).

We now consider the case where (E, l) = (E1, l1) and
(Ě, ľ) = (R, lid). We define the function γ ∈ C(E1, R) by
γ(h) := Tr[h] and we compute, by (99)

γ(γ1(s0, ~s, m)) = s0 , (125)

where h = γ1(s0, ~s, m). One can show by direct computa-
tion that γ is an SO(3)-map from (E1, l1) to (R, lid). Let
g ∈ C(Td, E1) and let us define ǧ ∈ C(Td, R) by ǧ(z) :=
γ(g(z)) = Tr[g(z)]. Recalling Section 4.4 the SMT states
that if g is an invariant (E1, l1)-field of (j, A) then Tr[g]
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is an invariant (R, lid)-field of (j, A), i.e. Tr[g ◦ j] = Tr[g].
Since g and Tr[g] are continuous this implies that Tr[g] is
constant for (E1, l1)-invariant g if j is topologically tran-
sitive.

Next we consider the case where (E, l) = (Et, lt) and
(Ě, ľ) = (R, lid). We define the function γ ∈ C(E, Ě) =
C(Et, R) by γ(m) :=

√
Tr[m2]. One can show that γ is an

SO(3)-map from (Et, lt) to (R, lid). Let M ∈ C(Td, Et)
and define M̌ ∈ C(Td, R) by

M̌(z) := γ(M(z)) =
√

Tr[M2(z)] . (126)

The SMT states that if M is an invariant (Et, lt)-field
of (j, A), i.e., is an IPTF then

√
Tr[M2] is an invariant

(R, lid)-field of (j, A). Since M and
√

Tr[M2] are contin-

uous this implies that
√

Tr[M2] is constant for (E1, l1)-
invariant M if j is topologically transitive.

Finally, we consider the case where (E, l) = (R3, lv)
and (Ě, ľ) = (Et, lt) and in order to apply the DT we
choose x = (0, 0, 1)t ∈ R3 and x̌ = x0 with x0 ∈ Et

given by (107). This choice of x and x̌ is motivated by the
aim to obtain an IPTF of the form (130). It follows from
(70),(104) and (107) that

Ex = {~S ∈ R
3 : |~S| = 1} ,

Ěx̌ = {M ∈ Et : det(M) = −2y3,

Tr[M2] = 6y2} . (127)

Recalling Section 4.4, and since E = R3 and Ě = Et are
Hausdorff, we can compute all SO(3)-maps from (Ex, lx)
to (Ěx̌, ľx̌). In fact, by (74),

Iso(E, l; x) = Iso(R3, lv; (0, 0, 1)t) = SO(2) (128)

and, by (110), Iso(Ě, ľ; x̌) = Iso(Et, lt; x0) = SO(2) ⊲⊳
Z2 whence Iso(E, l; x) ⊂ Iso(Ě, ľ; x̌) so that Iso(E, l; x)
is, trivially, conjugate to a subgroup of Iso(Ě, ľ; x̌) which
implies, by Section 4.4, that SO(3)-maps exist. In fact
using (47) one can show that the function β ∈ C(Ex, Ěx̌),
defined by

β(~S) := y(I3×3 − 3~S~St) , (129)

is the only SO(3)-map from (Ex, lx) to (Ěx̌, ľx̌). To state

the SMT let ~f0 ∈ C(Td, R3) take values only in Ex, i.e.,

|~f0(z)| = 1, and define ~̌f0 ∈ C(Td, Et) by

~̌f0(z) := β(~f0(z)) = y(I3×3 − 3~f0(z)~f t
0(z)) , (130)

where in the second equality we used (129). Note that ~̌f0

takes values only in Ěx̌. Recalling Section 4.4, the SMT
states that if ~f0 is an invariant (R3, lv)-field, i.e., is an ISF,

then ~̌f0 is an (Et, lt)-field, i.e., an IPTF. Thus for any ISF
the SMT gives us an IPTF whose values are matrices with
two distinct eigenvalues. In the special case y = 1/

√
6,

(130) is the expression for the IPTF in eq. 1.1 of [14]3

where it is proved that that expression is unique. We will
reconsider (130) in Section 6.5.

