
A Vlasov Treatment of the 2DF
Collective Beam-Beam Interaction:
Analytical and Numerical Results

by

Andrey Vladimirovich Sobol

B.S., Mathematics, Novosibirsk State University, 1998
M.S., Mathematics, Novosibirsk State University, 2000
M.S., Mathematics, University of New Mexico, 2003

DISSERTATION

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Mathematics

The University of New Mexico

Albuquerque, New Mexico

July, 2006



c©2006, Andrey Vladimirovich Sobol

iii



Acknowledgments

This work was supported by DOE grant DE-FG02-99ER41104.

I would like to thank the members of the dissertation committee Dr. Vorobieff,
Dr. Hagstrom, and Dr. Aceves for useful discussions.

I would like to thank the member of the dissertation committee Dr. Vogt for
useful discussions on Chapter 2D-Vlasov Model for Collective beam-beam interaction,
helping me preparing plots, and remarks throughout the manuscript.

I would like to thank the member of the dissertation committee Dr. Dumas for
helpful remarks on Chapter The Integral Equation of the Third Kind and proof of
the averaging theorem, and for careful proofreading of the manuscript.

I would like specially to thank my adviser, the chair of the dissertation committee
Dr. Ellison, who helped me so much with dissertation and during all these years while
I was a graduate student at University of New Mexico.

iv



A Vlasov Treatment of the 2DF

Collective Beam-Beam Interaction:

Analytical and Numerical Results

by

Andrey Vladimirovich Sobol

ABSTRACT OF DISSERTATION

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Mathematics

The University of New Mexico

Albuquerque, New Mexico

July, 2006



A Vlasov Treatment of the 2DF

Collective Beam-Beam Interaction:

Analytical and Numerical Results

by

Andrey Vladimirovich Sobol

B.S., Mathematics, Novosibirsk State University, 1998

M.S., Mathematics, Novosibirsk State University, 2000

M.S., Mathematics, University of New Mexico, 2003

Ph.D., Mathematics , University of New Mexico, 2006

Abstract

We study the evolution of counter-rotating beams of elementary particles over many

turns under the collective beam-beam effect in circular accelerators both numerically

and analytically. In the considered model, beams are represented by density functions

in 4D phase-space, and dynamics is governed by Vlasov-type equations.

We develop a scalable parallel code in C++ using MPI that integrates these

evolution equations. We use a multigrid technique to cope with the 4D quadratic in-

terpolation, and calculate the density in slowly varying coordinates, which minimizes

the amount of exchanged information and improves precision. The electromagnetic

force is calculated in parallel using the conjugate gradient method.
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We apply the method of averaging to the density evolution equations and rigor-

ously prove that the solution of the averaged problem stays O(ε) close to the original

problem solution on O(1/ε) time interval under some nonresonant condition.

Averaging leads to a nonlinear continuous-time integro-differential equation, which

can be linearized and transformed to an integral equation of the third kind by Laplace

transform in time and Fourier transform in action. In plasma physics, a simpler ver-

sion of a third kind integral equation have been studied by Van Kampen and Case.

We show that these equations can be transformed to (I −λK)Y = R, where I is the

identity operator, and K is a compact operator, and prove a Fredholm alternative

theorem: a unique solution exists for any right-hand side iff the homogeneous version

of this equation has only the trivial solution. The integral operator has a spectrum

with continuous part and the corresponding generalized eigenfunctions have singu-

larities, which makes numerical solution of these equations challenging. We develop

a stable numerical scheme for discretization and numerical solution of these kind of

integral equations.
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Glossary

1D, 2D, and 4D stand for one, two, or four-dimensional correspondingly when

used before spaces, functions, or arrays.

1DF and 2DF indicate the number of degrees of freedom of a dynamical sys-

tem. 1DF system has two-dimensional phase-space, and 2DF

system has four-dimensional phase-space.

IP stands for interaction point.

PPD used after numbers and stands for points per dimension to

indicated the dimension of arrays.

MPT stands for Macro-Particle Tracking, the method of simulations

of beam evolution in particle colliders, in which the beams are

represented by a set of macro-particles.

PF stands for Perron-Frobenious, the method of simulations of

beam evolution in particle colliders, in which the beams are

represented by their densities.

CG stands for Conjugate-Gradient.

xii



Introduction

Accelerator physics theory and technology are involved in studying the most funda-

mental nature of matter: nuclear structure, quark dynamics, unified field theories,

and the nature of elementary particles and the fundamental forces. Accelerator

technology also has made substantial contributions to other branches of physics and

technology. Electron microscopy, synchrotron light sources, and medical magnetic

resonance imaging are just a few of the diverse applications of this technology.

In this dissertation, we study the density evolution of elementary particle beams

in circular accelerators. We consider a model for the strong-strong beam-beam in-

teraction of two beams, representing beams by densities in 4D phase-space, in con-

trast with a macro-particle approach, where beams are represented by a collection

of macro-particles. We describe the physical model, present some numerical results,

and prove some theorems about equations involved in the model.

In the first chapter, 2-DF Vlasov Model for Collective Beam-Beam Interaction,

we introduce the mathematical model for the 2 DF collective beam-beam interaction

in the Vlasov framework. It is important in physics to find the simplest model that

nevertheless contains the essential mathematical properties and computational chal-

lenges of more realistic models. The model presented here neglects many particular

aspects of real accelerators: there are only two bunches, which collide only at one

interaction point, and only the transversal motion of the particles within the beam

1



Introduction

is taken into consideration, while the longitudinal motion is neglected. However the

model captures essential features of the dynamics: the transversal motion occurs on

a scale that is thousands of times smaller than the longitudinal motion, and in fact,

for the short beam is not essential. The model considered in this dissertation can be

easily extended to many bunches, and many interaction points, and it is the first and

necessary step toward understanding more realistic models. This model also gives

rise to some interesting mathematical problems, two of which are considered in the

dissertation: the solution of the integral equation of the third kind, and an averaging

approximation for the evolution of densities.

In Chapter 2, The Integral Equation of the Third Kind, we study existence and

uniqueness of the integral equations, which play an important role in our model.

These equations in their simplest form have also been considered in the famous papers

on plasma physics by Van Kampen and Case. In this chapter, we show that these

equations can be transformed to (I−λK)Y = R, where I is the identity operator, and

K is a compact operator, and prove an analogue to the Fredholm alternative theorem:

a unique solution exists for any right-hand side iff the homogeneous version of this

equation has only the trivial solution. As a part of the proof, a stable numerical

scheme is suggested for discretization and numerical solution of this kind of integral

equations, therefore answering an important practical question.

