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Abstract

A class of orbital motions with volume preserving flows and with vector fields periodic in the “time” parameter θ is defined. Spin motion
coupled to the orbital dynamics is then defined, resulting in a class of spin–orbit motions which are important for storage rings. Phase space
densities and polarization fields are introduced. It is important, in the context of storage rings, to understand the behavior of periodic polarization
fields and phase space densities. Due to the 2π time periodicity of the spin–orbit equations of motion the polarization field, taken at a sequence
of increasing time values θ, θ + 2π, θ + 4π, . . . , gives a sequence of polarization fields, called the stroboscopic sequence. We show, by using the
Birkhoff ergodic theorem, that under very general conditions the Cesàro averages of that sequence converge almost everywhere on phase space
to a polarization field which is 2π -periodic in time. This fulfills the main aim of this paper in that it demonstrates that the tracking algorithm for
stroboscopic averaging, encoded in the program SPRINT and used in the study of spin motion in storage rings, is mathematically well-founded.
The machinery developed is also shown to work for the stroboscopic average of phase space densities associated with the orbital dynamics. This
yields a large family of periodic phase space densities and, as an example, a quite detailed analysis of the so-called betatron motion in a storage
ring is presented.
c� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

This paper explores certain mathematical matters relating
to periodic particle and spin distributions in storage rings.
Storage rings are large scale devices used to enable high energy
fundamental particles such as electrons, positrons, protons and
nuclei to be brought to collision in order to study the most
basic properties of matter. Descriptions of storage rings can be
found in standard text books and articles. See for example [21,
27,37,43,44]. However, to summarize, the common feature of
a storage ring is that the electrically charged particles are
confined to move in bunches on approximately circular orbits
in a vacuum tube by combinations of electric and magnetic
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fields. The dimensions of a bunch are very small compared to
the average radius of the ring, e.g., the proton–electron collider
HERA at DESY has a circumference of 4 miles and bunch
dimension of a few millimeters. For the purposes of this paper
we ignore the emission of electromagnetic radiation by the
particles and all collective effects, e.g., all interactions between
the particles and the effects of the electric and magnetic fields
set up in the vacuum pipe by the particles themselves. Then
particle motion is determined just by the Lorentz force [35]
and a Hamiltonian can be assigned. Since we are dealing with
storage rings we take the orbital motion to be bounded.

Information from analysis of observations from particle
collisions in storage rings is much enhanced if the beams are
“spin polarized”. Each electron, positron, proton or deuteron
carries an intrinsic angular momentum called the “spin angular
momentum” and there is an associated 3-vector called the
“spin expectation value” �s [24] which in this paper we simply
call the “spin”. This leads to the concept of a spin-valued
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function on phase space. The spin dynamics is governed
by the Thomas–Bargmann–Michel–Telegdi (T–BMT) equation
d�s/dt = �Ω( �E(t), �B(t), �v(t)) × �s where �E , �B and �v
are respectively the electric and magnetic fields and the
velocity [35]. Thus the particle spins precess in the electric
and magnetic fields and their lengths |�s| are constant. The
quantity of interest to experimenters using a storage ring is the
beam polarization �P , i.e., the average of the normalized spins.
To obtain this we first average only over the spin degrees of
freedom to get the local polarization �Ploc, i.e., the polarization
at every point of phase space. Then the beam polarization is the
phase space average of the local polarization. See Section 3.4.1.
The above mentioned spin-valued functions on phase space will
be called polarization fields and will be defined in Section 3.2.1.
The local polarization is a polarization field. In a well set-up
storage ring the phase space density ρ in bunches is periodic
from turn to turn. The experimenters also desire that the local
polarization is periodic from turn to turn. It is thus of great
interest to find ways of calculating such one-turn periodic
polarization fields. In order for the maximum information to
be extracted from experiments, it is desirable that the beam
polarization be as large as possible.

Although dynamical systems are often analyzed by taking
time as the independent variable, this is usually not convenient
for storage rings since there, the vacuum tube and the electric
and magnetic guide fields have a fixed, approximately circular
spatial layout. It is therefore standard practice to begin analysis
by constructing the curvilinear “closed orbit”, i.e., the orbit
along which the particle motion is one-turn periodic. The
equations of motion for the particles and their spins are then
transformed into forms in which the angular distance, θ , along
the closed orbit is taken as the independent variable and
particle positions are defined with respect to the closed orbit.
The one-turn periodicity of the positions of the electric and
magnetic guide fields then becomes a 2π -periodicity in θ . The
new equations of motion can be derived from an appropriate
Hamiltonian and the three pairs of canonical variables are
combined into a vector z with six components. For example,
two of the pairs can describe transverse motion and one pair can
describe longitudinal (synchrotron) motion within a bunch. One
of this latter pair quantifies the deviation of the particle energy
from the energy of a particle fixed at the center of a bunch and
the other describes the time delay with respect to that particle
(see e.g. [7]). With respect to the average radius of the closed
orbit and the nominal particle energy, the canonical position
variable and the energy variable are very small. Although it
would be natural to choose an appropriate name for the new
independent variable, we simply refer to θ as the “time”. In the
following we will, for convenience, dispense with the symbol
“→” over spin-like quantities.

Arguably the most general and reliable method for
numerically calculating periodic polarization fields in storage
rings involves “stroboscopic averaging” [32]. For this, one
begins with an arbitrary polarization field, S(θ, z), and
computes the average of S(θ, z), S(θ + 2π, z), . . . , S(θ +
2π(N − 1), z) which as a function of the integer N forms
the “Cesàro sequence”. One usually finds in practice that

the Cesàro sequence converges for given (θ, z) and that it
is, to numerical accuracy, 2π -periodic in θ at each z. The
main accomplishments of this paper are precise definitions
of the stroboscopic sequence, the Cesàro sequence and the
stroboscopic average, the proof that the stroboscopic average
is a 2π -periodic polarization field and our discussion of the
convergence properties of the Cesàro sequence. An important
tool in our work is the Birkhoff ergodic theorem, called
henceforth the ergodic theorem. The rate of convergence of the
Cesàro sequence is only briefly treated here (see Section 3.4.2)
but it is discussed, for the case of integrable orbital systems,
in [32].

A polarization field that is normalized and is 2π -periodic in
θ at each z is now usually called an “invariant spin field”. This
is an important object for systematizing spin dynamics. For
example the invariant spin field plays a role in the calculation
of the maximum attainable equilibrium beam polarization and
the maximum attainable time averaged beam polarization at
each θ [4]. The invariant spin field is also the starting point
for calculating the so-called amplitude dependent spin tune
if the latter exists [3,4,7,17,18,33,39,42,45,46]. An invariant
spin field is derived from a 2π -periodic polarization field via
stroboscopic averaging by simply normalizing the stroboscopic
average to unity.

The discovery that invariant spin fields could be approxi-
mated via stroboscopic averaging led to the creation of the com-
puter code SPRINT [32,33,42] as a way of computing invariant
spin fields for very high energy where other algorithms would
fail or be impractical. SPRINT was then heavily used for com-
puting the invariant spin field in a study of the feasibility of at-
taining high proton polarization in the electron–proton storage
ring system, HERA [33,42]. Stroboscopic averaging can even
handle exotic models where the invariant spin field is discon-
tinuous in the orbit variables [9,10].

Although the numerical calculation of the invariant spin field
by stroboscopic averaging represents a major advance in our
ability to systematize spin motion in storage rings, there has
been no detailed investigation of the Cesàro sequence and its
convergence. Thus the bulk of the present paper consists of
introducing mathematical definitions and stating and proving
related theorems and propositions.

We begin in Section 2, with a discussion of the details
of the orbital dynamics necessary for the discussion of the
spin dynamics. To pave the way for the application of the
ergodic theorem to the spin dynamics, we apply it first to
the Cesàro sequence of phase space densities defined by the
evolution of ensembles of particles. We thereby show that
the stroboscopic average is a 2π -periodic phase space density
and that the Cesàro sequence converges almost everywhere.
A brief summary of Section 2 is given in Section 2.4 and in
Appendix A, the results of Section 2 are applied to the linear
one-degree-of-freedom time-periodic Hamiltonian case which
is important for storage rings. In Section 3, we turn our attention
to polarization fields. We first discuss the basics of spin motion
and polarization fields, and then set up the problem in a form
for application of the ergodic theorem. Its application yields
our main results: the stroboscopic average of every polarization



J.A. Ellison, K. Heinemann / Physica D 234 (2007) 131–149 133

field is a 2π -periodic polarization field and, if the phase space
is of finite measure, the Cesàro sequence converges almost
everywhere. This fulfills the main aim of this paper in that
it demonstrates that the tracking algorithm for stroboscopic
averaging, encoded in the program SPRINT and used in the
study of spin motion in storage rings, is mathematically well-
founded. Finally, in Section 3.4, we discuss the physical
significance of our results. Section 4 is a summary and brief
discussion.

2. The orbital system and Liouville densities

The main purpose of this section is to set notation and
to acquaint the reader with stroboscopic sequences, Cesàro
sequences, stroboscopic averages and the ergodic theorem.
We prove that the stroboscopic averages are bounded, time-
periodic, L1 phase space densities. This is important since
storage rings are only useful if the phase space density is
approximately periodic turn to turn.

More specifically, in Section 2.1 we discuss the details of
the orbital motion necessary for our paper. In Section 2.2 we
introduce phase space densities, their stroboscopic sequences,
Cesàro sequences, and stroboscopic averages. The ergodic
theorem is stated in Section 2.3 and we illustrate its use in the
simple context of phase space densities to construct periodic
phase space densities by stroboscopic averaging. Also, as a
concrete example, we discuss in Appendix A the linear one-
degree-of-freedom time-periodic Hamiltonian system which is
important since the betatron motion in a storage ring is a special
subcase.

The material after the statement of the ergodic theorem
(Theorem 2.4) is not needed for Section 3, in particular
Lemma 2.5 and Theorem 2.6 are not needed. However the
reader might find this material helpful as it is a simpler context
for the application of the ergodic theorem.

2.1. The orbital motion

Consider the initial value problem

ż = f (θ, z), (2.1)

z(θ0) = z0 ∈ Rd , (2.2)

where f : Rd+1 → Rd is of class C1, f (θ, ·) is divergence
free (Tr[D2 f (θ, z)] = 0), f (·, z) is 2π -periodic and θ0 is
an arbitrary initial time. The choice that f is of class C1 is
consistent with the fact that the electric and magnetic fields
in storage rings are smooth. Throughout this paper Dk will
denote the derivative with respect to the k-th argument, be it
scalar or vector. For simplicity the variable θ is called “time”.
We want the results of this paper to apply to beam dynamics
in storage rings (see Introduction, Section 3.4, Summary and
Appendix A). In this case, θ plays the role of the so-called
azimuthal variable and f is a Hamiltonian vector field 2π -
periodic in θ with z being the vector of generalized position
and momentum coordinates. However we do not assume that f
is generated by a Hamiltonian.

We denote the solution of the initial value problem (2.1) and
(2.2) by

z(θ) = ϕ(θ, θ0; z0), θ ∈ I (θ0, z0), (2.3)

where

D1ϕ(θ, θ0; z0) = f (θ, ϕ(θ, θ0; z0)), ϕ(θ0, θ0; z0) = z0,

(2.4)

and where I (θ0, z0) is the maximal interval of existence at
(θ0, z0) (see Remark (1)). By the uniqueness of solutions, we
have the basic identity

ϕ(θ2, θ1; ϕ(θ1, θ0; z0)) = ϕ(θ2, θ0; z0), (2.5)

and in addition the periodicity of f ensures that

ϕ(θ + 2π, θ0 + 2π; z0) = ϕ(θ, θ0; z0), θ ∈ I (θ0, z0). (2.6)

Note that the periodicity of f (·, z) implies that if z(·) is a
solution of (2.1) for all time then so is z(· + 2π). Note also that
(2.5) holds subject to the constraint on the θ values imposed by
the maximum intervals of existence.

Since f (θ, ·) is divergence free,

det(D3ϕ(θ, θ0; z0)) = 1, θ ∈ I (θ0, z0). (2.7)

Our only assumption in addition to the properties of f is the
existence of an open nonempty set U such that

ϕ(2π, 0; U ) = U. (2.8)

Since we are dealing with a storage ring and neglect the
emission of radiation and collective effects this is a reasonable
assumption. In fact, integrable motion, which is often assumed
in calculations, has this property (see Appendix A). We define
Uθ := ϕ(θ, 0; U ) and from now on restrict the z0 in (2.2) to
Uθ0 and take the domain of ϕ to be R × L where L is the set of
admissible initial conditions (θ0, z0), i.e.,

L := {(θ, z) ∈ Rd+1 : z ∈ Uθ } =
�

θ∈R
{θ} × Uθ . (2.9)

From the invariance (2.8) of U under the period advance map
ϕ(2π, 0; ·), it is clear that I (θ0, z0) = R if z0 ∈ Uθ0 and that
ϕ(θ, θ0; ·) : Uθ0 → Uθ is a C1-diffeomorphism onto Uθ . Note
that Uθ is open in Rd and L is open in Rd+1. It is also clear that
Uθ+2π = Uθ and that (2.4)–(2.7) hold whenever z0 ∈ Uθ0 .