3There the IPTF is called the ITF

6.5. The Invariant Reduction Theorem (IRT) and the Cross
Section Theorem (CST)

Let j ∈ Homeo(Td) and A ∈ C(Td, SO(3)). We con-
sider the SO(3)-space (E, l) = (Et, lt) and we pick x = x0

with x0 ∈ Et given by (107). To apply the IRT let M ∈
C(Td, Et) take values only in Ex. Note, by (50),(86) and
(107), that

Σx[Et, lt,M] = {(z, r) ∈ (Td × SO(3)) :

rx0r
t = M(z)}

= {(z, r) ∈ (Td × SO(3)) :

yI3×3 − 3yr(0, 0, 1)t(0, 0, 1)rt

= M(z)} . (131)

Recalling Section 4.5 the IRT states that M is an IPTF
of (j, A) iff
P [SO(3), lSO(3), j, A](Σx[Et, lt,M]) = Σx[Et, lt,M].

To discuss the CST we first recall from Section 4.5 and
(131) that the function px[Et, lt,M] ∈ C(Σx[Et, lt,M], Td)
is defined by px[Et, lt,M](z, r) := z. Thus recalling Sec-
tion 4.5 the CST states that px[Et, lt,M] has a cross sec-
tion iff a T ∈ C(Td, SO(3)) exists such that M(z) =
lt(T (z); x).

This allows us to characterize invariant (Et, lt)-frame
fields at x in terms of cross sections by claiming that a
(j, A) has an invariant (Et, lt)-frame field at x iff it has
an IPTF M such that M takes values only in Ex and
such that px[Et, lt,M] has a cross section. The claim is a
special case of a claim made in Section 4.5.

We can summarize the present case where (E, l) =
(Et, lt) and x = x0 with x0 ∈ Et given by (107) by saying
that the CST gives a topological criterion for the existence
of an invariant (Et, lt)-frame field at x and that the IRT
gives a topological criterion for the existence of an IPTF
which takes values only in Ex.

With the above discussion of the CST for this case we
can now reconsider (108) and (130) by making three claims

about the situation when ~f ∈ C(Td, R3) and |~f | = 1 and
when M ∈ C(Td, Et) is defined by

M(z) = y(I3×3 − 3~f(z)~f t(z)) . (132)

Note that (108) and (130) are of the form (132) and that
M in (132) takes values only in Ex.

The first claim, which follows from the SMT (see also

the discussion after (130)), states that if ~f is an ISF then
M is an IPTF.

The second claim states that if ~f is an ISF and if
px[Et, lt,M] has a cross section then M is an IPTF and
an invariant (Et, lt)-frame field T at x exists such that
M(z) = lt(T (z); x). To prove the second claim we first
note, by the first claim, that M is an IPTF. Since px[Et, lt,
M] has a cross section we recall from the CST that a
T ∈ C(Td, SO(3)) exists such that M(z) = lt(T (z); x).
Since M is an IPTF we conclude from the NFT that T is
an invariant (Et, lt)-frame field T at x.
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The third claim states that if ~f is an ISF such that
px[R3, lv, ~f ] has a cross section, i.e., such that ~f is the third
column of an IFF T then M is an IPTF which satisfies
M(z) = lt(T (z); x) and px[Et, lt,M] has a cross section.
To prove the third claim we first note, by the first claim,
that M is an IPTF. Moreover since ~f is the third column
of T we find, by (86) and (132), that M(z) = lt(T (z); x)
which implies, by the CST, that px[Et, lt,M] has a cross
section.

The above discussion of the IRT and CST, which was
made for the choice (E, l) = (Et, lt) and x = x0 with
x0 ∈ Et given by (107), can be generalized to any x ∈ Et

which has two distinct eigenvalues. Recalling from Section
6.3 that in the general case Iso(Et, lt; x) is conjugate to
Iso(Et, lt; x0) the general case is just a minor modification
of its subcase x = x0 and so we leave the remaining details
to the reader.

We also have to leave the cases where x ∈ Et has three
distinct eigenvalues or only one eigenvalue to the reader.
These cases can be handled in analogy to the case when
x ∈ Et has two distinct eigenvalues by using the informa-
tion from Section 6.3. Moreover we must leave the SO(3)-
spaces (R4 × Et, l1) and (E1, l1) to the reader.

7. Bundle-Theoretic Origins

This work was inspired by bundle theory and we here
give evidence for that by following [6, 7, 33]. See also [4, 1].

