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In this paper, we describe our work on spin polarization in high-energy electron storage26

rings which we base on the Full Bloch equation (FBE) for the polarization density27

and which aims towards the e− − e+ option of the proposed Future Circular Collider28

(FCC-ee) and the proposed Circular Electron Positron Collider (CEPC). The FBE takes29

into account nonspin-flip and spin-flip effects due to synchrotron radiation including the30

spin-diffusion effects and the Sokolov–Ternov effect with its Baier–Katkov generalization31

as well as the kinetic-polarization effect. This mathematical model is an alternative to32

the standard mathematical model based on the Derbenev–Kondratenko formulas. For33

our numerical and analytical studies of the FBE, we develop an approximation to the34

latter to obtain an effective FBE. This is accomplished by finding a third mathematical35

model based on a system of stochastic differential equations (SDEs) underlying the FBE36

and by approximating that system via the method of averaging from perturbative ODE37

theory. We also give an overview of our algorithm for numerically integrating the effective38

FBE. This discretizes the phase space using spectral methods and discretizes time via39
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the additive Runge–Kutta (ARK) method which is a high-order semi-implicit method.1

We also discuss the relevance of the third mathematical model for spin tracking.2

Keywords:3

PACS numbers: 29.20.db, 29.27.Hj, 05.10.Gg4

1. Introduction5

In this paper, we describe some analytical and numerical aspects of our work on6

spin polarization in high-energy electron storage rings aimed towards the e− −7

e+ option of the proposed Future Circular Collider (FCC-ee) and the proposed8

Circular Electron Positron Collider (CEPC). The main questions for high-energy9

rings like the FCC-ee and CEPC are: (i) Can one get polarization? (ii) What are10

the theoretical limits of the polarization? This paper builds on our ICAP18 papers11

and talks,1,2 as well as a talk at an IAS mini-workshop on Beam Polarization.312

Photon emission in synchrotron radiation affects the orbital motion of electron13

bunches in a storage ring and can lead to an equilibrium bunch density in phase14

space. This is modeled by adding noise and damping to the particle motion.4,5 The15

photon emission also affects the spin motion and can lead to an equilibrium bunch16

polarization. This is viewed as a balance of three factors: spin diffusion, the so-called17

Sokolov–Ternov process and the so-called kinetic polarization effect. These three18

factors have been modeled mathematically in two ways, the first based on Ref. 6 and19

the second on Ref. 7. Here, we discuss the second model and introduce a new, third,20

mathematical model, based on stochastic differential equations (SDEs). So far, ana-21

lytical estimates of the attainable polarization have been based on the so-called22

Derbenev–Kondratenko formulas.6,8 A recent overview is part of Ref. 3. In analogy23

with studies of the trajectories of single particles, this model leans towards the study24

of single spins and relies in part on plausible assumptions grounded in deep physical25

intuition. Here, the spin diffusion is viewed as a consequence of the trajectory noise26

feeding through to the spin motion via the spin–orbit coupling in the Thomas-BMT27

equation9 and thus leading to depolarization. The Sokolov–Ternov process10 causes28

a build up of the polarization because of an asymmetry in the transitions rates for29

spin up and spin down. The roots here are in the Dirac equation. This is some-30

times referred to as “spin-flip” and relies on the introduction of a spin quantization31

axis. The kinetic polarization effect follows from the fact that the spin quantization32

axis is phase space-dependent. Thus, a third question for high-energy rings like the33

FCC-ee and CEPC is: Are the Derbenev–Kondratenko formulas complete?34

We believe that the model based on the Derbenev–Kondratenko formulas is an35

approximation of the model from Ref. 7 mentioned above which is based on the so-36

called polarization density of the bunch. In the model of Ref. 7, one studies the evo-37

lution of the bunch density in phase space with the Fokker–Planck (F–P) equation38

(2). The corresponding equation for spin is the evolution equation (8) for the polar-39

ization density which we call the Full Bloch equation (FBE) and which generalizes40

the orbital F–P equation. We use the name “Bloch” to reflect the analogy with41
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equations for magnetization in condensed matter.11 Each of the above three syn-1

chrotron radiation effects correspond to terms in the FBE. Thus, it takes into2

account effects on spin due to synchrotron radiation including the spin-diffusion3

effects, the Sokolov–Ternov effect with its Baier–Katkov generalization, as well as4

the kinetic-polarization effect.5

The FBE was introduced by Derbenev and Kondratenko in 19757 as a general-6

ization to the whole phase space (with its noisy trajectories) of the Baier–Katkov–7

Strakhovenko (BKS) equation which just describes the evolution of polarization by8

spin-flip along a single deterministic trajectory.3,12 The FBE is a system of three9