We immediately draw an important conclusion from our
assumptions. Let (Uθ ,Uθ , µd) be the measure space over the
σ -algebra Uθ of Borel subsets of Uθ with Lebesgue measure
µd , then it follows from (2.7) and the transformation theorem
for Lebesgue integrals (see for example [11, Section 19]) that
each ϕ(θ, θ0; ·) is measure preserving, i.e., µd(ϕ(θ0, θ; A)) =
µd(A) for all A ∈ Uθ . In the following we define U := U0.
Remark.

(1) Let I (t0, z0) ≡ (α, β), then the standard continuation
theorem for f in C1(Rd+1) gives that either β = ∞ or
|z(t)| → ∞ as t ↑ β and similarly for α (see, e.g., [14,
Theorem 1.4] or [1,25]). �
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2.2. Liouville densities on phase space and their stroboscopic
average

2.2.1. Liouville densities and their basic properties
As motivation for our definition of Liouville densities,

consider an ensemble of particles defined by a phase space
density ρ which evolves under the time flow defined by (2.1).
From particle conservation we have
�

A
ρ(0, z0)dµd(z0) =

�

ϕ(θ,0;A)
ρ(θ, z)dµd(z)

=
�

A
ρ(θ, ϕ(θ, 0; z0)) det(D3ϕ(θ, 0; z0))dµd(z0)

=
�

A
ρ(θ, ϕ(θ, 0; z0))dµd(z0), (2.10)

where A ∈ U . The first equality expresses particle conservation,
the second uses the transformation theorem for Lebesgue
integrals and the third follows from (2.7). Since A is an arbitrary
element of U it follows from (2.10) that, for µd -almost every
z ∈ Uθ , we have ρ(0, z) = ρ (θ, ϕ(θ, 0; z)) so that

ρ(θ, z) = ρ (0, ϕ(0, θ; z)) . (2.11)

Since sets of measure zero are unimportant we are free to
specify ρ(0, ·) and define ρ everywhere by (2.11). Eq. (2.11)
motivates our definition of a Liouville density (LD).

Definition 2.1 (Liouville Density). Let g : U → [0, ∞) be
a bounded function in L1(U,U, µd). A function ρg : L →
[0, ∞) is called a “Liouville density” (LD) if

ρg(θ, z) = g (ϕ(0, θ; z)) . (2.12)

The function g will be called the ‘generator’ of ρg . �

For the definition of L1(U,U, µd), see Remark (5). Clearly,
every LD is a bounded function since every upper bound of g
is an upper bound of ρg . Note that for z ∈ Uθ , ϕ(0, θ; z) ∈ U
so that ρg is well defined. Moreover it is easy to check by (2.5)
and (2.12), that at times θ1 and θ2

ρg(θ2, z) = ρg (θ1, ϕ(θ1, θ2; z)) . (2.13)

Since (θ2, z) and (θ1, ϕ(θ1, θ2; z)) are on the same solution
curve of (2.1) it follows from (2.13) that ρg is constant along
solution curves.

Of course, by setting A = U in (2.10) one obtains the
obvious results for an LD ρg that ρg(θ, ·) ∈ L1(Uθ ,Uθ , µd)

and
�

U
gdµd =

�

Uθ

ρg(θ, z)dµd(z). (2.14)

It is convenient not to require these integrals to be 1. However
we say that an LD ρg is “normalized” if

�
U gdµd = 1 (then,

clearly,
�

Uθ
ρg(θ, z)dµd(z) = 1).

We call an LD ρg “2π -periodic” iff ρg(θ + 2π, z) =
ρg(θ, z). Thus if ρg is 2π -periodic, (2.13) gives

ρg(θ, z) = ρg(θ, ϕ(θ, θ + 2π; z)). (2.15)

Note that ρg is 2π -periodic iff g satisfies the fixed point
equation

g(z) = g (ϕ(0, 2π; z)) . (2.16)

As we will see, (2.16) is the invariance property in the ergodic
theorem (see also Remark (3)).

More generally, we call ρg “2π -periodic in measure”
if for every θ the equality: ρg(θ + 2π, z) = ρg(θ, z)
holds for µd -almost every z. In that case there may be no
z such that ρg(·, z) is 2π -periodic, however the ‘average’�

Uθ
ρg(θ, z)F(θ, z)dµd(z) over a 2π -periodic ‘observable’ F

is a 2π -periodic function of θ . Note also that ρg is 2π -periodic
in measure iff g satisfies the fixed point equation (2.16) for µd -
almost every z. The optimal situation in a storage ring is for the
physically relevant LD (see Section 3.4.1) to be 2π -periodic
or, at least, 2π -periodic in measure. Note however that, in this
paper, those LD’s which are 2π -periodic in measure but not
2π -periodic play only a minor role.

Liouville densities in accelerators are discussed in e.g. [20,
22,23], [27, Section 2.5] and their importance for polarized
beams in storage rings will be further revealed in Section 3.4.1.
Remark.

(2) If the LD ρg is C1 then it satisfies the first order PDE

∂

∂θ
ρg + ∇z · (ρg f (θ, z)) = 0. (2.17)

In the more general case where Tr[D2 f ] �= 0, Eq.
(2.10) motivates the definition ρg(θ, z) = g (ϕ(0, θ; z)) exp
(−

� θ
0 Tr[D2 f (θ �, ϕ(θ �, θ; z))]dθ �) since the Wronskian

W(θ, z0) := det(D3ϕ(θ, 0; z0)) satisfies D1W = aW
where a(θ, z0) := Tr[D2 f

�
θ, ϕ(θ, 0; z0)

�
]. Thus this

more general definition of ρg satisfies (2.17) if f and g
are sufficiently smooth. The PDE (2.17) is often called
the “Liouville equation” (or the “Vlasov equation” in the
collective case). �

2.2.2. The stroboscopic and Cesàro sequences of a Liouville
density

In this section we define a stroboscopic sequence of the LD
ρg and the associated Cesàro sequence, and derive properties of
the Cesàro sequence.

Definition 2.2 (Stroboscopic Sequence and Cesàro Sequence).
Let ρg be an LD. The “stroboscopic sequence of ρg” consists of
the functions ρg(·+2πn, ·) : L → [0, ∞) where n = 0, 1, . . . .
Let ρN

g : L → [0, ∞) be defined by

ρN
g (θ, z) := 1

N

N−1�

n=0
ρg(θ + 2πn, z)

= 1
N

N−1�

n=0
g (ϕ(0, θ + 2πn; z)) , (2.18)

where N = 1, 2, . . . . The sequence {ρN
g }∞N=1 is called the

“Cesàro sequence of ρg” and the ρN
g are called “Cesàro

averages of ρg”. �
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In the special case when ρg is 2π -periodic, we have ρN
g =

ρg . In the general case, we claim that ρN
g is an LD for each N .

We first argue that each element of the stroboscopic
sequence is an LD, i.e., that shifting the time by 2πn in
the LD ρg gives an LD if n is an integer. In fact, since
ρg(2πn, z) = g(ϕ(0, 2πn; z)) we see that g (ϕ(0, 2πn; ·)) is
an [0, ∞)-valued, bounded function in L1(U,U, µd) and we
have, by (2.5), (2.6) and (2.12),

g (ϕ(0, 2πn; ϕ(0, θ; z)))
= g (ϕ(0, 2πn; ϕ(2πn, θ + 2πn; z)))
= g (ϕ(0, θ + 2πn; z))
= ρg(θ + 2πn, z), (2.19)

which proves that ρg(· + 2πn, ·) is an LD which is generated
by g (ϕ(0, 2πn; ·)) so that each element of the stroboscopic
sequence is an LD. It follows from (2.18) and (2.19)
that, for every N , ρN

g is an LD which is generated by
(1/N )

�N−1
n=0 g (ϕ(0, 2πn; ·)). Since ρN

g is an LD then by
definition

ρN
g (θ, z) = ρN

g (0, ϕ(0, θ; z)) . (2.20)

Having used (2.6) in (2.19) we see that the 2π -periodicity of
f (·, z) is essential in proving that each element ρN

g of the
stroboscopic sequence is an LD.

In addition
�

Uθ
ρN

g (θ, z)dµd(z) =
�

U gdµd . To see this,
note that by (2.14) and (2.18)
�

Uθ

ρN
g (θ, z)dµd(z) =

�

U
ρN

g (0, ·)dµd

= 1
N

N−1�

n=0

�

U
g (ϕ(0, 2πn; ·)) dµd .

Since ϕ(0, 2πn; ·) is measure preserving and ϕ(0, 2πn; U ) =
U , the stated result follows.

2.2.3. The stroboscopic average of a Liouville density
We now discuss some convergence properties of the Cesàro

sequence. Let U g
θ ⊂ Uθ be the set on which ρN

g (θ, ·) converges,
i.e.,

U g
θ := {z ∈ Uθ : lim

N→∞
ρN

g (θ, z) exists}. (2.21)

Clearly U g
θ ∈ Uθ and our goal is to show that this is large in

measure.
From (2.20) ρN

g (0, ϕ(0, θ; z)) converges on the same set,
thus ρN

g (0, z) converges for z ∈ ϕ(0, θ; U g
θ ) and so

U g
θ = ϕ(θ, 0; U g

0 ). (2.22)

Since ϕ(0, θ; ·) is measure preserving, (2.22) gives µd(U g
θ ) =

µd(U g
0 ). Note that since g is bounded, the sequence

{ρN
g (θ, z)}∞N=1 is bounded. Thus the limit, if it exists, is

always a real number. In this paper, the term “converges”
without a qualifier will always mean pointwise converges. The
boundedness of the sequence also assures that for every pair
(θ, z) a convergent subsequence exists but we will not use this
fact.

Definition 2.3 (Stroboscopic Average). Let ρg be an LD. Then
we call the function ρ̂g : L → [0, ∞), defined by ρ̂g(θ, z) :=
limN→∞ 1U g

θ
(z)ρN

g (θ, z), the “stroboscopic average of ρg”.
�

Here 1A denotes the indicator function of the set A, i.e.,
1A(z) = 1 if z ∈ A and 0 otherwise; thus ρ̂g(θ, z) is the
limit of ρN

g (θ, z) if it exists and zero otherwise. It follows
from the definition that every LD ρg has a unique stroboscopic
average ρ̂g which is a bounded and nonnegative function and
that ρ̂g(θ, ·) is Uθ -R-measurable where R is the σ -algebra
of Borel subsets of R. Note that ρN

g (θ, z) converges for all
(θ, z) ∈ L as N → ∞ iff U g

0 = U . In particular this is true
if ρg is 2π -periodic. By (2.22)

1U g
θ
(z) = 1U g

0
(ϕ(0, θ; z)) , (2.23)

and, since ρN
g is an LD, we obtain that the function

1U g
θ
(z)ρN

g (θ, z) in Definition 2.3 is an LD. Thus the
stroboscopic average ρ̂g is the limit of a sequence of LD’s.

The main issues now are whether ρ̂g is a 2π -periodic LD
and whether U g

θ is of full measure in Uθ . Since 1U g
θ
(z)ρN

g (θ, z)
is an LD we have

1U g
θ
(z)ρN

g (θ, z) = 1U g
0

(ϕ(0, θ; z)) ρN
g (0, ϕ(0, θ; z)) .

Then by taking N → ∞, we obtain

ρ̂g(θ, z) = ρ̂g (0, ϕ(0, θ; z)) . (2.24)

Thus if ρ̂g(0, ·) is in L1(U,U, µd) then ρ̂g is an LD. If U is of
finite measure then this is true by the dominated convergence
theorem (see for example [11, Section 15]).

That ρ̂g is a 2π -periodic LD and that U g
θ is of full measure in

Uθ will be shown in Section 2.3 as a consequence of the ergodic
theorem. A subset of a measure space will be said to have full
measure if its complement has measure zero. Thus, in the case
of a finite measure space, a set is of full measure iff it has the
measure of the underlying measure space.

2.3. Applying the ergodic theorem to the Cesàro sequence of a
Liouville density

In this section we prove that the stroboscopic average of
every LD is a 2π -periodic LD. Our analysis will also show that
for the generally nonperiodic ρg in (2.12) its Cesàro sequence
converges almost everywhere, i.e., that U g

θ is of full measure.
These results follow easily from an application of the ergodic
theorem, which we now state.