The “ambient” principal bundle underlying our formal-
ism is a fixed principal SO(3)-bundle which is a product
principal bundle with base space Td, i.e., it can be writ-
ten as the 4-tuple (E , p, Td, L) where E := Td × SO(3)
is the bundle space, p ∈ C(E , Td) the bundle projection,
i.e., p(z, r) := z, and (E , L) the underlying SO(3)-space
with L : SO(3) × E → E defined by L(r; z, r′) := (z, r′rt).
Let (E, l) be an SO(3)-space (E, l) and let E be Haus-
dorff and f ∈ C(Td, E) to be Ex-valued for some x ∈
E. Because E is Hausdorff, Iso(E, l; x) is closed, i.e.,
Cl(Iso(E, l; x)) = Iso(E, l; x). By the Reduction Theo-
rem [6, Chapter 6],[33, Chapter 6] of bundle theory, every
(Σx[E, l, f ], px[E, l, f ], Td, Lx[E, l, f ]) is a reduction of the
ambient principal bundle and is a principal Iso(E, l; x)-
bundle where Lx[E, l, f ] is the restriction of L to Iso(E, l; x)
× Σx[E, l, f ]. Conversely, every reduction of the ambi-
ent principal bundle is of this form. By definition the re-
ductions of the ambient principal SO(3)-bundle are those
principal H-bundles which are principal subbundles of the
ambient bundle such that their bundle space is a closed
subset of E and such that H is a closed subgroup of SO(3).
Thus every Σx[E, l, f ] is the bundle space of a reduction if
E is Hausdorff.

The bundle-theoretic aspect of the CST follows from
the fact that px[E, l, f ] is the bundle projection of
(Σx[E, l, f ], px[E, l, f ], Td, Lx[E, l, f ]). This implies, by
bundle theory, that px[E, l, f ] has a cross section iff the
principal bundle (Σx[E, l, f ], px[E, l, f ], Td, Lx[E, l, f ]) is
trivial, i.e., is isomorphic to a product principal bundle.

The proof constructs this isomorphism out of the function
T ∈ C(Td, SO(3)) in CST which satisfies f(z) = l(T (z); x).

Given (j, A), bundle theory provides dynamics on re-
ductions by giving us a candidate for a one-turn map
on Σx[E, l, f ] by using the restriction P [SO(3), lSO(3), j,
A]|Σx[E,l,f ] of the one-turn map P [SO(3), lSO(3), j, A] to
Σx[E, l, f ]. HoweverP [SO(3), lSO(3), j, A]|Σx[E,l,f ] is a gen-
uine one-turn map, and not just a candidate, only if
P [SO(3), lSO(3), j, A] is onto Σx[E, l, f ]. Luckily it is pos-
sible to determine when this is the case because P [SO(3),
lSO(3), j, A] is a bijection which implies that P [SO(3),
lSO(3), j, A]|Σx[E,l,f ] is onto Σx[E, l, f ] iff Σx[E, l, f ] is in-
variant under P [SO(3), lSO(3), j, A], i.e., iff

P [SO(3), lSO(3), j, A](Σx[E, l, f ]) = Σx[E, l, f ] . (133)

The reduction with bundle space Σx[E, l, f ] is thus called
“invariant under (j, A)” if

P [SO(3), lSO(3), j, A](Σx[E, l, f ]) = Σx[E, l, f ] . (134)

Therefore, by the IRT, the reduction with bundle space
Σx[E, l, f ] is invariant under (j, A) iff f is an invariant
(E, l)-field of (j, A). Thus, given (j, A), not every, if any,
reduction with bundle space Σx[E, l, f ] is invariant under
(j, A). In summary the topological interpretation of the
IRT and CST rests on the reductions of the ambient prin-
cipal bundle.

Moreover we briefly mention that the definitions of
P [E, l, j, A] and P̃ [E, l, j, A] of Section 3 are borrowed from
bundle theory since every SO(3)-space (E, l) uniquely de-
termines an “associated bundle” (relative to the ambient
principal bundle) which, up to bundle isomorphism, is a
3-tuple of the form (Td × E, p, Td) where p(z, x) := z. In
fact given (j, A), bundle theory manages to merge the func-
tions P [SO(3), lSO(3), j, A] and l into the maps P [E, l, j, A]

and P̃ [E, l, j, A] leading to a topological interpretation of
the NFT and the SMT. This completes our sketch of the
bundle-theoretic aspects. For analogies with Yang-Mills
theory, see [34].
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