F–P like equations for the three components of the polarization density coupled by10

a Thomas-BMT term and the BKS terms but uncoupled within the F–P terms.11

The integral of the polarization density is the polarization vector of the bunch. We12

remark that the polarization density is proportional to the phase space density of13

the spin angular momentum. See Refs. 13 and 3 for recent reviews of polarization14

history and phenomenology. Thus, we study the initial-value problem of the sys-15

tem of coupled orbital F–P equation and the FBE. The third model is based on16

the system of coupled spin–orbit SDEs (14) and (16) and its associated F–P equa-17

tion which governs the evolution of the (joint) spin–orbit probability density. We18

believe that the third model is equivalent to the second model, i.e. the one based19

on Ref. 7, but we believe that it is also more amenable to analysis.20

We proceed as follows. In Sec. 2, we present the FBE for the laboratory frame.21

We also introduce our newly discovered system of SDEs which underlie the whole22

FBE. Thus, we can model the FBE in terms of white-noise in the SDEs, thereby23

extending the classical treatment of spin diffusion from Ref. 14 to a classical treat-24

ment of all terms of the FBE. So we have extended the classical model of spin25

diffusion to a classical model which includes the Sokolov–Ternov effect, its Baier–26

Katkov correction and the kinetic-polarization effect. As an aside this may lead to a27

new Monte–Carlo approach to simulation which includes these effects, using modern28

techniques for integrating SDEs. Section 2 also presents the reduced Bloch equa-29

tion (RBE) obtained by neglecting the spin-flip terms and the kinetic-polarization30

term in the FBE. The RBE approximation is sufficient for computing the physi-31

cally interesting depolarization time and it shares the terms with the FBE that are32

most challenging to discretize. Thus, in this paper, when we consider the discretiza-33

tion, we only do it for the RBE. In Sec. 3, we discuss the RBE in the beam frame34

and the underlying SDEs. In Sec. 4, we derive an effective RBE by applying the35

method of averaging to the underlying SDEs. In Sec. 5, we outline our algorithm36

for integrating the effective RBE. This will be applied to the FBE in three degrees37

of freedom. Finally, in Sec. 6, we describe ongoing and future work.38

2. FBE, RBE and Associated SDEs in the Laboratory Frame39

In a semiclassical probabilistic description of an electron or positron bunch the40

spin–orbit dynamics is described by the spin-1/2 Wigner function ρ (also called the

1942032-3
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Stratonovich function) written as1

ρ(t, z) =
1

2
(f(t, z)I2×2 + σ · η(t, z)) , (1)

where f is the classical phase-space density normalized by
∫
f(t, z)dz = 1 and η2

is the polarization density of the bunch. Here, z = (r,p) where r and p are the3

position and momentum vectors of the phase space and t is the time. Also, σ is4

the vector of the three Pauli matrices. Thus, f = Tr[ρ] and η = Tr[ρσ]. Here and5

in the following, we use arrows on three-component column vectors and no arrows6

on other quantities. As explained in Ref. 14, η is proportional to the spin angular7

momentum density. In fact, it is given by η(t, z) = f(t, z)Ploc(t, z) where Ploc is8

the local polarization vector. Then ρ(t, z) is a product of f(t, z) and a pure spin9

part with ρ(t, z) = 1
2f(t, z)(I2×2 + σ · Ploc(t, z)). The polarization vector P(t) of10

the bunch is P(t) =
∫
η(t, z)dz. When the particle motion is governed just by a11

Hamiltonian, as in the case of protons where one neglects all synchrotron radiation12

effects, the phase-space density is conserved along a trajectory. Then, the polariza-13

tion density obeys the Thomas-BMT equation along each trajectory. However, if14

the particles are subject to noise and damping due to synchrotron radiation, the15

evolution of the density of particles in phase space is more complicated. But as16

advertised above it can be handled with a F–P formalism.17

Then, by neglecting collective effects and after several other approximations,18

the phase-space density evolves according to Ref. 7 via19

∂tf = LFP(t, z)f. (2)

Using the units as in Ref. 7 the F–P operator LFP is defined by20

LFP(t, z) := −∇r ·
1

mγ
p−∇p ·

[
eE(t, r) +

e

mγ
(p×B(t, r))

+Frad(t, z) + Qrad(t, z)

]
+

1

2

3∑
i,j=1

∂pi∂pjEij(t, z), (3)

where21

Frad(t, z) := −2

3

e4

m5γ
|p×B(t, r)|2p, (4)

Qrad,i(t, z) :=
55

48
√

3

3∑
j=1

∂[λ(t, z)pipj ]

∂pj
, (5)