An M-M-measurable map T on a measure space
(M,M, m) is said to be measure preserving if m(T −1 A) =
m(A) for all A in M. A set A ∈ M satisfying T −1(A) = A is
said to be an invariant set and I := {A ∈ M : T −1(A) = A} is
the σ -algebra of T -invariant sets inM. We now can state:

Theorem 2.4 (Ergodic Theorem). Let T : M → M be
a measure preserving map on the σ -finite measure space
(M,M, m) and let b ∈ L1(M,M, m). Then an element b̌ of
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L1(M, I, m) ⊂ L1(M,M, m) exists such that, for m-almost
every z,

lim
N→∞

1
N

N−1�

n=0
b(T n(z)) = b̌(z), (2.25)

with
�

M |b̌|dm ≤
�

M |b|dm. If m is a probability measure
then the sequence (1/N )

�N−1
n=0 b(T n(·)) converges in L1

(convergence in the mean) to b̌ and b̌ is a version of the
conditional expectation E(b|I). �
There are many proofs of the ergodic theorem in the literature.
See for example [12,13,19]. Note that in Theorem 2.4 and in
the following the phrase ‘m-almost every z’ always relates to
(M,M, m), not to (M, I, m).
Remarks.

(3) Since b̌ in Theorem 2.4 is I-measurable, b̌ is invariant
under T . In fact even the reverse holds, i.e., a M-
measurable b̌ is I-measurable iff b̌(z) = b̌(T (z)) [13,
Section 6.4].

(4) Note that in the σ -finite case b̌ ∈ L1(M,M, m) even
though the convergence may not be L1.

(5) We define for a measure space (M,M, m) the real vector
spaceLp(M,M, m) in the same way as in [11, Section 14].
Then b ∈ Lp(M,M, m) means that b is a real-valued
M-R-measurable function which is p-fold m-integrable,
i.e.

�
M |b|pdm < ∞ where 1 ≤ p < ∞. Note that b is a

function, not an equivalence class of functions. For brevity
we sometimes call a function “measurable” if it is clear
which σ -algebras are involved.

(6) Recall that the two defining properties of E(b|I) :
M → R are that E(b|I) is I-R-measurable and that�

A E(b|I)dm =
�

A bdm for all A ∈ I. �
We now apply the ergodic theorem to ρg in (2.12). We

define T := ϕ(0, 2π; ·) so that T : U → U is a measure
preserving C1-diffeomorphism onto U . In addition we take
M = U,M = U , m to be the Lebesgue measure, and we set
b = g so that b̌ = ǧ. Thus I = {A ∈ U : ϕ(2π, 0; A) = A}.

Note that, by (2.5) and (2.6), ϕ(0, 2πn; ·) = T n . Thus, by
(2.18),

ρN
g (0, z) = 1

N

N−1�

n=0
g(ϕ(0, 2πn; z))

= 1
N

N−1�

n=0
g(T n(z)). (2.26)

By (2.26) (1/N )
�N−1

n=0 g(T n(z)) converges as N → ∞ iff
z ∈ U g

0 . Hence, by Theorem 2.4, U g
0 is of full measure. Thus

applying (2.26) and Theorem 2.4 again, we obtain, for µd -
almost every z ∈ U

ρ̂g(0, ·) = ǧ. (2.27)

Since ǧ ∈ L1(U, I, µd),L1(U, I, µd) ⊂ L1(U,U, µd)

and since ρ̂g(0, ·) is U-R-measurable, we see by (2.27) that
ρ̂g(0, ·) ∈ L1(U,U, µd).

It is easy to see that U g
0 ∈ I and ρ̂g(0, ·) ∈ L1(U, I, µd) as

follows. From (2.26)

ρN
g (0, T (z)) = 1

N

N−1�

n=0
g(T n+1(z))

= 1
N

(g(T N (z)) − g(z)) + ρN
g (0, z). (2.28)

Since g is bounded it follows from (2.28) that z ∈ U g
0 iff

T (z) ∈ U g
0 . Thus U g

0 ∈ I, therefore 1U g
0
(T (z)) = 1U g

0
(z).

Hence by (2.28)

1U g
0
(T (z))ρN

g (0, T (z)) =
1U g

0
(z)

N
(g(T N (z)) − g(z))

+ 1U g
0
(z)ρN

g (0, z). (2.29)

Since ρ̂g(0, ·) is U-R-measurable, the I-R-measurability of
ρ̂g(0, ·) follows from the relation ρ̂g(0, z) = ρ̂g(0, T (z)) for
all z and this equality holds for z ∈ U from (2.29) and
from Definition 2.3. Because ρ̂g(0, ·) is I-R-measurable and
since ρ̂g(0, ·) ∈ L1(U,U, µd), it follows that ρ̂g(0, ·) ∈
L1(U, I, µd).

Also, we have by (2.27) and Theorem 2.4 that
�

U ρ̂g(0, ·)dµd
=

�
U |ρ̂g(0, ·)|dµd =

�
U |ǧ|dµd ≤

�
U |g|dµd =

�
U gdµd .

Now let µd(U ) = 1, i.e., let (U,U, µd) be a probability
space. Thus ǧ = E(g|I) and, by (2.27),
�

A
ρ̂g(0, ·)dµd =

�

A
ǧdµd =

�

A
gdµd , (2.30)

for A ∈ I. Since ρ̂g(0, ·) is I-R-measurable, we conclude
that ρ̂g(0, ·) = E(g|I). If µd(U ) is finite but arbitrary then
we can repeat this argument by using the probability measure
µd/µd(U ) and again obtain (2.30). Thus (2.30) holds whenever
µd(U ) is finite.

We have thus proved the following lemma about the θ = 0
section:

Lemma 2.5. Let ρg be an LD and ρ̂g(0, ·) be defined as in
Definition 2.3. Then U g

0 ∈ I = {A ∈ U : ϕ(2π, 0; A) =
A} and it is of full measure in U. Moreover ρ̂g(0, ·) is in
L1(U, I, µd) ⊂ L1(U,U, µd) and satisfies the condition�

U ρ̂g(0, ·)dµd ≤
�

U gdµd and the invariance property
ρ̂g(0, z) = ρ̂g(0, ϕ(0, 2π; z)).

If µd(U ) = 1 then ρ̂g(0, ·) = E(g|I) and
�

U ρ̂g(0, ·)dµd =�
U gdµd . The latter equality holds whenever µd(U ) is finite.

�
Note that, having used (2.6), we see that the 2π -periodicity

of f (·, z) is essential for our proof of Lemma 2.5.
With Lemma 2.5 we easily obtain:

Theorem 2.6. Let ρg be an LD. Then its stroboscopic average
ρ̂g is a 2π -periodic LD, U g

θ is of full measure in Uθ and
U g

θ+2π = U g
θ . Furthermore

�

Uθ

ρ̂g(θ, z)dµd(z) ≤
�

U
gdµd . (2.31)

Equality holds if µd(U ) < ∞.
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Recall that in Lemma 2.5 and Theorem 2.6 µd is the
Lebesgue measure.

Proof of Theorem 2.6. As pointed out in Section 2.2.3, the
stroboscopic average ρ̂g is a bounded and nonnegative function.
Because, by Lemma 2.5, ρ̂g(0, ·) ∈ L1(U,U, µd) and since
ρ̂g ≥ 0, it follows from (2.24) that ρ̂g is an LD.

To show that the LD ρ̂g is 2π -periodic we first note that since

ρN
g (θ + 2π, z) − ρN

g (θ, z)

= 1
N

�
ρg(θ + 2π N , z) − ρg(θ, z)

�
, (2.32)

and since ρg is bounded, we have z ∈ U g
θ iff z ∈ U g

θ+2π ,
i.e., U g

θ+2π = U g
θ . Thus we conclude from (2.32) that

1U g
θ+2π

(z)ρN
g (θ + 2π, z) − 1U g

θ
(z)ρN

g (θ, z)

=
1U g

θ
(z)

N
�
ρg(θ + 2π N , z) − ρg(θ, z)

�
.

By taking the limit as N → ∞ we obtain ρ̂g(θ, z) = ρ̂g(θ +
2π, z).

Because by Lemma 2.5, U g
0 is of full measure in U and

since ϕ(0, θ; ·) is measure preserving, U g
θ is, by (2.22), of full

measure in Uθ .
It follows from Lemma 2.5 that

�
U ρ̂g(0, ·)dµd ≤�

U gdµd . Since ρ̂g is an LD, (2.14) gives
�

U ρ̂g(0, ·)dµd =�
Uθ

ρ̂g(θ, z)dµd(z) and (2.31) follows. For finite measure µd

we have from Lemma 2.5 that
�

U ρ̂g(0, ·)dµd =
�

U gdµd .
Therefore equality holds in (2.31). �

2.4. Summary and discussion

An initial ensemble of particles, g, is given and
assumed to evolve according to the flow ϕ of f by
ρg(θ, z) = g (ϕ(0, θ; z)). An open nonempty set U which
is invariant under the flow is assumed to exist. For each
g, we have constructed a 2π -periodic Liouville density
ρ̂g(θ, z) = limN→∞ 1U g

θ
(z)ρN

g (θ, z) where ρN
g (θ, z) =

(1/N )
�N−1

n=0 ρg(θ + 2πn, z) (see (2.18)) and where U g
θ =

ϕ(θ, 0; U g
0 ) is of full measure as we proved in Theorem 2.6

using the ergodic theorem, Theorem 2.4.
The definition of the flow ϕ, the invariant set U and the

Liouville density are given in (2.4) and (2.8) and Definition 2.1
respectively. The stroboscopic average ρ̂g of ρg is defined in
Definition 2.3 and the convergence set U g

θ of ρN
g (θ, ·) is defined

in (2.21). The main results of Section 2 are Lemma 2.5 and
Theorem 2.6 and the main tool is the ergodic theorem. In
Lemma 2.5 we have constructed an L1(U, I, µd) fixed point
solution of (2.16), namely ρ̂g(0, ·); in fact, the fixed point
condition is the invariance property which is equivalent to I-
measurability. Theorem 2.6 is proved using Lemma 2.5 and
yields the following. If µd(U ) < ∞ and g is normalized then
ρ̂g is normalized. If g is normalized and µd(U ) = ∞, the
strict inequality may hold in (2.31) (see for example [40,41])
in which case ρ̂g is not normalized. In fact ρ̂g(θ, ·) could be
zero almost everywhere, however, if not, it can be normalized
by simply multiplying by a constant.

The long time stability of 2π -periodic Liouville densities is
an important issue for storage rings but we have not investigated
this.

In Appendix A, we apply our theory to the important
case of linearized particle motion in a storage ring, the so-
called integrable betatron motion in one degree of freedom.
However, it is important to note that our theory does not require
integrability.

3. The spin–orbit system and polarization fields

We remind the reader of the brief overview of this section in
the last paragraph of the Introduction. This section runs parallel
to Section 2 in the main. After introducing the spin–orbit
motion in Section 3.1 we turn our attention to polarization
fields. Because Liouville densities are simpler than polarization
fields, the proof of Lemma 2.5 shows in a nutshell how the
ergodic theorem applies to stroboscopic sequences. Therefore
the proof of Lemma 2.5 may help the reader to go through
the more complicated application of the ergodic theorem to
the Cesàro sequences of polarization fields (see the proof of
Lemma 3.6).

3.1. The spin–orbit motion

Now that we have tackled the purely orbital system and
illustrated the basic ideas, we are ready to apply our techniques
to the spin–orbit system, which is more complicated. As we
explained in Section 1, spin motion is governed by the T–BMT
equation [35]. The equations of the spin–orbit motion can then
be written as

ż = f (θ, z), z(θ0) = z0 ∈ Rd , (3.1)

ṡ = A(θ, z)s, s(θ0) = s0 ∈ R3, (3.2)

where the 3 × 3 matrix A which represents the rotation vector
�Ω in the T–BMT equation, is skew-symmetric (AT = −A) and
real. Moreover, A(·, z) is 2π -periodic and A : Rd+1 → R6 is
of class C1. The choice that A is of class C1 is consistent with
the fact that the electric and magnetic fields in storage rings are
smooth.

Eq. (3.1) describes the same orbital motion as in Section 2 so
that we continue to restrict z0 to Uθ0 . Thus z(θ) = ϕ(θ, θ0; z0)
for all time and (2.4)–(2.7) hold; also U = ϕ(2π, 0; U ).
Because of the linearity of (3.2) in s the solutions of (3.1) and
(3.2) exist for all time since z0 ∈ Uθ0 .

From now on we restrict the s0 in (3.2) to V := {s ∈ R3 :
|s| < a} with a > 0, where | · | is the Euclidean norm. Let
w =

�
z
s

�
and fso(θ, w) =

�
f (θ, z)
A(θ, z)s

�
, then from (3.1) and (3.2)

we obtain

ẇ = fso(θ, w), w(θ0) = w0 ∈ Uθ0 × V . (3.3)

We denote the solution of (3.3) by w(θ) = W (θ, θ0; w0) where
the domain of W is R× L ×V where L is defined in (2.9). Note
that the periodicity of fso implies that if w(·) is a solution of
(3.3) then so is w(· + 2π). In analogy with (2.5) and (2.6) we
have
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W (θ3, θ2; W (θ2, θ1; w)) = W (θ3, θ1; w), (3.4)
W (θ2 + 2π, θ1 + 2π; w) = W (θ2, θ1; w). (3.5)

Since fso(θ, ·) is divergence free,

det(D3W (θ, θ0; w0)) = 1. (3.6)

From our assumptions on f, ϕ and A and noting that each
Uθ × V is open in Rd+3, it is clear that W (θ, θ0; ·) is a C1-
diffeomorphism from Uθ0 × V onto Uθ × V . We take as our
measure space (Uθ × V,Uθ ⊗ V, µd × µ3) where V is the
collection of Borel subsets of V , Uθ ⊗ V is the product σ -
algebra of Uθ and V and µ3 is Lebesgue measure restricted
to V . It follows from (3.6) and the transformation theorem for
Lebesgue integrals that each W (θ, θ0; ·) is measure preserving.
Furthermore, U ×V is an invariant set in the sense that U ×V =
W (2π, 0; U × V ).