In Chapter 3, Averaging Approach for Evolving Distributions, we use an averaging

method to study the physical model introduced in the first chapter. An averaging

approach is applied to discrete-time evolution in the function space governed by

an integral equation with a quasi-periodic kernel. We show that such an evolution

equation can be approximated with an averaged time-independent integral equation,

and rigorously prove an O(ε) estimate on the time scale O(1/ε). Even though these

results are inspired by the physical model introduced in the first chapter, they can be

trivially generalized to an arbitrary number of beams and phase-space dimensions,
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Introduction

and may have applications in other physical models.

In Chapter 4, we present our program that directly integrates evolution equations

of this model. Execution of such code has only recently become possible because of

the computational power provided by parallel computers. This code calculates the

evolution of distributions in the 4-dimensional phase space with over 100 points

per dimension for thousands of time-steps. Calculating density evolution in slowly

varying coordinates allows an effective parallel implementation of the code. The code

has been tested on the NERSC parallel computer and has shown high scalability. We

discuss the algorithm, communication scheme, and some code checks in Chapter 4.

Each chapter contains an introduction with some history on the subject and the

relevant references at the end. At the end of Chapters 1 and 4, we present some

plots obtained from numerical computations. The major theorems are formulated in

Sections 2.2, 2.3, and 3.2.

3



Chapter 1

2-DF Vlasov Model for Collective

Beam-Beam Interaction

1.1 Derivation of the Evolution Equations

We will study the evolution of only two particle beams that interact only at one

interaction point (IP). The beams are represented by densities in a 4-dimensional

phase space. In our model, we ignore the change of the distributions in the longitu-

dinal coordinates, and the distribution depends only on the spatial coordinates (x, y)

of the particle in the plane perpendicular to motion and on the derivatives (x′, y′) of

these coordinates, where primes indicate the derivatives in s, and s is the arc length

measured along the closed orbit. There are two phases of the evolution of the beam.

First, at the IP, the particles of each beam receive an impulse from the electro-

magnetic field generated by the counter-rotating beam. The change of the position

of the particles is negligibly small while the change of the momentum of the particles

is significant, and we say that the particles receive a kick at the IP.

4



Chapter 1. 2-DF Vlasov Model for Collective Beam-Beam Interaction

Second, the densities of the beams evolve while traveling in the ring between the

interactions at the IP. We will call this part of the evolution “the evolution on the

orbit”. In this phase, the particles interact only with the electromagnetic field of the

bending and focusing magnets. In our model, we ignore nonlinear effects, and the

particles will simply rotate in the phase space. The density will change accordingly.

To describe the corresponding evolution equation, we refer to the beams as starred

and unstarred. For every quantity X that describes the unstarred beam, X∗ will

describe the same quantity for the starred beam. The evolution equations are sym-

metric: the system of the equations will stay the same if we exchange starred and

unstarred quantities, so we state only one equation of the equation pair; the other

equation can be obtained by interchanging starred and unstarred quantities. The

beams are represented by densities Ψ, Ψ∗ as functions in 4-dimensional phase-space

z = (x, x′, y, y′).

To calculate the change in momentum of the particles in the starred beam, we

switch to the frame of the unstarred beam. We neglect the particle motions relative

to the center of the beam, and use the electrostatic formulas to calculate the electric

field1:

ϕ(r) = Nq

∫

R3

ρ3(r
†)G3(r − r†)dr†, E = −∇ϕ, (1.1)

where G3(r) = 1/|r| is the regular 3D Green function, ρ3 is the density of the un-

starred beam normalized to 1, N is the number of particles in the unstarred beam,

and q is their charge. The subscript in ρ3 indicates that this function depends on

3 spatial coordinates; eventually the evolution equation will be written in terms of

ρ2, which depends only on two spatial coordinates. Generally speaking, the particle

changes its momentum according to ṗ = q∗E, but we assume that the time of in-

teraction is small, and the projection of particle position on the plane perpendicular

1The equations are given in the Gauss System of Units.
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to the particle motion is insignificant. Therefore the particle located at x at the

moment t = 0 changes its momentum while passing through the beam according to

∆p(r) = q∗
∫

E(r + vt)dt, (1.2)

(we also neglect the change of E and ρ3 during the interaction), so

∆p(r) = q∗
∫

R

Nq(−∇)

∫

R3

ρ3(r
†)G3(r + vt − r†)dr†dt. (1.3)

Assuming that we can exchange the order of integration and differentiation, we obtain

∆p(r0) = −Nq∗q

∫

R3

∫

R

∇rρ3(r
†)G3(r + vt − r†)dtdr†. (1.4)

Assuming that v1, and v2, are negligibly small and v3 ≈ c, we use the property of

the Green function:

∫

R

∇rG3(r1, r2, r3 + r†3)dr†3 = ∇rG2(r1, r2), (1.5)

and obtain

∫

R

∇rG3(r1 + v1t, r2 + v2t, r3 + v3t, )dt = ∇rG2(r1, r2)/v3, (1.6)

where G2(r1, r2) = − ln(r2
1 + r2

2) is the 2D Green function. Then

∆p(r1, r2, r3)= −N∗q∗q∇r

∫

R3

ρ3(r
†
1, r

†
2, r

†
3)G2(r1 − r†1, r2 − r†2)/v3dr†

= −N∗q∗q∇r

∫

R2

ρ2(r
†
1, r

†
2)G2(r1 − r†1, r2 − r†2)/v3dr†

= −N∗q∗q/c∇rϕ2,

where ρ2(r1, r2) =
∫

R
ρ3(r1, r2, r3)dx3 is the 2-dimensional beam density, and ϕ2 is

the 2-dimensional potential. It is obvious that if ϕ3(r1, r2, r3) = ϕ3(r1, r2,−r3), then

6
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∆p|| = 0, but one can show that this is true for any ϕ2 using the superposition

principle. Since the transverse components of p are not affected by the switching of

the frame, the same equation gives the change of the momentum in the starred beam

as well:

∆p = −N∗q∗q/c∇ϕ2, (1.7)

and a similar equation holds for the change of the particle momentum in the unstarred

beam. From now on, we will only deal with 2D densities, and therefore we will drop

the subscript 2. Next we calculate the change of x′:

x′ =
dx

ds
=

dx

dt

dt

ds
=

vx

vref
,

d

dt
x′ =

d

dt

vx

vref
=

d

dt

mγvx

γmvref
=

ṗx

pref
,

where vref and pref are the speed and momentum of the reference particle. Therefore

∆x′ =
∆p

mγc
. (1.8)

(In the last equation, we approximated β ≈ 1.) We define beam-beam parameter as

ζ = −N∗q∗q

γmc2
,

and express the change of the phase-space coordinate of the particle due to the

received impulse, so-called kick, using

K[ρ∗](z) =
(

0 ∂
∂x

ϕ∗ 0 ∂
∂y

ϕ∗

)T

.