Eij(t, z) :=
55

24
√

3
λ(t, z)pipj , λ(t, z) := ~

|e|5

m8γ
|p×B(t, r)|3, (6)

γ ≡ γ(p) =
1

m

√
|p|2 +m2, (7)

and with e and m being the charge and rest mass of the electron or positron and22

E,B being the external electric and magnetic fields.23

1942032-4
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The parabolic F–P terms are those in the double sum of (3). The F–P operator1

LFP(t, z) whose explicit form is taken from Ref. 7 is a linear second-order partial2

differential operator and, with some additional approximations, is commonly used3

for electron synchrotrons and storage rings, see Sec. 2.5.4 in Refs. 4 and 15. As4

usual, since it is minuscule compared to all other forces, the Stern–Gerlach effect5

from the spin onto the orbit is neglected in (2). The polarization density η evolves6

via Eq. (2) in Ref. 7, i.e. via the laboratory-frame FBE7

∂tη = LFP(t, z)η +M(t, z)η

+ [1 +∇p · p]λ(t, z)
1

mγ

p× a(t, z)

|a(t, z)|
f(t, z), (8)

where8

M(t, z) := Ω(t, z)− λ(t, z)
5
√

3

8

[
I3×3 −

2

9m2γ2
ppT

]
, (9)

and with9

a(t, z) :=
e

m2γ2
(p×B(t, r)). (10)

The skew-symmetric matrix Ω(t, z) takes into account the Thomas-BMT spin-10

precession effect. The quantum aspect of (2) and (8) is embodied in the factor ~ in11

λ(t, z). For example Qrad is a quantum correction to the classical radiation reaction12

force Frad. The terms −λ(t, z) 5
√
3

8 η and λ(t, z) 1
mγ

p×a(t,z)
|a(t,z)| f(t, z) take into account13

spin-flips due to synchrotron radiation and encapsulate the Sokolov–Ternov effect.14

The term λ(t, z) 5
√
3

8
2

9m2γ2pp
Tη encapsulates the Baier–Katkov correction, and the15

term ∇p · p λ(t, z) 1
mγ

p×a(t,z)
|a(t,z)| f(t, z) =

∑3
1 ∂pi [piλ(t, z) 1

mγ
p×a(t,z)
|a(t,z)| f(t, z)] encapsu-16

lates the kinetic-polarization effect.17

The Ito SDEs corresponding to (2) can be written informally as18

dr

dt
=

1

mγ
p, (11)

dp

dt
= eE(t, r) +

e

mγ
(p×B(t, r)) + Frad(t, z)

+Qrad(t, z) + Borb(t, z)ξ(t), (12)

where ξ is the white-noise process and19

Borb(t, z) := p

√
55

24
√

3
λ(t, z), (13)

or more concisely as20

dZ

dt
= F (t, Z) +G(t, Z)ξ(t). (14)

1942032-5
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More precisely, the stochastic process Z = (r,p)T evolves according to the integral1

equation2

Z(t) = Z(t0) +

∫ t

t0

F (τ, Z(τ))dτ +

∫ t

t0

G(τ, Z(τ))dW(τ), (15)

where the second integral in (15) is the so-called Ito integral and W is the Wiener3

process. Note that in (14), and from now on, the dependent variables in the SDEs4

are denoted by large letters. In contrast, independent variables are denoted by small5

letters, as in f(t, z). We note that (14) is ambiguous. It is common to interpret6

(14) as either an Ito system of SDEs or a Stratonovich system of SDEs, leading to7

different F–P equations if G depends on z. The SDEs (14) lead to (2) via Ito but8

not via Stratonovich. In this paper all SDEs are to be interpreted in the Ito sense.9

Helpful discussions about Ito SDEs can be found, for example, in Refs. 16–18.10

A remarkable and perhaps unknown fact is our recent finding that the FBE11

can be modeled in terms of white-noise as well, i.e. we can construct a system of12

SDEs underlying (2) and (8). We already have (14) for the orbital motion and now13

introduce a vector S defined to obey14

dS

dt
= M(t, Z)S +Dspin(t, Z) + Bkin(t, Z)ξ(t), (16)

where15

Dspin(t, z) := λ(t, z)
1

mγ

p× a(t, z)

|a(t, z)|
, (17)

Bkin(t, z) := − 1

mγ

p× a(t, z)

|a(t, z)|

√
24
√

3

55
λ(t, z). (18)

The terms M(t, Z), Bkin(t, z) and Dspin(t, z) in (16) are chosen so that they deliver16

the required FBE (8) by the end of the path for obtaining the FPE described below.17