Inserting the orbital dynamics into (3.2) yields

ṡ = A(θ, ϕ(θ, θ0; z0))s, s(θ0) = s0. (3.7)

Because of the smoothness ofA and ϕ and the linearity of (3.7),
solutions exist for all time and can be written as

s(θ) = Ψ(θ, θ0; z0)s0, (3.8)

where Ψ is a function on R × L , called the “spin transfer
matrix”, and is defined by

D1Ψ(θ, θ0; z0) = A(θ, ϕ(θ, θ0; z0))Ψ(θ, θ0; z0), (3.9)

Ψ(θ0, θ0; z0) = I3×3. (3.10)

Note that Ψ(θ, θ0; ·) is of class C1 on Uθ0 . Since A is real
skew-symmetric, Ψ is real, ΨΨT = I3×3 and det(Ψ) = 1.
Thus Ψ ∈ SO(3) and |s(θ)| = |s0| for all θ as mentioned
in Section 1. It is clear that W (θ, θ0; w0) =

�
ϕ(θ, θ0; z0)

Ψ(θ, θ0; z0)s0

�
. It

follows from (3.4) and (3.5) that for all z0 ∈ Uθ0

Ψ(θ2, θ1; ϕ(θ1, θ0; z0))Ψ(θ1, θ0; z0) = Ψ(θ2, θ0; z0), (3.11)

Ψ(θ + 2π, θ0 + 2π; z0) = Ψ(θ, θ0; z0). (3.12)

Taking θ2 = θ0 in (3.11) we obtain

Ψ−1(θ1, θ0; z0) = (Ψ(θ1, θ0; z0))T

= Ψ(θ0, θ1; ϕ(θ1, θ0; z0)). (3.13)

It is interesting to note that the Ψ(θ0 + 2πn, θ0; ·) form a
measurable SO(3)-cocycle over the orbital Z-action on Uθ0
where n varies over the integers [28,29]. This is reflected in
the identity (3.11).

3.2. Polarization fields and their stroboscopic sequence

3.2.1. Polarization fields and their basic properties
In this section we will outline the basic properties of

polarization fields mentioned in Section 1 and we will define
them rigorously below. Their significance in beam physics is
discussed in Section 3.4. Consider an initial assignment of spins
G : U → R3, i.e., a spin attached to every phase space point.
Under the flow of (3.3), the point z0 and its attached spin G(z0)

evolve to z(θ) = ϕ(θ, 0; z0) and s(θ) = Ψ(θ, 0; z0)G(z0) at
time θ . Let SG(θ, z) be the spin which is at the point z = z(θ)

at time θ . Then

SG(θ, z) = Ψ (θ, 0; ϕ(0, θ; z)) G (ϕ(0, θ; z)) . (3.14)

Definition 3.1 (Polarization Field). We call a function SG :
L → R3 a “polarization field”, if it satisfies (3.14) where
G ∈ Mb(U,R3). �
Here Mb(Uθ ,R3) is the set of bounded Uθ -R3-measurable
functions whereR3 is the σ -algebra of Borel subsets of R3 and
as before U0 = U . The function G will be called the ‘generator’
of SG . Note that by (3.14) and by the fact that ϕ(0, θ; ·) and the
nine components of Ψ(θ, 0; ·) are measurable functions, SG is
a bounded function and SG(θ, ·) is in Mb(Uθ ,R3). Of course,
SG(0, ·) = G. Using (2.5) and (3.11), the relation between the
values of the polarization field at times θ1 and θ2 is given by

SG(θ2, z) = Ψ(θ2, θ1; ϕ(θ1, θ2; z))SG(θ1, ϕ(θ1, θ2; z)). (3.15)

The polarization field has two very different properties: the
“dynamical” condition (3.14) and “regularity” conditions. In
contrast to the dynamical condition, the regularity conditions
are to a certain extent a matter of convenience. For example
in this paper we choose weak conditions, namely that G ∈
Mb(U,R3), because they serve us well when we come
to stroboscopic averaging in later sections. However, one
sometimes drops the condition that G is bounded and on
other occasions one assumes that G is of class Ck for some
nonnegative integer k. In Section 3.4.4 we discuss what happens
if one drops the regularity conditions.

It is desirable that, in a storage ring with a polarized beam,
the physically relevant polarization fields (see Section 3.4.1) be
2π -periodic, i.e., SG(θ + 2π, z) = SG(θ, z) or, at least, 2π -
periodic in measure. We say that a polarization field SG is “2π -
periodic in measure” if for every θ the equality SG(θ+2π, z) =
SG(θ, z) holds for µd -almost every z in Uθ . Note that if SG is
2π -periodic then (3.15) gives

SG(θ, z) = Ψ (θ + 2π, θ; ϕ(θ, θ + 2π; z))
×SG (θ, ϕ(θ, θ + 2π; z)) . (3.16)

Spin fields and invariant spin fields play an important role in the
theory of polarized beam physics and we now define them.

Definition 3.2 (Spin Field and Invariant Spin Field). A
polarization field SG with |SG(θ, z)| = 1 is called a “spin
field”. A spin field is called an “invariant spin field” if it is 2π -
periodic in measure. �

Thus a polarization field SG is a spin field iff |G(z)| =
1. Clearly 2π -periodic spin fields are invariant spin fields as
mentioned already in Section 1 and, in this paper, the emphasis
is on 2π -periodic invariant spin fields.

The concept of the invariant spin field was introduced into
polarized beam physics in the 1970s [17,18], but at that time
mathematical conditions like the regularity conditions were
not used explicitly. Moreover, the concept arose within a
Hamiltonian integrable description of spin–orbit motion.
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If SG is a 2π -periodic polarization field, then from (3.14) G
must satisfy the basic fixed point or functional equation

G(z) = Ψ (2π, 0; ϕ(0, 2π; z)) G (ϕ(0, 2π; z)) . (3.17)

Recall the analogous fixed point equation (2.16) and note the
similarity to homological equations in dynamical systems. This
important equation was, at least in the context of polarized
beam physics, probably first exploited by Yokoya and by
Balandin and Golubeva [2,47]. 2π -periodic polarization fields
are also discussed in [7,8,17,18,33,39,42,45,48]. Note that
(3.17) is also a sufficient condition for the 2π -periodicity of SG
since

SG(θ + 2π, z) = Ψ(θ + 2π, 2π; ϕ(2π, θ + 2π; z))
×SG(2π, ϕ(2π, θ + 2π; z))

= Ψ(θ, 0; ϕ(0, θ; z))SG(2π, ϕ(0, θ; z))
= Ψ(θ, 0; ϕ(0, θ; z))

×Ψ(2π, 0; ϕ(0, 2π; ϕ(0, θ; z)))
× G(ϕ(0, 2π; ϕ(0, θ; z)))

= Ψ(θ, 0; ϕ(0, θ; z))G(ϕ(0, θ; z))
= SG(θ, z), (3.18)

where we used (3.15) in the first equality, (2.6) and (3.12) in
the second, (3.14) in the third and fifth equalities and (3.17) in
the fourth equality. We conclude that a polarization field SG is
2π -periodic iff G satisfies (3.17) for z ∈ U . It is also easy to
show that a polarization field SG is 2π -periodic in measure iff
G satisfies (3.17) for µd -almost z in U .

If the polarization field SG is of class C1 then, due to (2.4),
(3.9) and (3.14), it satisfies the first order PDE

D1SG + (D2SG) f (θ, z) = A(θ, z)SG .

The following remarks will be useful.
Remarks.
(7) Let SG be a polarization field and let, for every z ∈ U ,

G(z) �= 0. Since

|SG(θ, z)| = |G (ϕ(0, θ; z)) |, (3.19)

we have SG(θ, z) �= 0. Since G/|G| is in Mb(U,R3) and
since by (3.14) and (3.19)
SG(θ, z)
|SG(θ, z)| = Ψ (θ, 0; ϕ(0, θ; z))

G (ϕ(0, θ; z))
|G (ϕ(0, θ; z)) | ,

we obtain that SG/|SG | is a spin field generated by G/|G|.
If SG is 2π -periodic then SG/|SG | is an invariant spin field.

(8) If SG is a polarization field and ρg is an LD (recall
Section 2.2.1) then ρgSG is a polarization field. This can
be demonstrated in a way similarly to that in Remark (7).
Thus if a 2π -periodic spin field and a large number of 2π -
periodic LD’s exists, one has a large number of 2π -periodic
polarization fields. �

3.2.2. The stroboscopic and Cesàro sequences of a polariza-
tion field

In this section we define a stroboscopic sequence of the
polarization field SG and the associated Cesàro sequence, and
derive properties of the Cesàro sequence.

Definition 3.3 (Stroboscopic Sequence and Cesàro Sequence).
Let SG be a polarization field. The “stroboscopic sequence of
SG” consists of the functions SG(· + 2πn, ·) : L → R3 where
n = 0, 1, . . . . Let SN

G : L → R3 be defined by

SN
G (θ, z) := 1

N

N−1�

n=0
SG(θ + 2πn, z)

= 1
N

N−1�

n=0
Ψ (θ + 2πn, 0; ϕ(0, θ + 2πn; z))

× G (ϕ(0, θ + 2πn; z)) , (3.20)

where N = 1, 2, . . . . The sequence {SN
G }∞N=1 is called the

“Cesàro sequence of SG” and the SN
G are called “Cesàro

averages of SG”. �
Of course, in the special case when SG is 2π -periodic,

we have SN
G = SG . In the general case we claim that

SN
G is a polarization field for each N . We first argue that

each element of the stroboscopic sequence is a polarization
field, i.e., that shifting the time by 2πn in the polarization
field SG gives a polarization field if n is an integer. In fact,
Ψ (2πn, 0; ϕ(0, 2πn; ·)) G (ϕ(0, 2πn; ·)) is in Mb(U,R3)
and we have, by (2.5), (2.6), (3.11), (3.12) and (3.14),

Ψ(θ, 0; ϕ(0, θ; z))Ψ(2πn, 0; ϕ(0, 2πn; ϕ(0, θ; z)))
G(ϕ(0, 2πn; ϕ(0, θ; z))) = Ψ(θ, 0; ϕ(0, θ; z))

×Ψ(2πn, 0; ϕ(0, θ + 2πn; z))G(ϕ(0, θ + 2πn; z))
= Ψ(θ + 2πn, 2πn; ϕ(0, θ; z))

×Ψ(2πn, 0; ϕ(0, θ + 2πn; z))G(ϕ(0, θ + 2πn; z))
= Ψ(θ + 2πn, 0; ϕ(0, θ + 2πn; z))G(ϕ(0, θ + 2πn; z))
= SG(θ + 2πn, z), (3.21)

which proves that SG(· + 2πn, ·) is a polarization field which
is generated by Ψ (2πn, 0; ϕ(0, 2πn; ·)) G (ϕ(0, 2πn; ·)).
Thus each element of the stroboscopic sequence is a
polarization field. It follows from (3.20) and (3.21) that,
for every N , SN

G is a polarization field generated by
(1/N )

�N−1
n=0 Ψ (2πn, 0; ϕ(0, 2πn; ·)) G (ϕ(0, 2πn; ·)). Since

SN
G is a polarization field then by definition

SN
G (θ, z) = Ψ (θ, 0; ϕ(0, θ; z))SN

G (0, ϕ(0, θ; z)) . (3.22)

3.2.3. The stroboscopic average of a polarization field
We now discuss some convergence properties of the Cesàro

sequence. Let Ũ G
θ ⊂ Uθ be the set on which SN

G (θ, ·)
converges, i.e.,

Ũ G
θ := {z ∈ Uθ : lim

N→∞
SN

G (θ, z) exists}, (3.23)

Clearly Ũ G
θ ∈ Uθ and our goal is to show that this is large in

measure.
From (3.22) SN

G (0, ϕ(0, θ; z)) converges on the same set,
thus SN

G (0, z) converges for z ∈ ϕ(0, θ; Ũ G
θ ) and so

Ũ G
θ = ϕ(θ, 0; Ũ G

0 ). (3.24)
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Since ϕ(0, θ; ·) is measure preserving, (3.24) gives µd(U g
θ ) =

µd(U g
0 ). Note that since G is bounded, the sequence

{SN
G (θ, z)}∞N=1 is bounded. Thus the limit, if it exists, is always

in R3. Furthermore since

SN
G (θ + 2π, z) − SN

G (θ, z)

= 1
N

(SG(θ + 2π N , z) − SG(θ, z)) , (3.25)

and since SG is bounded, we have z ∈ Ũ G
θ iff z ∈ Ũ G

θ+2π ,
i.e., Ũ G

θ+2π = Ũ G
θ . The latter equality and (3.24) imply that

Ũ G
0 = ϕ(2π, 0; Ũ G

0 ), i.e. Ũ G
0 ∈ I.