Here ϕ∗ is the solution of ∆ϕ∗ = −4πρ∗, and ρ∗, the spatial density of the kicking

beam, is given by

ρ∗(x, y) =

∫ ∫
Ψ∗(x, x′, y, y′)dx′dy′. (1.9)

7
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The 4D-phase-space coordinate z of a particle in the unstarred beam changes at the

IP and becomes z + ζK[ρ∗](z). The kick received by a particle is produced by the

electromagnetic field of the counter-rotating beam, and the argument in the square

brackets indicates that K[ρ∗](z) depends on the spatial density ρ∗. Two components

of K[ρ∗](z) are 0 because the kick does not change the spatial coordinate; the kick

affects a particle independently of its momentum, therefore it only depends on the

x and y coordinates.

Because the Jacobian of the transformation z+ζK[ρ∗](z) is 1, the densities change

at the IP according to

Ψn+(z + ζK[ρ∗](z)) = Ψn(z), (1.10)

Where the index n indicates revolution number (the number of turns), Ψn, Ψ∗
n are

the densities before the kick, and Ψn+ , Ψ∗
n+ are the densities after the kick. The

kick ζK[ρ∗](z) depends only on the spatial coordinates of the particle and changes

only the momentum. Therefore it does not change the spatial density of the whole

distribution. As a result, we can find the inverse operator (I + ζK)−1:

(I + ζK[ρ∗
n])

−1(z) = (I − ζK[ρ∗
n])z. (1.11)

This allows us to rewrite (1.10) in a more explicit form:

Ψn+ = Ψn ◦ (I − ζK[ρ∗]). (1.12)

On the second phase of the evolution, the effect of the focusing magnets leads to

a change of the particle coordinates. In our model, we neglect the nonlinear effects

and assume that the coordinate changes according to z → Rz, where R is a 4 × 4

matrix with unit determinant. Therefore the density rotates in the phase space:

Ψn+1(Rz) = Ψn+(z). (1.13)

8
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In the simplest form, R has the representation

R =





cos νx − sin νx 0 0

sin νx cos νx 0 0

0 0 cos νy − sin νy

0 0 sin νy cos νy




. (1.14)

Combining (1.13) and (1.12) we obtain a resulting evolution equation:

Ψn+1 = Ψn ◦ (I − ζK[Ψ∗
n]) ◦ R−1, (1.15)

which is the equation for the basic physical model considered in the dissertation.

1.2 Averaging Formalism

The evolution equation (1.15) can be transformed:

Ψn+1 ◦ Rn+1 = Ψn ◦ (I − ζK[Ψ∗
n]) ◦ Rn

= Ψn ◦ Rn ◦ (I − ζR−nK[Ψ∗
n] ◦ Rn),

(1.16)

This suggests changing variables Ψn = Ψn ◦ Rn, which gives

Ψn+1 = Ψn ◦ (I − ζR−nK̃[Ψ ∗
n ] ◦ Rn). (1.17)

This is an evolution equation in the slowly varying coordinates, which is implemented

in the parallel code discussed in Chapter 4. In this chapter however, our next step

is to show that R−nK̃[Ψ ∗
n ] ◦ Rn can be represented as an integral functional with a

kernel that depends on n, which would make it suitable for the averaging procedure

described in detail in Chapter 3. The following rather lengthy calculations will result

in a compact formula for the turn-dependent kernel, which can be approximated with

9
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the averaged turn-independent kernel. To simplify calculations, we will assume that

R is defined by (1.14) even though this approach works with a more general class of

matrices. First, we calculate

R−nK[Ψ∗
n](z) = Rn

(
0 ∂

∂x
0 ∂

∂y

)T
∫ ∫ ∫ ∫

G(x − x†, y − y†)

Ψ∗
n(x†, x′†, y†, dy′†)dx′†dy′†dx†dy†,

Next we express z in terms of v = (v11, v12, v21, v22) such that z = Rnv:

R−nK[Ψ∗
n] ◦ Rn(v) =

(
sin nνx

∂
∂x

cos nνx
∂
∂x

sin nνy
∂
∂y

cos nνy
∂
∂y

)T

∫ ∫ ∫ ∫
G(v11 cos nνx − v12 sin nνx − x†, v21 cos nνy − v22 sin nνy − y†)

Ψ∗
n(x†, x′†, y†, dy′†)dx′†dy′†dx†dy† = J∇vH [Ψ∗](v), (1.18)

where

H [Ψ∗
n, n](v) =

∫ ∫ ∫ ∫
G(v11 cos nνx − v12 sin nνx − x†, (1.19)

v21 cos nνy − v22 sin nνy − y†)Ψ∗
n(x†, x′†, y†, dy′†)dx′†dy′†dx†dy†,

and

J =





0 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0




. (1.20)

Changing the integration variable to v† = (v†
11, v

†
12, v

†
21, v

†
22) such that z† = Rnv† and

using Ψn(v†) = Ψn(z), we obtain

H [Ψ , n](v) =

∫
G(v11 cos nνx − v12 sin nνx − v†

11 cos nνx + v†
12 sin nνx,

10
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v21 cos nνx − v22 sin nνx − v†
21 cos nνx + v†

22 sin nνx)Ψ(v†)dv†

=

∫
G((v11 − v†

11) cos nνx − (v12 − v†
12) sin nνx, ...)Ψ(v†)dv†

=

∫
G(A1 cos(nνx + θ1), A2 cos(nνy + θ2))Ψ(v†)dv†, (1.21)

where Am and θm are short-hands for

Am =

√
(vm1 − v†

m1)
2 + (vm2 − v†

m2)
2, cos θm =

vm1−v†m1

Am
, where m = 1, 2.