As can be expected from the discussion after (9) above, the term Ω(t, Z)S will18

account for the Thomas-BMT spin-precession effect, the terms −λ(t, Z) 5
√
3

8 S and19

Dspin(t, Z) will account for spin-flips due to synchrotron radiation and encapsulate20

the Sokolov–Ternov effect. The term proportional to 2/9 in (9) will account for21

the Baier–Katkov correction, and the white-noise term Bkin(t, Z)ξ(t) will account22

for the kinetic-polarization effect. The latter motivates the use of the superscript23

“kin.” As the notation suggests, the white-noise process ξ(t) in (16) is the same as24

the white-noise process ξ(t) in (12).25

To show that (14) and (16) lead to (2) and (8) one proceeds as follows. The26

SDEs for the joint process (Z,S) can be written as27

d

dt

(
Z

S

)
= H(t, Z,S) +N(t, Z)ξ(t), (19)

where28

H(t, Z,S) =

(
F (t, Z)

M(t, Z)S +Dspin(t, Z)

)
, N(t, Z) =

(
G(t, Z)

Bkin(t, Z)

)
, (20)

1942032-6
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and we remind the reader that the SDE is to be interpreted as an Ito SDE. The1

associated F–P equation for the (Z,S) process evolves the (joint) probability density2

P = P(t, z, s) which is related to f and η via3

f(t, z) =

∫
R3

dsP(t, z, s), η(t, z) =

∫
R3

dssP(t, z, s). (21)

It is straightforward to show via the F–P equation for P that f and η evolve4

according to (2) and (8). Thus indeed (14) and (16) lead to (2) and (8).5

Note that |S(t)| in (16) is not conserved in time. So S(t) in (16) is not the spin6

vector of a single particle. Nevertheless, |S(t)| can be related to familiar quanti-7

ties. In fact, by (21) and since f is the phase-space density, at time t the condi-8

tional expectation of S(t) given Z(t) is 1
f(t,z)η(t, z), namely the local polarization9

Ploc(t, Z(t)).10

Because P(t) =
∫
η(t, z)dz it also follows from (21), that the polarization vector11

P(t) is the expectation value of the random vector S(t), i.e. P(t) = 〈S(t)〉 with12

S(t) from (16). Thus, and since |P(t)| ≤ 1, we obtain |〈S(t)〉| ≤ 1, in particular the13

constraint on the initial condition is: |〈S(0)〉| ≤ 1.14

Since (2) and (8) follow from (14) and (16) one can use (14) and (16) as the basis15

for a Monte–Carlo spin tracking algorithm for P(t). Thus this would extend the16

standard Monte–Carlo spin tracking algorithms by taking into account all physical17

effects described by (8), like the Sokolov–Ternov effect, the Baier–Katkov correction,18

the kinetic-polarization effect and, of course, spin diffusion. A detailed paper on19

this is in progress.1920

If we ignore the spin-flip terms and the kinetic-polarization term in the FBE21

then (8) simplifies to22

∂tη = LFP(t, z)η + Ω(t, z(t))η . (22)

We refer to (22) as the RBE. Accordingly the system of SDEs underlying (22) is23

(14) and a simplified (16), namely24

dS

dt
= Ω(t, Z(t))S. (23)

The RBE models spin diffusion due to the orbital motion. Note that by (23), and25

in contrast to (16), |S(t)| is conserved in time. As mentioned in Sec. 1, the RBE is26

sufficient for computing the depolarization time and it shares the terms with the27

FBE that are most challenging to discretize.28

The conventional Monte–Carlo spin tracking algorithms to compute the radia-29

tive depolarization time, e.g. SLICKTRACK by Barber, SITROS by Kewisch,30

Zgoubi by Meot, PTC/FPP by Forest, and Bmad by Sagan take care of the spin31

diffusion and they are based on the SDEs (14) and (23).15,20–22 In contrast the32

Monte–Carlo spin tracking algorithm proposed above is based on the SDEs (14)33

and (16) taking into account spin diffusion, the Sokolov–Ternov effect, the Baier–34

Katkov correction and the kinetic-polarization effect.35

1942032-7
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Equations (2) and (8) can be derived from quantum electrodynamics, using the1

semiclassical approximation of the Foldy–Wouthuysen transformation of the Dirac2

Hamiltonian and finally by making a Markov approximation.23 We stress however,3

that (14) and (16) provide a model for (8) which can be treated classically. In fact, in4

the special case where one neglects all spin-flip effects and the kinetic-polarization5

effect the corresponding SDEs (14) and (23) (and thus the RBE (22)) can be derived6

purely classically as in Ref. 14. See Sec. 3 too.7

3. RBE and SDEs in the Beam Frame8

In the beam frame, i.e. in accelerator coordinates y, the RBE (22) becomes9

∂θηY = LY (θ, y)ηY + ΩY (θ, y)ηY , (24)

where the meaning of the subscript “Y” will become clear below. Here θ is the10

accelerator azimuth11

LY (θ, y) = −
6∑
j=1

∂yj (A(θ)y)j +
1

2
bY (θ)∂2y6 ,

A(θ) is a 6 × 6 matrix encapsulating radiationless motion and the deterministic12

effects of synchrotron radiation, bY (θ) encapsulates the quantum fluctuations, and13