Definition 3.4 (Stroboscopic Average). Let SG be a polariza-
tion field. Then we call the function ŜG : L → R3, defined by
ŜG(θ, z) := limN→∞ 1Ũ G

θ
(z)SN

G (θ, z), the “stroboscopic aver-
age of SG”. �

It follows from the definition that ŜG(θ, z) is the limit of
SN

G (θ, z) if it exists and zero otherwise. Furthermore every
polarization field SG has a unique stroboscopic average ŜG
which is a bounded function and ŜG(θ, ·) is in Mb(Uθ ,R3).
We also note that SN

G (θ, z) converges for all (θ, z) ∈ L as
N → ∞ iff Ũ G

0 = U . In particular this is true if SG is 2π -
periodic. It is also clear that Ũ G

0 = U if ŜG has no zeros. We
note by (3.24) that

1Ũ G
θ

(z) = 1Ũ G
0

(ϕ(0, θ; z)) , (3.26)

and, since SN
G is a polarization field, we see that the function

1Ũ G
θ

(z)SN
G (θ, z) in Definition 3.4 is a polarization field. Thus

the stroboscopic average ŜG is the limit of a sequence of
polarization fields.

In Section 3.3 it will be shown, as a consequence of the
ergodic theorem, that Ũ G

θ is of full measure in Uθ if U has finite
measure. We now show that ŜG is a 2π -periodic polarization
field. Since 1Ũ G

θ
(z)SN

G (θ, z) is a polarization field we have

1Ũ G
θ

(z)SN
G (θ, z)

= Ψ (θ, 0; ϕ(0, θ; z)) 1Ũ G
0

(ϕ(0, θ; z))SN
G (0, ϕ(0, θ; z)) .

By taking N → ∞, we obtain

ŜG(θ, z) = Ψ (θ, 0; ϕ(0, θ; z)) ŜG (0, ϕ(0, θ; z)) . (3.27)

Thus and since ŜG(0, ·) ∈ Mb(U,R3) we find that ŜG is a
polarization field. To show that it is 2π -periodic, we conclude
from (3.25) that

1Ũ G
θ+2π

(z)SN
G (θ + 2π, z) − 1Ũ G

θ
(z)SN

G (θ, z)

=
1Ũ G

θ
(z)

N
(SG(θ + 2π N , z) − SG(θ, z)) , (3.28)

where we also used the fact that Ũ G
θ+2π = Ũ G

θ . Taking N → ∞
in (3.28) and using the fact that SG is bounded we find that

ŜG(θ + 2π, z) = ŜG(θ, z) so that the stroboscopic average is
2π -periodic. We have thus proved:

Theorem 3.5. Let SG be a polarization field. Then its
stroboscopic average ŜG is a 2π -periodic polarization field.
Furthermore Ũ G

θ+2π = Ũ G
θ and Ũ G

0 ∈ I = {A ∈ U :
ϕ(2π, 0; A) = A}. �

Having used (2.6) and (3.12) in (3.21) we see that the 2π -
periodicity of f (·, z) and A(·, z) is essential in our proof. Note
also that we did not need the ergodic theorem in our proof of
Theorem 3.5 since for a polarization field we do not have to
demonstrate that its components are integrable.
Remark.

(9) It follows from Theorem 3.5 that ŜG(0, z) satisfies the fixed
point Eq. (3.17), i.e.,

ŜG(0, z) = Ψ (2π, 0; ϕ(0, 2π; z)) ŜG (0, ϕ(0, 2π; z)) .

(3.29)

Recalling Remark (3), ŜG(0, ·) is I-R3-measurable iff

ŜG(0, ·) = ŜG (0, ϕ(0, 2π; ·)) . (3.30)

In the trivial case where A = 0 (hence Ψ = I3×3),
(3.29) implies (3.30) and thus ŜG(0, ·) is I-R3-measurable.
However, if A �= 0 then Ψ �= I3×3 so that (3.30) does not
hold whence ŜG(0, ·) is not I-R3-measurable. �

3.3. Applying the ergodic theorem to the Cesàro sequence of a
polarization field

With Theorem 3.5 we see that the stroboscopic average of
a polarization field has the important property that it is a 2π -
periodic polarization field. In this section we use the ergodic
theorem to prove that the Cesàro sequence converges (at least)
almost everywhere. In particular, we will prove Theorem 3.9
which states that if U has finite measure then, for every θ , Ũ G

0 is
of full measure. It follows that the sequence SN

G (θ, z) converges
for µd -almost every z to ŜG(θ, z) as N → ∞.

By (3.24) the convergence of a Cesàro sequence SN
G is

determined by the convergence of the sequence SN
G (0, ·).

Therefore the following preparatory lemma studies the
sequence SN

G (0, ·) in detail. With

G N (z) := SN
G (0, z)

= 1
N

N−1�

n=0
Ψ(2πn, 0; ϕ(0, 2πn; z))G(ϕ(0, 2πn; z)),

(3.31)

we obtain

Lemma 3.6. Let U be of finite measure and G in Mb(U,R3).
Then Ũ G

0 is of full measure in U, i.e., for µd -almost every z,

lim
N→∞

G N (z) = ŜG(0, ·). (3.32)

Proof of Lemma 3.6. The lemma will be proved with the aid
of two propositions.
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We begin by defining the measure preserving period advance
map associated with (3.3). The period advance map P : U ×
V → U × V in the θ = 0 section and its inverse are given by

P(w) = W (2π, 0; w), P−1(w) = W (0, 2π; w). (3.33)

Of course, P and P−1 are measure preserving C1-
diffeomorphisms onto U × V . This follows from Section 3.1
and since U2π = U .

The key to our proof is the application of the ergodic theorem
(Theorem 2.4) to the function b : U × V → R defined by

b(w) := sTG(z). (3.34)

Since U is of finite measure and G ∈ Mb(U,R3) we have
b ∈ L1(U × V,U ⊗ V, µd × µ3). With this b and with
T = P−1,M = U ⊗ V, m = µd × µ3, Theorem 2.4 can
be used to prove the first proposition, namely Proposition 3.7
below.

The b in (3.34) is not an obvious choice but we need a scalar
function of w and this is a simple one. Furthermore sTSG(θ, z)
is conserved along solutions of (3.3) as is easily seen using
(3.14) and the relations z = ϕ(θ, 0; z0), s = Ψ(θ, θ0; z0)s0

and it has the formal structure of a “spin action” (see e.g. [7,
45]). However the only justification which matters is that the
ansatz (3.34) works.

Proposition 3.7. There exists a function b̌ in L1(U × V,U ⊗
V, µd ×µ3) and a set E ∈ U ⊗V of full measure such that, for
each w = (z, s) ∈ E,

lim
N→∞

sTG N (z) = b̌(w).

Proof of Proposition 3.7. ClearlyP−n(w) = W (0, 2πn; w) =�
ϕ(0, 2πn; z)
Ψ(0, 2πn; z)s

�
and thus

b(P−n(w)) = (Ψ(0, 2πn; z)s)TG(ϕ(0, 2πn; z))
= sT[ΨT(0, 2πn; z)G(ϕ(0, 2πn; z))]
= sT[Ψ (2πn, 0; ϕ(0, 2πn; z)) G(ϕ(0, 2πn; z))],

where the third equality follows from (3.13). Therefore by
(3.31) sTG N (z) = 1

N
�N−1

n=0 b(P−n(w)) and, because b is in
L1(U × V,U ⊗ V, µd × µ3), Proposition 3.7 follows from
Theorem 2.4. �

To go from the b̌ of Proposition 3.7 to the ŜG(0, ·) of
Lemma 3.6 we need a technical lemma.

Proposition 3.8. Let F ∈ U ⊗ V be of full measure and define
the section of F at s ∈ V by Fs := {z ∈ U : (z, s) ∈ F}. Then
the following hold.

(a) There exists a VF ⊂ V of full measure such that, for s ∈ VF ,
µd(Fs) = µd(U ), i.e., for µ3-almost every s ∈ V , Fs is of
full measure in U.

(b) There exist three linearly independent vectors s1, s2, s3 in
VF .

Proof of Proposition 3.8. Clearly 1Fs (z) = 1F (z, s) so that
Fs ∈ U . Thus

µd(Fs) =
�

U
1Fs (z)dµd(z) =

�

U
1F (z, s)dµd(z), (3.35)

and µd(Fs) is a V-R-measurable and bounded function of
s. By (3.35) and the Fubini theorem

�
V µd(Fs)dµ3(s) =�

U×V 1F d(µd × µ3) = (µd × µ3)(F) = µd(U )µ3(V ) =�
V µd(U )dµ3. Therefore

�
V (µd(U ) − µd(Fs))dµ3(s) =

0. Since the integrand is nonnegative, a) follows (see for
example [11, Section 13]). If (b) were not true then all s in VF
would lie in a plane in R3 and we would obtain the contradiction
that µ3(VF ) = 0. �

We now complete the proof of Lemma 3.6. The set
E of Proposition 3.7 is of full measure so we can apply
Proposition 3.8 to it. Choose s1, s2, s3 as in Proposition 3.8(b)
and let U 1 := Es1 ∩ Es2 ∩ Es3

. Then µd(U 1) = µd(U ). If
z ∈ U 1 then (z, sk) ∈ E and, by Proposition 3.7, (sk)TG N (z)
converges to b̌(z, sk) as N → ∞. Let A = [s1, s2, s3]T then

G N (z) = A−1 AG N (z) = A−1




(s1)TG N (z)
(s2)TG N (z)
(s3)TG N (z)



 ,

which converges, when z ∈ U 1, to A−1

�
b̌(z, s1)

b̌(z, s2)

b̌(z, s3)

�

. Since U 1 is

of full measure, we have shown that G N (z) converges for µd -
almost every z, i.e., Ũ G

0 is of full measure. �
It is now easy to prove the main result of this section.

Theorem 3.9. Let SG be a polarization field and U have finite
measure. Then, for every θ , Ũ G

θ is of full measure in Uθ , i.e., the
sequence SN

G (θ, z) converges for µd -almost every z ∈ Uθ to
ŜG(θ, z) as N → ∞. Moreover, every component of SN

G (θ, ·)
is in L1(Uθ ,Uθ , µd) and converges to the corresponding
component of ŜG(θ, ·) in L1 and each component of ŜG(θ, ·)
is in L1(Uθ ,Uθ , µd).

Proof of Theorem 3.9. Because of Lemma 3.6, Ũ G
0 is of full

measure in U . Since ϕ(0, θ; ·) is measure preserving, (3.24)
gives µd(U g

θ ) = µd(U g
0 ) = µd(U ).

Since SN
G (θ, ·) is a bounded function and U is of finite

measure, every component of SN
G (θ, ·) is in L1(Uθ ,Uθ , µd).

Thus, by Definition 3.4, and as a consequence of the dominated
convergence theorem, every component of SN

G (θ, ·) converges
inL1 to the corresponding component of ŜG(θ, ·). In particular,
each component of ŜG(θ, ·) is in L1(Uθ ,Uθ , µd). �

Remarks.

(10) In the trivial case whereA = 0 (hence Ψ = I3×3) one has

SN
G (0, z) = 1

N

N−1�

n=0
G(ϕ(0, 2πn; z)), (3.36)

so that in this case the proof of Lemma 3.6 is
straightforward—one just applies Theorem 2.4 to the
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components of G! However if A �= 0 then Ψ �= I3×3
so that one cannot apply Theorem 2.4 to the components
of G because (3.36) does not hold. Thus if A �= 0 an
alternative has to be found. Our above approach is to
apply Theorem 2.4 to the function b in (3.34) and then
use Proposition 3.8(b) to prove Lemma 3.6. Accordingly,
the proof of Lemma 2.5 is considerably simpler than that
of Lemma 3.6.

(11) With Remark (10) we see that ρg and SG behave very
differently under stroboscopic averaging, i.e. the ergodic
theorem has very different meanings for the orbit and
spin motion. Thus it is not surprising that the convergence
speeds of the Cesàro sequences are different. See also
Section 3.4.2.

(12) It is clear by Remark (7) and by Theorem 3.5 how one
constructs an invariant spin field if ŜG has no zeros.
One can show more generally that an invariant spin field
exists if ŜG(0, ·) is nonzero µd -almost everywhere. On
the other hand we do not know if such a ŜG always
exists. Nevertheless our experience suggests that invariant
spin fields always exist. However, as we know from [4,
Section 6], there are examples where no C1 invariant spin
field exists.

(13) If a positive constant ξ exists such that, for all N and z,
(SG(0, z))TSN

G (0, z) ≥ ξ then, trivially, ŜG(0, ·) has no
zeros on Ũ G

0 . This criterion plays an important role in
the computation of invariant spin fields with the computer
code SPRINT [32,33,42] and these computations show
that the criterion is very often fulfilled.