Note that the kernel depends only on the difference of the arguments: Gn(h, v) =

Gn(h − v). It is now clear that the turn-dependent kernel

Gn(h − v) = G(A1 cos(nνx + θ1), A2 cos(nν2 + θ2)) (1.22)

can be averaged for nonresonant νx and νy as

Ḡ(h − v) =

∫ 1

0

∫ 1

0

G(A1 cos(2πt1), A2 cos(2πt2))dt1dt2. (1.23)

The evolution equation becomes

Ψn+1 = Ψn ◦ (I − ζJ∇H [Ψ ∗
n, n]), (1.24)

which can be approximated by the n-independent averaged equation

Ψ̄n+1 = Ψ̄n ◦ (I − ζJ∇H̄[Ψ̄ ∗
n]). (1.25)

The validity of this approximation is discussed in detail in Chapter 3. The equations

obtained from (1.25,1.24) by exchanging starred and unstarred quantities are also

valid and omitted here for brevity. Derived for arbitrary G, these equations are of

special interest in the physical case when

G(x, y) = − ln(x2 + y2). (1.26)

.
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1.3 Vlasov-Type Continuous-Time

Evolution Equation

We use Poisson brackets defined as {f, g} = (∇f, J∇g). Equation (1.25) with its

starred counterpart can be viewed as an Euler step in time for the numerical solution

of the continuous-time system:





∂tΨ̃ + {Ψ̃, H̄[Ψ̃∗] } = 0,

∂tΨ̃
∗ + {Ψ̃∗, H̄∗[Ψ̃]} = 0,

(1.27)

where Ψ̃(ζn, v) ≈ Ψ̄n(v) because its characteristic equation is

v̇ = J∇H̄[Ψ̃∗]. (1.28)

System (1.27) can be more easily analyzed if we switch to action-angle variables

w = (θ1, θ2, J1, J2) according to

vm1 =
√

2Jm cos θm, vm2 =
√

2Jm sin θm, where m = 1, 2. (1.29)

Note that this transformation does not change the form of equations (1.24-1.28). It

is obvious that any function Ψe(J) that depends only on J is an equilibrium, however

we stick with a physically adequate choice for the equilibrium distribution:

Ψe(J) =
1

4π2
e−Jx−Jy =

1

4π2
e−|v|2/2. (1.30)

To linearize about an equilibrium, we set Ψ(v, t) = Ψe(J) + Ψ1(v, t) in (1.27), as-

suming Ψ1(v, t) is small, and obtain





∂tΨ1 + {Ψ1, H̄ [Ψ∗

e]} + {Ψe, H̄[Ψ∗
1]} = 0,

∂tΨ
∗
1 + {Ψ∗

1, H̄
∗[Ψe]} + {Ψ∗

e, H̄
∗[Ψ1]} = 0.

(1.31)

12
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If we change variables to f+ = Ψ1+Ψ∗
1, and f− = Ψ1−Ψ∗

1, which we call the π-mode,

and σ-mode respectively, we reduce (1.31) to a pair of decoupled equations:





∂tf

+ + {f+, H̄ [Ψe]} − {Ψe, H̄[f+]} = 0,

∂tf
− + {f−, H̄ [Ψe]} + {Ψe, H̄[f−]} = 0.

(1.32)

To express H̄ in the new variables, we define Dm(J, J†, θ† − θ) := Am(v† − v):

D2
m = (

√
2J†

m cos θ†m −
√

2Jm cos θm)2 + (

√
2J†

m sin θ†m −
√

2Jm sin θm)2

= (

√
2J†

m cos(θ†m − θm) −
√

2Jm)2 + (

√
2J†

m sin(θ†m − θm))2

= 2J†
m cos2(θ†m − θ) − 4

√
JJ† cos(θ†m − θm) + 2Jm + 2J†

m sin2(θ†m − θm)

= 2Jm + 2J†
m − 4

√
JmJ†

m cos(θ†m − θm).

In the second equality, we used the fact that a rotation does not change the distance

between points.

Here we will use the following version of the Fourier transform

fk =
1

2π

∫ 2π

0

e−ik·θf(θ)dθ, where k ∈ Z
2, and f(θ) =

∑

k∈Z2

eik·θfk(θ), (1.33)

and Fourier representation of the kernel:

G(J, J†, θ† − θ) =
∑

k∈Z2

eik·(θ†−θ)Gk(J, J†), (1.34)

where

Gk(J, J†) =
1

4π2

∫

[0,2π]2
Ḡ(J, J†, θ)e−ik·θdθ =

1

4π2
× (1.35)

∫ ∫

[0,2π]2

∫ ∫

[0,1]2

G(D1(J, J†, θ) cos 2πt1, D2(J, J†, θ) cos 2πt2)e
−ik·θdt1dt2dθ1dθ2.

13
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Now one can see that H̄[f ] works on Fourier modes of f independently:

H̄[Ψ](v) =

∫ ∫
Ḡ(J, J†, θ† − θ)Ψ(J†, θ†)dv†

=

∫ ∫ ∑

k

eik·(θ†−θ)Gk(J, J†)
∑

n

ein·θ†fn(J†)dJ†dθ†

= (2π)2

∫ ∑

k

e−ik·θGk(J, J†)f−k(J
†)dJ†

= (2π)2

∫ ∑

k

eik·θG−k(J, J†)fk(J
†)dJ†,

which allows us to solve (1.32) mode by mode:

∂tfk + iΩ(J) · ∇θfk − η(2π)2i(k · ∇Ψe)

∫

R
2
+

G−k(J, J†)fk(t, J
†) dJ† = 0, (1.36)

where Ω(J) := ∇JH̄ [Ψe](J), and fk stands for either f+
k or f−

k , and η = 1 or η = −1

correspondingly. We use the Laplace transform

f̂(s) =

∫ ∞

0

e−tsf(t)dt, (1.37)

which has the property f̂ †(s) = f̂(s)s − f(0), to remove time dependence in (1.36):

sf̂k(s, J) + if̂k(s, J)k · Ω(J) − 4π2η(∇JΨe · ik)

∫
G−k(J, J†)f̂k(s, J

†)dJ† = fk(0, J),

where the right-hand side comes from initial conditions for (1.32). Multiplying (1.36)

by i gives

isf̂k(s, J) − f̂k(s, J)k · Ω(J) + 4π2η(∇JΨe · k)

∫
G−k(J, J†)f̂k(s, J

†)dJ† = ifk(0, J).

Changing variables s = −iw (is = w) gives

(w−k ·Ω(J))f̂k(J)+4π2η(∇JΨe ·k)

∫
G−k(J, J†)f̂k(−iw, J†)dJ† = ifk(0, J).(1.38)

14
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Assuming that ξ := sign(∇JΨe(J) · k) does not depend on J , we can rewrite the last

equation in terms of

g(w, J) :=
f̂k(−iw, J)√
|∇JΨe(J)|

,

Kk(J, J†) := (2π)2G−k(J, J†)
√

|∇JΨe(J) · k| |∇JΨe(J†) · k|, (1.39)

and therefore obtain a version of (1.38) with symmetric kernel:

(w − Ω(J))g(w, J) + ηξ

∫
Kk(J, J†)g(w, J†)dJ† =

if(0, J)

2π
√

|∇JΨe(J)|
. (1.40)

If ω is outside of the range of k ·Ω(J), (1.40) can be reduced to an integral equation

of the second kind by a simple algebraic transformation. Conversely, if ω is in the

range of k ·Ω(J), then (1.40) is a third kind integral equation considered in detail in

Chapter 2.