ΩY (θ, y) is the Thomas-BMT term. The latter is a skew-symmetric 3×3 matrix and14

we linearize it as in Ref. 24. Note that A(θ), ΩY (θ, y) and bY (θ) are 2π-periodic15

in θ. Given the beam-frame polarization density ηY , the beam-frame polarization16

vector P(θ) of the bunch at azimuth θ is17

P(θ) =

∫
dyηY (θ, y). (25)

Our central computational focus is the RBE (24) with P(θ) being a quantity of18

interest. To proceed with this we use the underlying system of SDEs which are19

Y ′ = A(θ)Y +
√
bY (θ)e6ξ(θ), (26)

S′ = ΩY (θ, Y )S, (27)

where ξ is the white-noise process, e6 = (0, 0, 0, 0, 0, 1)T and, recalling the previous20

section, S(θ) is the local polarization vector at Y (θ). The six components of Y are21

defined here as in Refs. 5 and 24. Thus the sixth component of Y is (γ − γr)/γr22

where γr is the reference value of γ. Since (26) is an Ito system of SDEs which, in23

the language of SDEs, is linear in the narrow sense, it defines a Gaussian process24

Y (t) if Y (0) is Gaussian. See Ref. 17. Equations (26) and (27) can be obtained by25

transforming (14) and (23) from the laboratory frame to the beam frame. However26

(26) and (27) can also be found in several expositions on spin in high-energy electron27

storage rings, e.g. Ref. 24. Note that these expositions make some approximations.28

We use Ref. 24 which involves transforming from the laboratory to the beam frame29

and then linearizing in the beam-frame coordinates, leading to the linear SDEs (26)30

1942032-8
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and to ΩY (θ, Y ) which is linear in Y . Practical calculations with the Derbenev–1

Kondratenko formalism make similar approximations.2

The F–P equation for the density of the Gaussian process Y is3

∂θPY = LY (θ, y)PY . (28)

In fact with (26) and (27) the evolution equation for the spin–orbit joint probability4

density PY S is the following F–P equation5

∂θPY S = LY (θ, y)PY S −
3∑
j=1

∂sj ((ΩY (θ, y)s)jPY S). (29)

Note that PY is related to PY S by6

PY (θ, y) =

∫
R3

dsPY S(θ, y, s). (30)

Also, by integrating (29) over s one recovers (28). The polarization density ηY7

corresponding to PY S is defined by8

ηY (θ, y) =

∫
R3

ds s PY S(θ, y, s). (31)

Note that (30) and (31) are analogous to (21). The RBE (24) follows from (29) by9

differentiating (31) w.r.t. θ. For (24) see Ref. 14 too. We recall that the relation10

between a system of SDEs and its F–P equation is standard, see, e.g. Refs. 16–18.11

4. Approximating the Beam-Frame RBE by the Method12

of Averaging13

Because the coefficients of LY (θ, y) are θ-dependent, the RBE (24) is difficult to14

understand analytically and difficult for a numerical method. Since the RBE is15

derivable from the associated SDEs (26) and (27) we can focus on these difficulties16

in the SDEs, rather than in the RBE, where approximation methods are better17

developed. For this purpose we rewrite (26) as18

Y ′ = (A(θ) + εδA(θ))Y +
√
ε
√
b(θ)e6ξ(θ), (32)

where A(θ) is the Hamiltonian part of A(θ) and ε is chosen so that δA is order 1.19

Then b is defined by
√
ε
√
b(θ) =

√
bY (θ). Here εδA(θ) represents the part of A(θ)20

associated with damping effects due to synchrotron radiation and cavities (see, e.g.21

Eq. (5.3) in Ref. 24). The term
√
ε
√
b(θ) corresponds to the quantum noise and the22

square root is needed for the balance of damping, cavity acceleration and quantum23

noise (see Eq. (34)). We are interested in situations where Y has been appropriately24

scaled and where the synchrotron radiation has a small effect so that ε is small.25