(14) The simplest example for f with U of finite measure is
the betatron motion of Appendix A. However, since f
is much more general, our spin–orbit system can cover
situations where the orbital motion is nonintegrable. The
typical nonintegrable examples we have in mind for f
with U of finite measure are orbital motions which obey
the Moser twist theorem and where U is bounded. �

3.4. Several aspects of polarization fields including applica-
tions to the physics of polarized beams

In this section we outline various aspects of polarization
fields and their Cesàro sequences and in particular we elaborate
on our comments in Section 1 on the significance of our
work for polarized beam physics in storage rings. See also the
reference list and Section I in [4]. The basics of polarized beam
physics are discussed in [27, Section 2.7], [33].

3.4.1. Long time averages of polarization
The statistical properties of a beam of spin-1/2 particles

(e.g. protons, electrons, positrons, muons) can be encoded
in a one-particle quantum mechanical density matrix [24]. A
particle beam in a storage ring represents a highly mixed
quantum state. The orbital density ρ = ρg and Ploc are then
obtained by a Wigner–Weyl transform in the semiclassical
approximation [5,6]. The local polarization is a polarization
field and it is the local average of the normalized vector s/|s|

at each (θ, z), so that |Ploc| ≤ 1. These things are discussed for
example in [30].

The orbital density is a normalized LD as defined in
Section 2.2.1. In order to apply Theorem 3.9, we assume that U
has finite measure. We also assume that the beam is in “orbital
equilibrium”, i.e. that the orbital density ρg is 2π -periodic in
measure. The polarization P(θ) of the whole beam, i.e., the
beam polarization, is defined as

P(θ) :=
�

Uθ

ρg(θ, z)Ploc(θ, z)dµd(z). (3.37)

Recalling from Remark (8) that ρg Ploc is a polarization field,
the integral in (3.37) is well defined because ρg(θ, ·)Ploc(θ, ·)
is bounded and U has finite measure. Since ρg Ploc is a
polarization field it has a generator G, i.e., ρg Ploc = SG where
G(z) = ρg(0, z)Ploc(0, z).

If the beam is in “spin equilibrium”, i.e. if Ploc is 2π -periodic
in measure, then clearly SG is a polarization field 2π -periodic
in measure and the beam polarization is 2π -periodic by (3.37).

If the beam is not in spin equilibrium, one considers the
time average of the beam polarization. Then, although the local
polarization is not 2π -periodic in measure, the time average
of the beam polarization exists and is 2π -periodic as we now
show. The time average at some θ , usually corresponding to the
position of a particle physics experiment in the ring, is

P̄(θ) := lim
N→∞

(1/N )
N−1�

n=0
P(θ + 2πn). (3.38)

Using the theory we have developed, we first show that P̄ exists.
We conclude from (3.37) that

1
N

N−1�

n=0
P(θ + 2πn)

= 1
N

N−1�

n=0

�

Uθ+2πn

ρg(θ + 2πn, z)Ploc(θ + 2πn, z)dµd(z)

= 1
N

N−1�

n=0

�

Uθ+2πn

SG(θ + 2πn, z)dµd(z)

=
�

Uθ

SN
G (θ, z)dµd(z). (3.39)

Clearly the integrals in (3.39) are well defined. By
Theorem 3.9, the components of SN

G (θ, ·) converge in L1 to
the corresponding components of ŜG(θ, ·) so that by (3.39)
(see also [11, Theorem 15.1]) limN→∞(1/N )

�N−1
n=0 P(θ +

2πn) = limN→∞
�
SN

G (θ, z)dµd(z) =
�
ŜG(θ, z)dµd(z).

Thus P̄ exists.
It is easy to show that P̄ is 2π -periodic once one has

established that P is bounded. The latter holds since

|P(θ)| ≤
�

Uθ

ρg(θ, z)|Ploc(θ, z)|dµd(z)

≤
�

Uθ

ρg(θ, z)dµd(z) = 1,
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where we used the fact that |Ploc| ≤ 1 and that the LD ρg is
normalized.

For particle physics experiments it is important to maximize
|P̄(θ)| as a function of Ploc. This is discussed in [4, Section I],
[33].

3.4.2. The stroboscopic averaging algorithm and SPRINT
We now describe a simple and transparent spin–orbit

tracking algorithm for calculating the stroboscopic average of
polarization fields.

Consider a polarization field SG i.e., fix the generator G. If
z ∈ Ũ G

θ and if N is sufficiently large then SN
G (θ, z) is a good

approximation of ŜG(θ, z). Now consider SN
G (0, z0) where we

hold z0 ∈ Ũ G
0 fixed. Then

SN
G (0, z0)

= 1
N

N−1�

n=0
Ψ(2πn, 0; ϕ(0, 2πn; z0))G(ϕ(0, 2πn; z0))

= 1
N

N−1�

n=0
(Ψ(−2πn, 0; z0))TG(ϕ(−2πn, 0; z0)), (3.40)

where we used (3.20) in the first equality and (2.6), (3.12)
and (3.13) in the second. With (3.40) we see that in order to
compute SN

G (0, z0) we only need to compute G at the set of
points {ϕ(−2πn, 0; z0)}N−1

n=0 and multiply by the matrices in
the set {(Ψ(−2πn, 0; z0))T}N−1

n=0 . This clearly reduces the task
of computing SN

G (0, z0) to the backtracking of the trajectory,
defined by the initial value problem

ż = f (θ, z), z(0) = z0,

D1Ψ(θ, 0; z0) = A(θ, z)Ψ(θ, 0; z0),

Ψ(0, 0; z0) = I3×3,

(3.41)

over N −1 turns backward around the storage ring. Moreover, it
is simple to calculate SN

G (0, z) for z = ϕ(2πn, 0; z0) by further
forward or backward tracking using, for sufficiently large N ,
the relations

SN
G (0, ϕ(2πn, 0; z0)) ≈ SN

G (2πn, ϕ(2πn, 0; z0))

= Ψ(2πn, 0; z0)SN
G (0, z0), (3.42)

where in the equality we used the fact that SN
G is a polarization

field and where in the approximation we used (3.25) and that
ϕ(2πn, 0; z0) ∈ Ũ G

0 . To summarize, by tracking a single
trajectory of the system (3.41) and with (3.40), (3.42), we can
compute SN

G (0, z) for all points z of the form z = ϕ(2πk, 0; z0)
where k is an integer.

Of course, one then repeats this procedure with a sufficiently
dense grid of z0’s until a sufficiently dense portrait of the
function SN

G (0, ·) has been obtained. Then one can use (3.22)
to compute the functions SN

G (θ, ·) for a sufficiently dense grid
of θ ’s in the interval [0, 2π ]. These are the key ideas in [32] and
they led to the stroboscopic averaging algorithm in SPRINT [8,
33,42]. In SPRINT, G is usually taken to be a constant function
so that the calculations are further simplified.

Stroboscopic averaging was originally motivated by the
need to calculate invariant spin fields since, as explained in
Section 1 and in Section I in [4], invariant spin fields are key
objects for systematizing spin motion in storage rings. See
also Section 3.4.3 below. An invariant spin field is derived
from a 2π -periodic polarization field obtained by stroboscopic
averaging by simply normalizing, as outlined in Remark
(12), assuming that the stroboscopic average has no zeros.
Stroboscopic averaging provides a general and powerful means
to calculate invariant spin fields as well as to inquire about
their existence. Hence it represents a major addition to the
tool kit for describing polarized beams in storage rings. For
example, it can be applied to nonintegrable orbital motion
and for integrable orbital motion it even works on orbital
resonance. See also Section 3.4.5. For references to algorithms
for computing invariant spin fields see [27].
Remark.

(15) We now briefly comment on the rate of convergence. A
high convergence speed for a Cesàro sequence is of course
crucial to the success of the tracking algorithm outlined
in this section and since SPRINT has been in operation
much experience has been accumulated. One finds that if
the orbital motion is integrable the convergence is usually
linear in N in the sense that for a given z0 there exists a
real constant c such that for all N
�����
SN

G (0, z0)

|SN
G (0, z0)| − SN f

G (0, z0)

|SN f
G (0, z0)|

����� ≤ c
N

, (3.43)

where SN
G (0, z0) and SN f

G (0, z0) are assumed to be
nonzero and SN f

G (0, z0) is assumed to be approximately
ŜG(0, z0). Experience for high energy storage rings shows
that a few thousand turns usually suffice, i.e. N f =
10 000 is an appropriate order of magnitude. The linear
convergence law (3.43) was derived analytically, by using
plausibility assumptions, in [32]. This is a subject for
further investigation.

Note that for LD’s there seems to exist no linear
law analogous to (3.43). For the convergence speed of
the Cesàro sequences of LD’s, see for example [40,
Section 3.2]. Recall also Remark (11). �

3.4.3. The uniqueness of invariant spin fields
While, as pointed out in Remark (8), there may be a large

number of 2π -periodic polarization fields, this does not imply
that there is a large number of 2π -periodic spin fields and we
address this issue here.

For integrable orbital motion, we can approach the
uniqueness of the stroboscopic average of a polarization field
by appealing to existing results on the uniqueness of the
invariant spin field. For integrable orbital motion the domains
Uθ decompose into tori and for every torus a “spin tune” can
be defined which determines if the system is on “spin–orbit
resonance” (the spin tune, as a function of the torus, is the
“amplitude dependent spin tune” mentioned in Section 1). Note
that the ellipses Eε,θ in Appendix A are the tori for the betatron
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motion. In particular, if for a given torus the system is not on
orbital resonance and not on spin–orbit resonance, we know
that a 2π -periodic spin field on that torus is unique up to a
sign if it is of class C1 [4]. One expects quite generally that all
invariant spin fields on such a nonresonant torus are essentially
identical in a measure-theoretic sense, i.e. modulo µd -nullsets.
It thus follows from Remark (12) that in the above situation
all stroboscopic averages, which have no zero, point into the
essentially unique direction given by the invariant spin field
on the given torus. Calculations with SPRINT have provided
a large amount of numerical evidence for this behavior. While
we do not dwell further on the issue of uniqueness in the present
paper, let us mention that the procedure would rest upon Fourier
analysis in the orbital angle as one can see for the C1 case
in [4]. The only additional ingredient in the present context,
where we don’t have invariant spin fields which are C1 in the
orbital angle, is Parseval’s equality [31].

The uniqueness in the case of nonintegrable orbital motion
is more complicated to deal with and to our knowledge has not
been seriously studied. Of course, since SPRINT is a tracking
algorithm, it can be used to look closely at this issue.

3.4.4. The “filling-up” method
We now comment on the consequences of relaxing the

regularity conditions of Section 3.2.1.
It is trivial that polarization fields exist in great numbers

since every bounded and measurable G gives a polarization
field SG . In other words, the generator G has only to fulfill
the regularity conditions. However the existence of invariant
spin fields is, except for trivial spin–orbit systems, a nontrivial
matter. For example, Theorem 3.5 does not guarantee that
ŜG has no zeros. If SG is a polarization field 2π -periodic in
measure then, as we know from Section 3.2.1, G is not only
bounded and measurable but also has to fulfill the dynamical
condition (3.17) almost everywhere. Conversely, we also know
from Section 3.2.1 that SG is 2π -periodic in measure if G
satisfies (3.17) almost everywhere. As far as we are aware,
it is, by analytical means, nontrivial to discover whether a G
exists which solves (3.17) almost everywhere and which is
nonzero almost everywhere, given our regularity conditions on
G. However, with stroboscopic averaging one has a numerical
means to investigate the matter of existence. If we relax the
regularity conditions it is known that the dynamical condition
(3.17) allows a large class of normalized solutions. This can be
shown with the so-called “filling-up” method [34]. Although
this method does not solve the above problem of existence of
an appropriate G, it does give further insight into the nature of
invariant spin fields. Thus we will now explain it.

For brevity we only treat the case of nonperiodic orbital
motion in the sense that, for every z0 ∈ U and every
nonzero integer n, ϕ(2πn, 0; z0) �= z0. Defining M(z0) :=�

n∈Z{ϕ(2πn, 0; z0)}, we know, by the axiom of choice, that
a subset M̃ of U exists such that

U =
�

z0∈M̃

M(z0), (3.44)

and such that, if z0, z1 ∈ M̃ and z0 �= z1, then M(z0)∩M(z1) =
∅. Thus for every z ∈ U we have a unique integer n(z) and
a unique point z0(z) ∈ M̃ such that z = ϕ(2πn(z), 0; z0(z))
and such that, if z ∈ M̃ , z0(z) = z. Of course, for every
z ∈ M̃ , we have n(z) = 0 and it easily follows from (2.5)
and (2.6) that for every z ∈ U and every integer k we have
z0(ϕ(2πk, 0; z)) = z0(z) and n(ϕ(2πk, 0; z)) = n(z) + k. We
now use the axiom of choice again to choose a spin vector s(z)
for every z ∈ M̃ and we define a function G : U → R3 by

G(z) := Ψ(2πn(z), 0; z0(z))s(z0(z)). (3.45)

Using (3.11) and (3.12) and the above mentioned properties of
z0(z) and n(z) it follows that G, defined by (3.45), satisfies
(3.17), whence SG(θ, z) defined by (3.14) is 2π -periodic in θ .
Of course if s does not vanish everywhere then neither does
G. Moreover G is normalized if s is. Since the function s
is basically arbitrary, we have shown that a large supply of
normalized functions G : U → R3 exists which satisfy (3.17).
It is clear that if a 2π -periodic polarization field SG exists, then
the function s can be chosen such that (3.45) holds, since, if
z ∈ M̃ , then G(z) = s(z). However (3.45) alone gives no
hints for choosing s in a way such that the G in (3.45) is U-
R3-measurable, i.e., fulfills the regularity conditions. Thus the
filling-up method does not solve the problem of the existence
of 2π -periodic spin fields and it is also easy to see that it also
does not solve the problem of existence of invariant spin fields.