1.4 Numerical Calculation of the Spectrum

The numerical computation of functions Ω(J) and Kk(J, J†) is expensive: the com-

putation of Ω(J) involves a 6-fold integral at each point of the 2D mesh, and the

computation of Kk involves a 4-fold integral at each point of a 4D mesh; in this

section, we discuss computation of Ω(J) and Kk(J, J†), and consider a straightfor-

ward discretization of this particular equation and underline the involved difficulties.

In Chapter 2, we address the existence and uniqueness of the solution of the third

kind integral equation in a much more general case. In Chapter 2, we also give a

stable numerical scheme for discretization of such equations, and prove that a finite

dimensional approximation converges to the original problem.

The straightforward approach to discretizing (1.40) and solving the associated

finite dimensional matrix eigenproblem seems to lead to reasonable results. In the

15
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one-dimensional case, such calculations have been done in [1, 2, 3], and excellent

agreement has been obtained between the FFT spectrum of a full-blown simulation

and the eigenvalues of a discretization of a 1 degree-of-freedom version of (1.40). A

similar approach can be used in the 2 DF case.

We found a way to simplify the calculation for general Kk, and reduce the 4-fold

integral to a 2-fold integral (see Appendix C). The same kernel is involved in com-

puting Ω, and we obtain the same improvement in the numerical calculation of Ω.

However, going to meshes larger than 60 points per dimension seems computation-

ally prohibitive. For the important particular choice of Ψe given by (1.30), which

corresponds to an axially symmetric Gaussian distribution, we found a very simple

formula involving modified Bessel functions:

H̄[Ψe](J) =

∫ ∞

0

1

2 + q

(
1 − exp

(
−Jx + Jy

2 + q

)
I0

(
Jx

2 + q

)
I0

(
Jy

2 + q

))
dq.

The proof of this formula is given in Appendix B. This formula has been known in

the context of the weak-strong tune shift.

We transform actions Ix = Jx/(1 + Jx) and Iy = Jy/(1 + Jy), thereby mapping

R+ → [0, 1), and use a 60×60 mesh to better capture the shape of Ω(J). The

discretization of Ω1(J) = ∂
∂J1

H̄[Ψe](J) is shown in Figure 1.4. A straightforward

proof yields that

lim
|J |→0

Ω1(J) = −1/2, lim
|J |→∞

Ω1(J) = 0, (1.41)

and the range of Ω1(J) is (0; 1) (see Appendix B).

The finite dimensional approximation of the spectrum of (1.40) is shown in Figure

1.2. The plot suggests that (1.40) has a continuous spectrum, which coincides with

the range of Ω1(J). In addition, the σ-mode has a discrete eigenvalue ω = 0, and

the π-mode has a discrete eigenvalue ω ≈ 1.21. Figures 1.4 and 1.3 show that these

16



Chapter 1. 2-DF Vlasov Model for Collective Beam-Beam Interaction

eigenvalues correspond to the regular eigenfunctions. The code that tracks the phase

space densities directly in 4D phase space described in Chapter 4 shows that there is a

peak in the tune diagrams for π and σ-modes corresponding to these two eigenvalues.

This indicates excellent agreement between these completely different approaches.

However, the algorithm does not converge as the mesh is refined beyond some

limit because the original operator in (1.40) has a continuous spectrum, as suggested

by Figure 1.2. The numerically computed “eigenfunctions” associated with the con-

tinuous spectrum (Figure 1.5) in fact show singular behavior at finite J , which is

expected [5, 6]. A stable numerical scheme that handles these difficulties is described

in Chapter 2.

17
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Figure 1.4: The σ-mode eigenfunction
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Chapter 2

The Fredholm Alternative

Theorem and a Stable Numerical

Scheme for the Solution of Integral

Equations of the 3rd Kind

2.1 Introduction

In this chapter, we solve integral equations of the form

g(t)ϕ(t) − λ

∫ b

a

K(t, t′)ϕ(t′)dt′ = f(t), (2.1)

where a, b ∈ R, g, f : [a, b] → R, and K : [a, b]2 → R are smooth functions. In the

case where g(t) has no zero, it is possible to reduce (2.1) to a Fredholm equation of the

2nd kind by simple algebraic transformations. The case where g(t) has zeros is more

complicated. The interest in these equations arises because of their applications in

physics (see [1], [2], [3], [4]), and the necessity to solve them numerically. The goal is
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Chapter 2. The Fredholm Alternative Theorem

to prove an analogue of the Fredholm alternative theorem and develop a convergent

scheme for the numerical solution of (2.1).

These equations have been studied much less than Fredholm equations of the

2nd kind. A review of previous work on this equation was given in [5], where it was

named “the integral equation of the 3rd kind”.

One of the difficulties is that the space of continuous functions is not suitable for

this problem and we have to choose the appropriate space of functions ϕ. It turns

out that the appropriate space for this equation must contain either delta functions

or 1
x
-type singularities, which presents difficulties in the numerical solution of this

equation.

In [5] and [6], the possibility of solving this equation was considered in two differ-

ent spaces and an analogue of the Fredholm alternative theorem was proved, however

with some restrictions. Here we solve this problem in one of the spaces suggested

in [5] and [6] in Section 2. We will have fewer restrictions on g, K, and f , and we

extend our approach to the multidimensional case in Sections 3 and 4.

Let τ := {ti|i = 1, ..., n} be the set of roots of g(t) = 0. We will look for solutions

in the space Pτ , which consists of functions that have singularities at points ti ∈ τ .

Such functions ϕ ∈ Pτ have the convenient representation

ϕ(t) =
∑

i

ρipi(t)

g(t)
+ y(t) (2.2)

for some numbers ρi and some continuous function y(t). The functions pi(t) are

arbitrary except that they are required to be continuous in [a, b], continuously dif-

ferentiable at each tj , and to satisfy

pi(tj) = δij. (2.3)
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In this chapter, the integral over singularities must be understood in the principle

value sense, and we will omit the limit of the integrals and sums when it is obvious

what they are. We will use C(S) to denote the set of continuous functions on S, and

C1(S) to denote the set of continuously differentiable functions. For example, the

statement g ∈ C[a, b] ∩ C1(Nε) means that the function g is continuous on [a, b] and

continuously differentiable in the set Nε.