Equation (32) can be approximated using the method of averaging which will26

eliminate some of the θ-dependent coefficients and allow for a numerical method27

which can integrate the resultant RBE efficiently over long times. This has the28

added benefit of deepening our analytical understanding, as a perturbation analysis29
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usually does. We call the approximation of the RBE the effective RBE and we will1

find it by refining the averaging technique presented in Sec. 2.1.4 of the Accelerator2

Handbook.5 This refinement allows us to use the method of averaging to approxi-3

mate the SDEs (32). We just give a sketch here (a detailed account will be published4

elsewhere25).5

Because the process Y is Gaussian, if Y (0) is Gaussian, all the information is6

in its mean mY and covariance KY and they evolve by the ODEs7

m′Y = (A(θ) + εδA(θ))mY , (33)

K ′Y = (A(θ) + εδA(θ))KY +KY (A(θ) + εδA(θ))T + εω(θ)e6e
T
6 . (34)

In (34) the δA terms and the ω are balanced at O(ε) and so can be treated together8

in first-order perturbation theory. This is the reason for the
√
ε in (32). However this9

balance is also physical since the damping and diffusion come from the same source10

and the cavities replenish the energy loss. We cannot include the spin equation (27)11

because the joint (Y,S) process is not Gaussian. Equation (27) has a quadratic12

nonlinearity since it is linear in Y and S so that the joint moment equations would13

not close. Thus here we will apply averaging to the Y process only and discuss the14

spin after that. However, see Remark 3 below which outlines a plan for a combined15

approach.16

To apply the method of averaging to (33) and (34) we must transform them to17

a standard form for averaging. We do this by using a fundamental solution matrix18

X of the unperturbed ε = 0 part of (32) and (33), i.e.19

X ′ = A(θ)X. (35)

We thus transform Y , mY and KY into U , mU and KU via20

Y = X(θ)U, mY = X(θ)mU , KY = X(θ)KUX
T (θ), (36)

and (32), (33) and (34) are transformed to21

U ′ = εD(θ)U +
√
ε
√
ω(θ)X−1(θ)e6ξ(θ), (37)

m′U = εD(θ)mU , (38)

K ′U = ε(D(θ)KU +KUDT (θ)) + εE(θ). (39)

Here D(θ) and E(θ) are defined by22

D(θ) = X−1(θ)δA(θ)X(θ), (40)

E(θ) = ω(θ)X−1(θ)e6e
T
6X
−T (θ). (41)

Of course, (37)–(39) carry the same information as (32)–(34).23

Now, applying the method of averaging to (38) and (39), we obtain the Gaussian24

process V with mean and covariance matrix25

m′V = ε D̄mV , (42)

K ′V = ε(D̄KV +KV D̄T ) + ε Ē , (43)
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where the bar denotes θ-averaging, i.e. the operation limT→∞(1/T )
∫ T
0
dθ . . . . For1

physically reasonable A each fundamental matrix X is a quasiperiodic function2

whence D and E are quasiperiodic functions so that their θ averages D̄ and Ē exist.3

By averaging theory |mU (θ) − mV (θ)| ≤ C1(T )ε and |KU (θ) − KV (θ)| ≤ C2(T )ε4

for 0 ≤ θ ≤ T/ε where T is a constant (see also Refs. 26–29) and ε small. However,5

we expect to be able to show that these estimates are uniformly valid on [0,∞) so6

that an accurate estimate of the orbital equilibrium would be found.7

The key point now is that every Gaussian process V , whose mean mV and8

covariance matrix KV satisfy the ODEs (42) and (43), also satisfies the system of9

SDEs10

V ′ = εD̄V +
√
εB(ξ1, . . . , ξk)T . (44)

Here ξ1, . . . , ξk are statistically independent versions of the white-noise process and11

B is a 6 × k matrix which satisfies BBT = Ē with k = rank(Ē). Since mU (θ) =12

mV (θ) + O(ε) and KU (θ) = KV (θ) + O(ε) we get U(θ) ≈ V (θ). In particular13

Y (θ) ≈ X(θ)V (θ) (more details will be in Ref. 25). Conversely, the mean vector14

mV and covariance matrix KV of every V in (44) satisfy the ODEs (42) and (43).15

Remark. It’s likely that stochastic averaging techniques can be applied directly to16

(37) giving (44) as an approximation and we are looking into this (see Ref. 30 and17

references therein). However, because (37) is linear and defines a Gaussian process,18

the theory for getting to (44) from the ODEs for the moments could not be simpler,19

even though it is indirect. �20

To proceed with an analysis of (44) and its associated F–P equation we need an21

appropriate X and we note that X(θ) = M(θ)C where C is an arbitrary invertible22

6 × 6 matrix and M is the principal solution matrix, i.e. M ′ = A(θ)M,M(0) = I.23