Note that the problem of the existence of normalized 2π -
periodic LD’s is, at least in the case of a U of finite measure,
considerably simpler. In fact if U is of finite measure then,
there exists a constant positive g, such that ρg is a 2π -periodic
normalized LD.

3.4.5. The map formalism
Although in this paper we have chosen to work with flows,

we will now comment on the use of one-turn maps.
In this paper we have restricted our discussion to functions

fso of class C1 in order to be consistent with the situation
in real storage rings and the treatment in [4]. But in practice,
simulations are often made with the approximation that the
magnets have hard edged magnetic fields or are represented by
thin lenses so that the requirement that fso(θ, w) be of class C1

with respect to θ must be replaced by the weaker requirement
that it is only piecewise C1 in θ . It is then usually convenient
to analyze the spin motion using one-turn maps instead of
differential equations and to study the spin–orbit motion on the
θ = 0 section, having chosen the time origin so that fso(0, ·) is
C1. The dynamics is then determined by P and the definitions
of LD and polarization field are modified accordingly. For
example, the 2π -periodicity in measure becomes a one-turn
periodicity in measure and the definition of the 2π -periodic
polarization field is essentially replaced by (3.17). Thus [4] and
this paper can be easily reformulated in terms of maps. One
thereby obtains essentially the same theory as with the flow
formalism.

An interesting example where fso is only piecewise C1

is provided by the following important model. In this model
orbital motion is integrable and has just one degree of freedom
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and the ring includes two thin lens Siberian Snakes which
thus provide two discontinuities in the θ dependence of the
A in (3.2). This model is often called the “single resonance
model with two Siberian Snakes” [9,10]. Outside the snakes,
A corresponds to the model discussed in Section VII in [4].
For the single resonance model with two Siberian Snakes one
can write a simple analytical expression for P . Thus analysis
is especially simple and spin–orbit tracking simulations can be
made to run very efficiently. As always, when A is piecewise
C1 in θ , P is C1.

We expect for systems where P is C1 that an invariant spin
field exists which is C1. See the models in [4]. However, there
are exceptional models where this is not true. For example when
the single resonance model with two Siberian Snakes is on
orbital resonance at a so-called “snake resonance tune” and for
most values of the remaining parameters of the model, invariant
spin fields exist but none of them is C1. See Fig. 12 in [10] and
the accompanying discussion.

4. Summary and discussion

In Section 3 of this paper, we consider an initial assignment
of spins, G, which evolves according to the flow W
of fso by SG(θ, z) = Ψ (θ, 0; ϕ(0, θ; z)) G (ϕ(0, θ; z)).
We call SG a polarization field. For each G, we have
constructed a 2π -periodic polarization field ŜG(θ, z) =
limN→∞ 1Ũ G

θ
(z)SN

G (θ, z) where SN
G (θ, z) = (1/N )

�N−1
n=0

SG(θ + 2πn, z) and Ũ G
θ ⊂ Uθ is of full measure when

µd(U ) < ∞, as we proved using the ergodic theorem. This
is the main result of our paper.

The flow W is defined after (3.3) and the polarization
field in Definition 3.1. The stroboscopic average ŜG of SG
is defined in Definition 3.4 and the convergence set Ũ G

θ of
SN

G (θ, ·) is defined in (3.23). The main results of this section
are Theorems 3.5 and 3.9. In Theorem 3.5 we prove that ŜG
is a 2π -periodic polarization field but obtain no information on
the measure of Ũ G

θ . In Theorem 3.9 we use the ergodic theorem
to show that Ũ G

θ is of full measure in Uθ . As in the orbital case
the stroboscopic average may be zero almost everywhere.

An important problem left unsolved in this paper is that
of the conditions under which the stroboscopic average of a
polarization field has no zeros. This problem is closely related
with the problem of existence of the invariant spin field since
(see Remark (12)) a stroboscopic average which has almost no
zeros implies the existence of an invariant spin field. Another
problem which we did not investigate is the long time stability
of 2π -periodic polarization fields.

In the proof of Lemma 3.6, which is central to the proof
of Theorem 3.9, the reader can see how we have overcome
the main technical obstacle in this paper which is the fact (see
also Remark (10)) that the ergodic theorem cannot be applied
“directly” to polarization fields because they have three, and
not just one, components. In contrast the proof of Lemma 2.5
applies the ergodic theorem “directly” since Liouville densities
are scalar quantities.

Section 2 laid the framework for the orbital part of Section 3
and it also discussed the ergodic theorem and its use in a simple

setting to prepare the reader for its use in Section 3. Section 2.4
gives a summary and Appendix A applies the theory to an
important example from beam dynamics.

Section 3.4 covers several aspects of polarization fields
including applications to the physics of polarized beams. In
Section 3.4.1 we applied Theorem 3.9 to the polarization of
the whole beam. Section 3.4.3 introduces the reader to the
important issue of the uniqueness of invariant spin fields and
Section 3.4.4 discusses a side issue. The final Section 3.4.5
outlines the important extension of our work from the flow
formalism of [4] to the map formalism.

With this paper we have established that the simulation
code SPRINT, outlined in Section 3.4.2, computes periodic
polarization fields, i.e., functions which, in particular, obey
regularity conditions. This fact was not clear when SPRINT was
first created. While numerical work with SPRINT has involved
integrable and bounded orbital motion, our work here does not
require integrability. In addition, SPRINT has been applied to
discontinuous functions f and A. Thus it would be interesting
to extend SPRINT to nonintegrable orbital motion and to extend
our approach to discontinuous functions f and A.
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Appendix A. Appendix on the example of betatron motion

We will now illustrate the machinery of Section 2 with an
important model of linearized particle motion in a storage ring.
The main result of this section is the explicit construction of the
stroboscopic average in Proposition A.1.

A.1. Basic properties

As explained in Section 1, a storage ring has a closed orbit
which is a periodic curve in R3 defined by dipole magnets. A
storage ring is designed, using magnets, so that the motion of
particles starting near the closed orbit is stable. In Frenet–Serret
coordinates defined on the closed orbit the transverse linearized
motion is given by a pair of Hill equations (thus d = 4).
Restricting to one degree of freedom one has d = 2 and one
Hill equation,

ż = f (θ, z) := (z2, −k(θ)z1)
T, (A.1)

where k is a 2π -periodic C1 function determined by the
quadrupole magnets which serve to focus the beam.

Eq. (A.1) is a special case of the more general problem
which we will treat in this section, namely

ż = f (θ, z) := J D1 H(z, θ)T = J S(θ)z, (A.2)

defined by the Hamiltonian H(z, θ) = 1
2 zTS(θ)z (see

also [38]). Here S is a 2π -periodic, symmetric, 2 × 2 matrix
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of class C1, J :=
�

0 1
−1 0

�
, and J S is sometimes called

a Hamiltonian matrix [26]. In the case of (A.1), S(θ) =
diag(k(θ), 1).

The principal solution matrix (PSM) Φ is defined by

D1Φ(θ, θ0) = J S(θ)Φ(θ, θ0), Φ(θ0, θ0) = I, (A.3)

and is symplectic, i.e., ΦTJΦ = J , due to the symmetry of S.
The general solution (2.3) can be written as

ϕ(θ, θ0; z0) = Φ(θ, θ0)z0. (A.4)

The f given by (A.2) fulfills the conditions imposed in
Section 2.1. In particular, U = R2 is an open nonempty set
satisfying (2.8). We will obtain a more appropriate U shortly.

The period advance matrix for the θ0 section is given by

P(θ0) := Φ(θ0 + 2π, θ0). (A.5)

Due to (2.6) we have Φ(θ +2π, θ0 +2π) = Φ(θ, θ0), so that P
is 2π -periodic as it must be. Also, we note that P is symplectic
and that it satisfies

Ṗ(θ) = J S(θ)P(θ) − P(θ)J S(θ). (A.6)

Since the trace of the rhs of (A.6) is zero, Tr[P] is independent
of θ . We assume that S is such that the solutions of (A.2) are
stable, i.e., the elliptic case where |Tr[P]| < 2. Thus there are
two values of ν ∈ (0, 2π) such that Tr[P] = 2 cos ν. In addition
P12(θ) is nonzero, for if it were zero then P11(θ)P22(θ) would
be 1 and we would have the contradiction that |Tr[P]| =
|P11(θ) + 1/P11(θ)| ≥ 2. Since sin ν is nonzero and unique
up to a sign we fix it by choosing it to have the same sign as
P12(θ). In summary, there is a unique value of ν ∈ (0, 2π)

such that Tr[P] = 2 cos ν and P12(θ) sin ν > 0.
Remark.

(16) Note that P(θ) is a 2π -periodic solution of (A.6). We do
not claim that all solutions of (A.6) are 2π -periodic nor is
this required. �

Given ν we now construct, for every θ , an important
representation of the symplectic matrix P(θ). Since sin ν �= 0
we can define functions α and β by P11(θ) =: cos ν+α(θ) sin ν

and P12(θ) =: β(θ) sin ν. Noting that Tr[P] = 2 cos ν and that
det P = 1, we obtain the representation

P(θ) = I cos ν + J (θ) sin ν,

J (θ) :=
�

α(θ) β(θ)

−γ (θ) −α(θ)

�
, (A.7)

where γ (θ) := (1+α2(θ))/β(θ). It is clear that β(θ), γ (θ) > 0
and that the functions α, β, γ are uniquely determined by P
and are 2π -periodic and C1. Of course P determines ν and it
is interesting to note that it has two distinct and θ -independent
eigenvalues: cos ν ± i sin ν. From (A.6) and (A.7) J satisfies

J̇ = J S(θ)J − JJ S(θ), (A.8)

and, since J 2 = −I ,

P = exp(ν J ). (A.9)

We are now in a position to derive the most important property
of the Hamiltonian system (A.2), namely a conservation law. It
is easy to see that the PSM satisfies

ΦT(θ, θ0)C(θ)Φ(θ, θ0) = C(θ0), where

C(θ) := J T J (θ) =
�

γ (θ) α(θ)

α(θ) β(θ)

�
, (A.10)

by simply showing that the derivative of the lhs with respect to
θ is zero. Since solutions of (A.2), with z(θ0) = z0, are given
by z(θ) = Φ(θ, θ0)z0, it follows that

zTC(θ)z = (z0)TC(θ0)z0. (A.11)

In particular

e(z, θ) := zTC(θ)z = γ (θ)z2
1 + 2α(θ)z1z2 + β(θ)z2

2 (A.12)

is a constant of the motion, i.e., e(z, θ) is constant along
solutions of (A.2).

Since C(θ) is symmetric and positive definite, then for each
θ , the set of points z ∈ R2 for which

ε = e(z, θ) = γ (θ)z2
1 + 2α(θ)z1z2 + β(θ)z2

2,

(0 ≤ ε < ∞) (A.13)

forms an ellipse which we denote by Eε,θ . Since e is a constant
of the motion, we have

ϕ(θ, θ0; Eε,θ0) = Eε,θ . (A.14)

Because Eε,θ+2π = Eε,θ , we obtain

ϕ(θ0 + 2πn, θ0; Eε,θ0) = Eε,θ0 . (A.15)

In particular, the motion under (A.2) in each θ0 section is
confined to a single ellipse. It follows that

U :=
�

0≤ε�<ε

Eε�,0 = {z ∈ R2 : e(z, 0) < ε} (A.16)

is, for every ε > 0, a nonempty open invariant set
satisfying (2.8), i.e., Φ(2π, 0)U = U . Furthermore by (A.14),
Uθ = Φ(θ, 0)U = ϕ(θ, 0; U ) = �

0≤ε�<ε ϕ(θ, 0; Eε�,0) =�
0≤ε�<ε Eε�,θ = {z ∈ R2 : e(z, θ) < ε}.
Finally, we construct the PSM Φ. Consider the symplectic

matrix transformation

ζ = T (θ)z, T TJ T = J (A.17)

which gives

ζ̇ = J (R(θ) + Ŝ(θ))ζ, where R := −J Ṫ T −1 and

Ŝ := T −TST −1.
(A.18)

It follows from the symplecticity of T that R and Ŝ are
symmetric whence J (R + Ŝ) is a Hamiltonian matrix. Our aim
is to find T so that (A.18) can be integrated and we proceed
by looking for T such that ζTζ is a constant of the motion,
i.e., ζTζ = zTT TT z is constant. From (A.11), this will be true
if T TT = C . This gives T 2

11 + T 2
21 = γ, T11T12 + T21T22 =

α, T 2
12 + T 2

22 = β and from symplecticity, T11T22 − T12T21 = 1.
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We find that these can be solved by taking T12 = 0 and we
obtain

T =
�

β− 1
2 0

αβ− 1
2 β

1
2

�

. (A.19)

From the definitions in (A.18) a short calculation using (A.8)
gives R + Ŝ = (S22/β)I and clearly the solution of (A.18) for
ζ(θ0) = ζ 0 is

ζ = exp(ψ(θ, θ0)J )ζ 0, ψ(θ, θ0) =
� θ

θ0

S22(θ
�)

β(θ �)
dθ �.