This chapter is organized as follows. In the next section, we consider the case

where f(t) is defined on [a, b], allowing g(t) = 0 to have any finite number of roots,

and prove the Fredholm alternative theorem without restrictions, as in [6]. Unlike

the approach used in [5], our approach allows us to consider the case where t ∈
(a1, b1) × (a2, b2) ⊂ R

2, which is done in Section 3. In Section 4, we discuss some

further generalizations. We discuss numerical schemes for approximate solutions of

these integral equations at the end of Sections 2 and 3. We give the proofs of Lemmas

1-5 in the last section because they contain somewhat tedious computations and the

reader will probably not be interested in the details of their proof at the first reading.

These lemmas are used in the proofs of the theorems in Sections 2 and 3 to insure

that the smoothness conditions of the theorems are sufficient.

2.2 The 1-Dimensional Case

In the following theorem, we state very explicitly smoothness assumptions on the

functions. Even though the conditions are lengthy, they are natural and easy to

check. These assumption are the weakest possible in the sense that they can be

replaced with a fewer number of stronger assumptions.

In this section, a continuous function g(t) is defined on the interval [a, b], and K

is defined in [a, b]2. To formulate the theorem, we introduce τ to denote the set of
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all roots of g(t) = 0 on [a, b]:

τ = {t|g(t) = 0}, (2.4)

and Nε to denote a union of ε-neighborhoods around points tj ∈ τ :

Nε := {t|∃j s.t. |t − tj | < ε} for ε > 0. (2.5)

Theorem Assume that for some ε > 0, the following conditions hold:

(r1) g ∈ C[a, b] ∩ C2(Nε),

(r2) τ is the finite set of all roots of g(t) = 0 on [a,b], and a, b /∈ τ ,

(r3) infNε
|g′(y)| = M1 > 0,

(r4) supNε
|g′′(y)| = M3 < ∞,

(r5) pi ∈ C1(Nε) ∩ C[a, b],

(r6) K ∈ C([a, b]2),

(r7) ∂
∂t′

K(t, t′) exists in [a, b] × Nε, and sup[a,b]×Nε
| ∂
∂t′

K(t, t′)| = M2 < ∞,

(r8) ∂2

∂t∂t′
K(t, t′) exists in [a, b] × Nε, is continuous at least at one point inside

[a, b] × Nε, and sup[a,b]×Nε
|, ∂2

∂t∂t′
K(t, t′)| = M4 < ∞,

(r9) ∂
∂t

K(t, t′) exists in Nε × [a, b], and supNε×[a,b] | ∂
∂t

K(t, t′)| = M5 < ∞.

(r10) f ∈ C[a, b] ∩ C1(Nε).

Then
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(a) equation (2.1) can be viewed as (I − λK)Y = R, with I being the identity

operator, and K being a compact operator, and

(b) equation (2.1) has a solution for each y ∈ Pτ iff the homogeneous version

of equation (2.1) has only the trivial solution.

Proof

We substitute (2.2) in (2.1):

∑

i

ρipi(t)+g(t)y(t)−
∑

i

λ

∫
K(t, t′)pi(t

′)dt′

g(t′)
ρi−λ

∫
K(t, t′)y(t′)dt′ = f(t),(2.6)

Define

vi(t) := P.V.

∫
K(t, t′)pi(t

′)dt′

g(t′)
. (2.7)

Evaluating (2.6) at t = tj, we obtain

ρj − λ
∑

ij

vi(tj)ρi − λ

∫
K(tj , t

′)y(t′)dt′ = f(tj). (2.8)

We multiply (2.8) by pj(t) and sum over j:

∑

j

ρjpj(t)−λ
∑

ij

pj(t)vi(tj)−λ
∑

pj(t)

∫
K(tj , t

′)y(t′)dt′ =
∑

f(tj)pj(t).(2.9)

Subtracting (2.9) from (2.6) and dividing by g(t), we obtain

y(t) − λ
∑

i

vi(t) −
∑

j pj(t)vi(tj)

g(t)
ρi (2.10)

−λ

∫
K(t, t′) −

∑
j K(tj , t

′)pj(t)

g(t)
y(t′)dt′ =

f(t) −
∑

j f(tj)pj(t)

g(t)
.
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For convenience, define

ui(t) :=
vi(t) −

∑
j pj(t)vi(tj)

g(t)
, (2.11)

H(t, t′) :=
K(t, t′) −∑j K(tj , t

′)pj(t)

g(t)
, (2.12)

F (t) :=
f(t) −∑j f(tj)pj(t)

g(t)
. (2.13)

Using these definitions, we can rewrite (2.10) as

y(t) − λ
∑

i

ui(t)ρi − λ

∫
H(t, t′)y(t′)dt′ = F (t). (2.14)

We now show that the singularities in the equation (2.10) are removable, and

the functions H(t, t′), and F can be extended continuously. Lemma 5 in section

5 guarantees that v ∈ C1(Nε). The functions ui, and F are continuous because of

condition (2.3) on the choice of pi(t). Also, for any ε > 0, H(t, t′) is continuous in

[a, b]\Nε) × [a, b]. Because of condition (r10), the limt→tj H(t, t′) exists. Therefore

H(t, t′) ∈ C([a, b]2).

The integral operator in (2.14) is compact because H satisfies

(i) supt

∫
|H(t + δ, t′) − H(t, t′)|dt′ → 0, as δ → 0,

(ii) supt

∫
|H(t, t′)|dt′ < ∞.

Note that the same conditions hold for K, which guarantees that the integral oper-

ators in (2.8) and (2.14) are compact in C. Now we rewrite (2.8) and (2.14) side by

side





ρj − λ

∑
ij vi(tj)ρi − λ

∫
K(tj , t

′)y(t′)dt′ = f(tj),

y(t) − λ
∑

i ui(t)ρi − λ
∫

H(t, t′)y(t′)dt′ = F (t).
(2.15)
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The system (2.15) is in the form

(I − λK)Y = R, (2.16)

where the operators I, K : R
n × C → R

n × C; I is the identity operator, and the

operator K(ρ, y) = (ξ, z) is defined as





ξi =

∑
ij vi(tj)ρi −

∫
K(tj , t

′)y(t′)dt′,

z(t) =
∑

i ui(t)ρi −
∫

H(t, t′)y(t′)dt′.
(2.17)

It is trivial to show that the system (2.15) is equivalent to (2.1).

The operator K has four parts K11 : R
n → R

n, K12 : C → R
n, K21 : R

n → C,

K22 : C → C, and every part is a compact operator. We use the following theorem

from [7] cited here for the convenience of the reader. This theorem is formulated for

a general operator K and space X.