Thus choosing X boils down to choosing a good C. As is common for spin physics24

in electron storage rings we emulate Chao’s approach (see Sec. 2.1.4 in Ref. 5 and25

Refs. 31 and 32) and use the eigenvectors of M(2π). We assume that the unper-26

turbed orbital motion is stable. Thus M(2π) has a full set of linearly independent27

eigenvectors and the eigenvalues are on the unit circle in the complex plane.33 We28

further assume a nonresonant condition on the orbital frequencies. We construct C29

as a real matrix using the real and imaginary parts of the eigenvectors in its columns30

and using the fact that M(2π) is symplectic (since A(θ) is a Hamiltonian matrix).31

It follows that D̄ has block diagonal form and Ē has diagonal form. Explicitly,32

D̄ =


DI 02×2 02×2

02×2 DII 02×2

02×2 02×2 DIII

, (45)

Dα =

(
aα bα

−bα aα

)
, (α = I, II, III), (46)

and Ē = diag(EI , EI , EII , EII , EIII , EIII) with aα ≤ 0 and EI , EII , EIII ≥ 0.33
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To include the spin note that, under the transformation Y 7→ U , (26) and (27)1

become2

U ′ = εD(θ)U +
√
ε
√
ω(θ)X−1(θ)e6ξ(θ), (47)

S′ = ΩY (θ,X(θ)U)S , (48)

where we have repeated (37). Now, as we just mentioned, U is well approximated by3

V , i.e. U = V +O(ε) on θ intervals of a length of O(1/ε) (and because of damping4

we may have uniform validity for 0 ≤ θ <∞). Thus5

ΩY (θ,X(θ)U) = ΩY (θ,X(θ)V ) +O(ε), (49)

and (48) becomes6

S′ = ΩY (θ,X(θ)V )S +O(ε). (50)

Dropping the O(ε) in (50) and replacing U by V in (48) we obtain the system7

V ′ = εD̄V +
√
εB(ξ1, . . . , ξk)T , (51)

S′ = ΩY (θ,X(θ)V )S, (52)

where (51) is a repeat of (44). With (51) and (52) the evolution equation for the8

spin–orbit probability density PV S = PV S(θ, v, s) is the following F–P equation:9

∂θPV S = LV (v)PV S −
3∑
j=1

∂sj ((ΩY (θ,X(θ)v)s)jPV S), (53)

where10

LV (v) = −ε
6∑
j=1

∂vj
(D̄v)j +

ε

2

6∑
i,j=1

Ēij∂vi
∂vj

. (54)

Thus the three degrees of freedom are uncoupled in LV since, by (54),11

LV = LV,I + LV,II + LV,III , (55)

where each LV,α is an operator in one degree of freedom (=two dimensions) and is12

determined by Dα and Eα via (54) (α = I, II, III).13

This is important for our numerical approach.14

The polarization density ηV corresponding to PV S is defined by15

ηV (θ, v) =

∫
R3

dssPV S(θ, v, s), (56)

so that by (53), the effective RBE is16

∂θηV = LV (v)ηV + ΩY (θ,X(θ)v)ηV . (57)

The coefficients of LV (v) are θ-independent for every choice of X and this is nec-17

essary for our numerical method.18

1942032-12
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We now have Y (θ) = X(θ)U(θ) ≈ Ya(θ) := X(θ)V (θ) and it follows that ηY in1

(24) is given approximately by2

ηY (θ, y) ≈ ηY,a(θ, y) = det(X−1(0))ηV (θ,X−1(θ)y). (58)

Now (57) and the effective RBE for ηY,a carry the same information. However in3

general the effective RBE for ηY,a does not have the nice features of (57), e.g. being4

θ-independent, which make the latter useful for our numerical method (see below).5

Hence we discretize (57) rather than the effective RBE for ηY,a.6

We now make several remarks on the validity of the approximation leading to7

(51) and (52) and thus to (57).8

Remark 1. The averaging which leads to (57) affects only the orbital variables.9

It was justified by using the fact that (47) is linear whence it defines a Gaussian10

process when the initial condition is Gaussian. This allowed us to apply the method11

of averaging to the first and second moments rather than the SDEs themselves. �12

Remark 2. We cannot extend the moment approach to the system (47) and (48)13

because (48) has a quadratic nonlinearity and the system of moment equations do14

not close. In future work, we will pursue approximating the system (47) and (48)15

using stochastic averaging as in Ref. 30. �16

Remark 3. Because of the O(ε) error in (50) we a priori expect an error of O(εθ) in17

S when going from (48) to (52) and so (57) may only give a good approximation to18