(A.20)

Since z = T −1(θ)ζ = T −1(θ) exp(ψ(θ, θ0)J )T (θ0)z0 the
PSM for (A.2) is

Φ(θ, θ0) = T −1(θ) exp(ψ(θ, θ0)J )T (θ0). (A.21)

Remark.
(17) We could have proceeded by looking for T with T12 = 0

such that R + Ŝ = ωI for scalar ω, and the result would
be the same. �

It follows from (A.21) that P(θ0) = exp(ν̂ J (θ0)) where
ν̂ =

� 2π
0 S22/βdθ and we have used the fact that

T −1J T = J. (A.22)

Thus

ν =
� 2π

0

S22(θ)

β(θ)
dθ mod 2π. (A.23)

Since the transformation (A.17) is measure preserving and
since the set T Uθ is the interior of the circle with radius√

ε centered at the origin, we have µ2(Uθ ) = πε, which is
independent of θ .
Remark.
(18) In the case of (A.1), we have derived the Courant–Snyder

description of betatron motion (see also [27, Sec-
tion 2.1.1]) which was developed for describing particle
motion in circular accelerators in the 1950s. In this case, e
is called the Courant–Snyder invariant to honor the impor-
tant contribution of Courant and Snyder in their classic pa-
per [15]. An interesting discussion of various approaches
to (A.11) can be found in [16]. We have followed the spirit
of [38] in our study of (A.2).

The calculation of α and β is central to the design of
storage rings and algorithms for their construction can be
found in standard accelerator physics texts [21]. From the
approach above it is clear that J can be determined by
calculating P as defined in (A.5). Another approach would
be to solve (A.8) with an appropriate initial condition
subject to γ (θ0) := (1 + α2(θ0))/β(θ0). In this context
it would be interesting to understand the set of all
solutions to (A.8) and in particular the subset given by
γ (θ0) := (1 + α2(θ0))/β(θ0). This reduces to the study of
Φ(θ, 0)ZΦ(0, θ) which for an arbitrary constant matrix Z
is the general solution of (A.8). �

A.2. Computing the stroboscopic average of an arbitrary LD

From Theorem 2.6 the stroboscopic average of every LD is a
2π -periodic LD. Here, we construct an explicit formula for ρ̂g
where U in (A.16) is the domain of g. Note that U depends on
ε > 0.

We begin by constructing a candidate for ρ̂g . From (2.18) we
have

ρN
g (θ, z) = 1

N

N−1�

n=0
g (Φ(0, θ + 2πn)z) . (A.24)

Note that for every z ∈ Uθ there is a unique ε� in [0, ε) such
that z belongs to Eε�,θ whence by (A.14) the sequence of points
Φ(0, θ+2πn)z belongs to the ellipse Eε�,0. Thus for fixed (θ, z)
the sequence (A.24) samples points on the ellipse Eε�,0 and so
ρ̂g(θ, z) can depend only on values of g on that ellipse. That
this is the case will be seen explicitly in (A.28) and (A.29).

Because the stroboscopic average ρ̂g is an LD, (2.24) holds
and so we only need to determine ρ̂g(0, ·). By (A.9) and (A.22)
we have that Φ(0, 2πn) = P−n(0) = T −1(0) exp(−nνJ )T (0)
and so by (A.24)

ρN
g (0, z) = 1

N

N−1�

n=0
g (exp(−nν J (0))z)

= 1
N

N−1�

n=0
g(T −1(0) exp(−nνJ )T (0)z). (A.25)

If z ∈ U , then z lies on an ellipse Eε�,0 and, by (A.15),
the points exp(−nν J (0))z lie on that ellipse. Accordingly the
points ζn = exp(−nνJ )T (0)z lie on the circle with radius
ε� centered at the origin and if ν/2π is rational the average
is easily computed as Proposition A.1(b) will show. If ν/2π
is irrational then the ζn lie densely on the circle and we can
apply the Weyl equidistribution theorem [36, Section 3] if g is
continuous. It also follows, by the continuity of the function
e(·, 0), that if ν/2π is irrational and z ∈ Eε�,0, x ∈ R then all
points exp(−x J (0))z lie on Eε�,0 (in particular if z ∈ U then
exp(−x J (0))z ∈ U ). We conclude that if ν/2π is irrational and
g is continuous then ρN

g (0, z) converges for all z ∈ U and

ρ̂g(0, z) = lim
N→∞

ρN
g (0, z) = ḡ(z), (A.26)

where the function ḡ : U → [0, ∞) is defined by
ḡ(z) := (1/2π)

� 2π
0 g(exp(−x J (0))z)dx and where we have

used (A.22). From (2.24) and (A.26)

ρ̂g(θ, z) = 1
2π

� 2π

0
g (exp(−x J (0))Φ(0, θ)z) dx, (A.27)

and this is our candidate for the stroboscopic average. In fact
the above is a proof that it is, in the case where g is continuous.
Note that since exp(−x J (0))z ∈ U if ν/2π is irrational and
z ∈ U , it is clear that the integrals in the definition of ḡ and
in (A.27) are well defined if ν/2π is irrational. This may seem
odd but recall from (A.7) that J and ν are intimately related.
Note that in this appendix we abbreviate dµ1(x) and dµ2(x) by
dx .
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If g is not continuous we cannot apply the equidistribution
theorem but we nevertheless know from Lemma 2.5 that
ρN

g (0, z) converges for µ2-almost every z in U and so we expect
for irrational ν/2π that (A.26) holds for µ2-almost every z in
U . The following proposition, which is a consequence of the
ergodic theorem, confirms this expectation.

Proposition A.1. Let f be given by (A.2) in the elliptic case,
i.e., |Tr[P]| < 2 and let U := {z ∈ R2 : e(z, 0) < ε} where
ε > 0. Then for every LD ρg the following hold.
(a) If ν/2π is irrational then, for µ2-almost every z ∈ Uθ ,

ρ̂g(θ, z) = 1
2π

� 2π

0
g (exp(−x J (0))Φ(0, θ)z) dx, (A.28)

where Φ is the PSM and J is given by (A.7).
(b) If ν/2π is rational, i.e., ν/2π = q/p with integers p > 0

and q, then

ρ̂g(θ, z) = 1
p

p−1�

n=0
g (exp(−nν J (0))Φ(0, θ)z) . (A.29)

Remark. That U is nonempty and open, and satisfies (2.8) was
shown in Appendix A.1. Without loss of generality we take
ε = 1/π so that µ2 is a probability measure.

Proof of Proposition A.1(a). The proof follows easily once
we prove that the function ḡ, defined after (A.26), is a version
of E(g|I), where I := {A ∈ U : ϕ(2π, 0; A) = A} = {A ∈
U : P(0)A = A}. We also showed earlier in this section that
the integral in (A.28) is well defined.

We first show that ḡ is I-R-measurable. Since g is bounded
and U-R-measurable we easily find that ḡ is U-R-measurable.
Thus the proof is complete if we show that ḡ is invariant.
Now exp(−x J (0)) = T −1(0) exp(−xJ )T (0) and P(0) =
T −1(0) exp(νJ )T (0) whence

ḡ(P(0)z) = 1
2π

� 2π

0
g(T −1(0) exp((ν − x)J )T (0)z)dx

= 1
2π

� 2π

0
g(T −1(0) exp(−xJ )T (0)z)dx

= ḡ(z), (A.30)

where in the second equality we used the fact that exp(−xJ ) is
2π -periodic in x .

Secondly we need to show that for A ∈ I
�

A
ḡ(z)dz =

�

A
g(z)dz. (A.31)

Integrating ḡ over A and using the Fubini theorem we have
�

A
ḡ(z)dz = 1

2π

� 2π

0
f (x)dx, (A.32)

where f : [0, 2π ] → R is defined by

f (x) :=
�

A
g (exp(−x J (0))z) dz

=
�

exp(−x J (0))A
g(z)dz, (A.33)

and where in the second equality of (A.33) we used the
transformation theorem for Lebesgue integrals. To prove (A.31)
we need two lemmas which we prove after completing the proof
of Proposition A.1.

Lemma A.2. If h ∈ L1(U,U, µ2) is a continuous function,
A ∈ I and x ∈ [0, 2π ] then
�

exp(−x J (0))A
h(z)dz =

�

A
h(z)dz. (A.34)

Lemma A.3. For all x in [0, 2π ] and A ∈ I

f (x) =
�

A
g(z)dz. (A.35)

We conclude from (A.35) that 1
2π

� 2π
0 f (x)dx =

�
A g(z)dz

whence, by (A.32), it follows that (A.31) holds. This completes
the proof that ḡ is a version of E(g|I).

Now, since ḡ is a version of E(g|I) and since, by
Lemma 2.5, ρ̂g(0, ·) is also a version of E(g|I), we conclude
that (A.26) holds for µ1-almost every z in U . Thus by
Theorem 2.6, ρ̂g is an LD so that (A.28) holds for µ2-almost
every z ∈ Uθ . �
Proof of Proposition A.1(b). Let ν/2π be rational, i.e., ν/2π
= q/p with integers p > 0 and q. We showed earlier in this
section that exp(−nν J (0))z ∈ U if z ∈ U whence the sum in
(A.29) is well defined. Let

gn := g (exp(−nν J (0))z) = g(T −1(0) exp(−nνJ )T (0)z),

then gn+p = gn and

ρN
g (0, z) = 1

N

�
p−1�

n=0
+ · · · +

lp−1�

n=(l−1)p
+

N−1�

n=lp

�

gn

= 1
N

l
p−1�

n=0
gn + 1

N

N−1�

n=lp
gn, (A.36)

where l is the integer part of (N −1)/p. Clearly the second term
on the rhs goes to zero as N → ∞ and limN→∞(l/N ) = 1/p
whence ρ̂g(0, z) = (1/p)

�p−1
n=0 g(exp(−nν J (0))z). Since ρ̂g

is an LD, we conclude that (A.29) holds. �
We now prove the two lemmas.

Proof of Lemma A.2. Clearly
�

A
h (exp(−x J (0))z) dz =

�

exp(−x J (0))A
h(z)dz. (A.37)

Since h is continuous, it follows that h (exp(−x J (0))z) is
continuous in x whence by (A.37) and a lemma on parameter
dependent integrals (see e.g. [11, Lemma 16.1]) the lhs of
(A.34) is continuous in x .

For every integer n we have by (A.9) and (A.22)

A = Pn(0)A = exp(nν J (0))A

= T −1(0) exp(nνJ )T (0)A. (A.38)

Since ν/2π is irrational it follows from (A.38) that for a dense
set of x-values in [0, 2π ] we have exp(−x J (0))A = A. It
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follows that for a dense set of x-values in [0, 2π ], (A.34)
holds. Since the lhs of (A.34) is continuous in x , the claim
follows. �
Proof of Lemma A.3. Let g1, g2, . . . be a sequence of con-
tinuous functions in L1(U,U, µ2) converging in L1 to g as
n → ∞, i.e.,

�
U |gn(z) − g(z)|dz → 0 as n → ∞ (such a

sequence exists due to [11, Theorem 29.14]). By Lemma A.2
we have for all x ∈ [0, 2π ]
�

exp(−x J (0))A
gn(z)dz =

�

A
gn(z)dz. (A.39)

Therefore
���� f (x) −

�

A
g(z)dz

����

=
����

�

exp(−x J (0))A
(g(z) − gn(z))dz +

�

A
(gn(z) − g(z))dz

����

≤
�

exp(−x J (0))A
|g(z) − gn(z)|dz +

�

A
|gn(z) − g(z)|dz

≤ 2
�

U
|gn(z) − g(z)|dz, (A.40)

whence f (x) =
�

A g(z)dz. Thus (A.35) holds for all x in
[0, 2π ]. �

Remark.

(19) It follows from the proof of Proposition A.1a that the
function ḡ satisfies the fixed point Eq. (2.16) and is the
generator of a 2π -periodic LD (these facts even hold
when ν/2π is rational). Thus if ν/2π is irrational then,
by Proposition A.1a, the 2π -periodic LD’s ρḡ and ρ̂g are
almost equal, i.e., for µ2-almost every z ∈ Uθ , ρḡ(θ, z) =
ρ̂g(θ, z). �
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