Theorem Let X be a Banach space, let K be an operator from X to X with

||K − Kn|| → 0 as n → ∞

for some sequence of bounded, finite rank operators {Kn}, and let λ 6= 0. The

equation (λ − K)x = y has a solution for each y ∈ X iff the homogeneous equation

(λ − K)x = 0 has only the trivial solution.

It is rather trivial to construct {Kn} which converges to K given by (2.17) in the

norm

||ϕ|| = max
i

|ρi| + max
t

|y(t)|.

Any numerical scheme (e.g. Simpson’s rule) for integration gives the desired finite

dimensional approximation for K12 K22. The operator K11 is finite dimensional al-

ready and does not need to be approximated. Finally, in K21 each of the n functions
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can be approximated using, for example, piecewise linear interpolation. Applying

the cited theorem completes the proof.

QED

Remark This proof also suggests the numerical scheme for solving (2.1).

2.3 The 2-Dimensional Case

In the context of the physical model described in Chapter 1, we are interested in the

case where ϕ, g and f are defined on D = [a1, b1] × [a2, b2], and K is defined on D2.

It turns out that in the two-dimensional case we can still use an approach similar

to the one described in the previous section. In this section, we will redefine many

variables, however their meaning will be analogous to the ones in Section 1.

We assume that the set of (t1, t2) such that g(t1, t2) = 0 can be parameterized by

some function h(t): for every t1, there is one and only one t2 = h(t1) ∈ [a2, b2] s.t.

g(t1, t2) = 0. Such a restrictive condition is assumed for simplicity of our arguments.

A more general case is considered in the next section. Note that if g is continuous,

the definition of h implies that h is continuous.

The definition of Nε, the ε-neighborhood around zeros of g(t1, t2), changes as

follows. It is a strip in the rectangular region D:

Nε = {(t1, t2)|t1 ∈ [a1, b1] and t2 ∈ [h(t1) − εν(t1), h(t1) + εν(t1)]},

where the continuous function ν(t1) defined on [a,b1] is positive for all t1 ∈ [a1, b1].

Theorem Assume that, for some ε > 0,
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(c1) g is continuous in D and twice differentiable in t2 inside Nε.

(c2) range(h) ⊂ (a2, b2),

(c3) infNε

∂
∂t2

g(t1, t2)| = M1 > 0,

(c4) supNε
| ∂2

∂t2
2

g(t1, t2)| = M3 < ∞,

(c5) K is continuous in D2,

(c6) ∂
∂t′

2

K(t, t′) exists in D × Nε, supD×Nε
| ∂
∂t′

2

K(t, t′)| = M2 < ∞,

(c7) ∂2

∂t2∂t′
2

K(t, t′) exists in D × Nε, is continuous at least at one point inside

D × Nε, and supD×Nε
| ∂2

∂t2∂t′
2

K(t, t′)| = M4 < ∞,

(c8) the derivative ∂
∂t2

K(t, t′) exists in Nε×D, supNε×D | ∂
∂t2

K(t, t′)| = M5 < ∞.

(c9) f ∈ C(D) and ∂f
∂t2

exists in Nε.

Then the equation

g(t)ϕ(t) − λ

∫ b1

a1

∫ b2

a2

K(t, t′)ϕ(t′)dt′1dt′2 = f(t) (2.18)

can be viewed as (I − λK)Y = R, with I being the identity operator, and K being a

compact operator, and it has a solution for each y ∈ X iff the homogeneous version

of this equation has only the trivial solution.

Proof The idea of this proof is very similar to the proof of Theorem 1, and we

will skip the explanation of the most obvious steps. In general, trivial generalizations

of Lemmas 4 and 5 for the higher dimensional case can still be proved and used in

the proof of this theorem.

We will look for the solution of equation (2.18) in the form

ϕ(t) = ρ(t)/g(t) + y(t). (2.19)
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We substitute (2.19) into (2.18):

ρ(t1) + g(t)y(t)− λ

∫ b1

a1

P.V.

∫ b2

a2

K(t, t′1, t
′
2)

g(t′1, t
′
2)

dt′2ρ(t′1)dt′1

−λ

∫ b1

a1

∫ b2

a2

K(t, t′)y(t′)dt′1dt′2 = f(t), (2.20)

So we define the integral over the singularity as an integral over t1 of the inner

integral over t2, and the last one is understood in the principle value sense.

Define

v(t, t′1) = P.V.

∫ b2

a2

K(t, t′1, t
′
2)

g(t′1, t
′
2)

dt′2. (2.21)

Lemma 4 gives continuity of v(t, t′1) in Nε × [a1, b1].

By evaluating (2.20) at t2 = h(t1), we obtain

ρ(t1) − λ

∫ b1

a1

v(t1, h(t1), t
′
1)ρ(t′1)dt′1

−λ

∫ b1

a1

∫ b2

a2

K(t1, h(t1), t
′)y(t′)dt′1dt′2 = f(t1, h(t1)). (2.22)

We subtract (2.22) from (2.20)

g(t)y(t)− λ

∫ b1

a1

[v(t1, t2, t
′
1) − v(t1, h(t1), t

′
1)]ρ(t′1)dt′1

−λ

∫ b1

a1

∫ b2

a2

[K(t1, t2, t
′) − K(t1, h(t1), t

′)]y(t′)dt′1dt′2 (2.23)

= f(t1, t2) − f(t1, h(t1)).

Now we can divide (2.23) by g(t)

y(t) − λ

∫ b1

a1

v(t1, t2, t
′
2) − v(t1, h(t1), t

′
2)

g(t)
ρ(t′1)dt′1
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−λ

∫ b1

a1

∫ b2

a2

K(t1, t2, t
′) − K(t1, h(t1), t

′)

g(t)
y(t′)dt′1dt′2 (2.24)

=
f(t1, t2) − f(t1, h(t1))

g(t)
.

For the sake of brevity, we define

u(t, t′1) =
v(t1, t2, t

′
1) − v(t1, h(t1), t

′
1)

g(t)
,

H(t, t′) =
K(t1, t2, t

′) − K(t1, h(t1), t
′)

g(t)
, (2.25)

F (t) =
f(t1, t2) − f(t1, h(t1))

g(t)
.

Lemma 5 guarantees that ∂v
∂t2

is defined in Nε × [a1, b1], therefore u is continuous.

Now we can rewrite (2.24) as

y(t) − λ

∫ b1

a1

u(t, t′1)ρ(t′1)dt′1 − λ

∫ b1

a1

∫ b2

a2

H(t, t′)y(t′)dt′1dt′2 = F (t), (2.26)

and we can view (2.22) and (2.26) as one equation (I − λK)Y = R with I being

the identity map, and K being a map from C([a1, b1]) × C(D) into itself. Since each

part of the operator K is compact and allows finite dimensional approximations,

the same holds for K itself. We can apply the theorem from the previous section

and conclude that the system of equations (2.22) and (2.26) has a unique solution

for every right-hand side iff the homogeneous version of (2.18) has only the trivial

solution.