ηY on θ intervals of a length of O(1). The work mentioned in Remark 2 above may19

shed light on this. In addition we will split ΩY into two pieces: ΩY (θ, y) = Ω0(θ) +20

εsω(θ, y) where Ω0 is the closed-orbit contribution to ΩY and εs is chosen so that ω21

is O(1). Then, in the case where εs = ε, (48) becomes S′ = Ω0(θ)S+εω(θ,X(θ)U)S.22

By letting S(θ) = Ψ(θ)T(θ) where Ψ′ = Ω0(θ)Ψ we obtain23

T′ = εD(θ, U)T, (59)

where D(θ, U) = Ψ−1(θ)ω(θ,X(θ)U)Ψ(θ). Our system is now (47) and (59) and the24

associated averaged system consists of (51) and of the averaged form of (59), i.e.25

V ′ = εD̄V +
√
εB(ξ1, . . . , ξk)T , (60)

T′a = εD̄(V )Ta. (61)

It seems likely that S(θ) = Ψ(θ)Ta(θ) + O(ε) for 0 ≤ θ < O(1/ε), which we hope26

to prove. �27

Remark 4. We have applied the method of averaging to a 1-degree-of-freedom28

model (= 2 dimensions) with just one spin variable and have verified the O(ε) error29

analytically. In addition, we are working on a 2-degree-of-freedom model (=4 dimen-30

sions) with just one spin variable. These are discussed in our two ICAP18 papers.1,231

These models will be helpful for our 3-degree-of-freedom study we outlined here. �32
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5. Sketch of the Numerical Approach1

We now briefly sketch our numerical approach to the effective RBE (57). For2

more details see Ref. 2. The numerical computations are performed by using three3

pairs (rα, ϕα) of polar coordinates, i.e. v1 = rI cosϕI , . . . , v6 = rIII sinϕIII . The4

angle variables are Fourier transformed whence the Fourier coefficients are func-5

tions of time and the radial variables. We discretize the radial variables by using6

the collocation method34,35 using a Chebychev grid for each radial variable. For7

each Fourier mode this results in a system of linear first-order ODEs in θ which8

we discretize by using an implicit/explicit θ-stepping scheme. The collocation9

method is a minimial-residue method by which the residual of the PDE is zero10

at the numerical grid points. Because of (54), (45) and (46) the Fourier modes11

are uncoupled in LV ηV so that the only coupling of Fourier modes in (57) comes12

via ΩY (θ,X(θ)v)ηV and this coupling is local since ΩY (θ,X(θ)v) is linear in v.13

Thus the parabolic terms are separated from the mode coupling terms. Hence in14

the θ stepping LV ηV is treated implicitly and ΩY (θ,X(θ)v)ηV is treated explic-15

itly. We exploit the decoupling by evolving the resulting ODE system with the16

additive Runge–Kutta (ARK) method. As described in Ref. 36, ARK methods17

are high-order semi-implicit methods that are constructed from a set of consis-18

tent Runge–Kutta (RK) methods. In the RBE the parabolic part of the equation19

is treated with a diagonally implicit RK method (DIRK) and the mode coupling20

part is treated with an explicit RK (ERK) method which does not require a lin-21

ear solve. The ODE system can be evolved independently in time for each Fourier22

mode, resulting in a computational cost for each timestep that scales as O(N3q)23

per mode where N is the number of grid-points for each of the six dimensions and24

where 1 ≤ q ≤ 3, depending on the algorithms used for the linear solve. However,25

only algorithms with q ≈ 1 are feasible (for Gaussian elimination q = 3). Fortu-26

nately, the structure of the averaged equations (e.g. the parabolic terms are decou-27

pled from mode coupling terms) allows efficient parallel implementation. We have28

applied this in a 1-degree-of-freedom model and have demonstrated the spectral29

convergence.230

6. Discussion and Next Steps31

We are continuing our work on the second model, i.e. the one based on the Bloch-32

equation, by extending the averaging and numerical work from the RBE to the FBE33

and from one and 2 degrees-of-freedom to 3 degrees-of-freedom, aiming towards34

realistic FODO lattices.25,37 This will include depolarization and polarization times35

and equilibrium polarization. Extending the second model from the RBE to the36

FBE involves averaging and thus involves the SDEs from the third model. Moreover37

we plan to use the third model to develop a Monte–Carlo spin tracking algorithm38

which is based on the SDEs (14) and (16) and which takes into account the Sokolov–39

Ternov effect, the Baier–Katkov correction, the kinetic-polarization effect and spin40

diffusion. Furthermore we continue our work on comparing the Bloch-equation41
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approach with Derbenev–Kondratenko-formula approach and estimating the polar-1

ization at the FCC-ee and CEPC.2
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