QED
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2.4 Generalizations

Some rather trivial generalizations of the 2nd theorem can be obtained with sim-

ple changes of variables. We only outline these generalization without formulating

theorems.

(1) A proper change of variables allows us to consider cases where D is not

bounded and not necessarily rectangular because any regularly shaped connected set

is diffeomorphic to a rectangular region.

(2) If the curve formed by the roots of g(t1, t2) = 0 does not intersect itself, a

proper change of variables allows us to parameterize this curve. One can transform

the original IE (2.18) to this new set of variables and apply Theorem 2. Some care

must be taken to insure that the definition of the principle value integral does not

depend on the change of variables.

(3) The set of solutions g(t1, t2) = 0 can consist of more than one curve. In

this case, we have to introduce in Theorem 2 functions analogous to pi with similar

properties. The case where a curve bifurcates is not a trivial generalization and

requires further study.

(4) The dimension of the problem can be higher. It is possible to consider the

n-dimensional case where the solution of g(t) forms an (n-1)-dimensional manifold or

manifolds. This very straightforward generalization can be obtained if we consider

the variable t1 in Theorem 2 as multidimensional.

(5) We can consider the variable t2 as multidimensional as well and parameterize

the manifold of the solutions of g(t) = 0 by h : R
m → R

n−m. In this case, the

manifold {t|g(t) = 0} can have any number of dimensions between 0 and n-1.

To summarize, this treatment of integral equations of the 3rd kind can be gener-

alized to the multidimensional case. The set of zeros of g : R
n → R can be a union
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of smooth manifolds, not necessarily of the same dimension. The only restriction is

that these manifolds do not change dimension and do not bifurcate.

2.5 Auxiliary Results

In this section, we prove lemmas used in Sections 1 and 2. Here we use real analy-

sis theorems sometimes without explicitly stating them. The reader is expected to

know the theorems that allow exchanges in the order of taking limits (uniform con-

vergence and continuity theorem), integration (uniform convergence and integration

theorem), and differentiation (uniform convergence and differentiation theorem).

These classical results can be found, for example, in [8].

Lemma 1. The integral

P.V.

∫ 1

−1

f(x, λ)

x
dx

converges uniformly in λ if

sup
x∈[−ε,ε] all λ

| ∂

∂x
f(x, λ)| = M < ∞.

Proof

P.V.

∫ 1

−1

f(x, λ)

x
dx = lim

ε→0

(∫ −ε

−1

f(x, λ)

x
dx +

∫ 1

ε

f(x, λ)

x
dx

)
.

We make changes of variables in the first integral

dx

x
= d ln−x = ds, x = −es,

and in the second integral

dx

x
= d lnx = ds, x = es.
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Then

P.V.

∫ 1

−1

f(x, λ)

x
dx = lim

R→0

∫ 0

−R

(−f(−es, λ)dx + f(es, λ)dx),

and we can estimate

| − f(−es, λ)dx + f(es, λ)dx| ≤ | ∂

∂x
f(θ, λ)|2es ≤ 2Mes.

Therefore the integral converges absolutely uniformly in λ.

QED

Lemma 2. If the following conditions hold

(1) g(y0) = 0,

(2) g ∈ C1[y0 − ε, y0 + ε],

(3) |g′′(y0)| exists (and finite),

then (
d

dy

y − y0

g(y)

)∣∣∣∣
y=y0

= − g′′(y0)

2[g′(y0)]2
.

Proof We use Taylor’s formula in Peano’s form:

g(y) = g(y0) + g′(y0)(y − y0) +
1

2
g′′(y0)(y − y0)

2 + o((y − y0)
2).

d

dy

y − y0

g(y)
=

d

dy

y − y0

g′(y0)(y − y0) + 1
2
g′′(y0)(y − y0)2 + o((y − y0)2)

=

=
d

dy

1

g′(y0) + 1
2
g′′(y0)(y − y0) + o(y − y0)

.

Therefore (
d

dy

y − y0

g(y)

)∣∣∣∣
y=y0

= −
1
2
g′′(y0)

(g′(y0))2
.
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Here we used the fact that
(

d

dy
o(y − y0)

)∣∣∣∣
y=y0

= 0.

QED

Lemma 3. If A is such that y0 /∈ A, then, for y ∈ A,

d

dy

y − y0

g(y)
≤

3 supy∈A |g′′(y)|/2

2[infy∈A |g′(y)|]2 .

Proof

d

dy

y − y0

g(y)
=

g(y) − g′(y)(y − y0)

g2(y)

=
g(y)− g′(y0)(y − y0) + (g′(y0) − g′(y))(y − y0)

g2(y)

=
g′′(y∗

1)(y − y0)
2/2 − g′′(y∗

2)(y − y0)
2

[g′(y∗
3)(y − y0)]2

=
g′′(y∗

1)/2 − g′′(y∗
2)

[g′(y∗
3)]

2
,

where y∗
1, y

∗
2, y

∗
3 ∈ [y, y0]. Now the desired estimate is trivial.

QED

Lemma 4. If conditions (r1-7) hold, then

vi(t) = P.V.

∫
K(t, t′)pi(t

′)

g(t′)
dt′ (2.27)

is continuous on [a, b], and the principle value integral converges uniformly.

Proof It is enough to show that the following integral converges uniformly in t

as ε′ → 0 (while ε′ ∈ (0, ε)):

(∫ tk−ε′

tk−ε

+

∫ tk+ε

tk+ε′

)
K(t, t′)pj(t

′)

g(t′)
dt′

36



Chapter 2. The Fredholm Alternative Theorem

=

(∫ tk−ε′

tk−ε

+

∫ tk+ε

tk+ε′

)
1

t′ − tk

[
K(t, t′)pj(t

′)
t′ − tk
g(t′)

]
dt′.

We estimate
∣∣∣∣

∂

∂t′

[
K(t, t′)pj(t

′)
t′ − tk
g(t′)

]∣∣∣∣ ≤ M2 sup
t′∈Nε

|pj(t
′)| 1

M1
+ sup

t,t′∈Nε

|K(t, t′)| sup
t′∈Nε

|p′j(t′)|
1

M1

+ sup
t∈[a,b],t′∈Nε

|K(t, t′)| sup
t′∈Nε

|pj(t
′)|
∣∣∣∣ sup
t′∈Nε

d

dt′
t′ − tk
g(t′)

∣∣∣∣ .

We use Lemmas 2 and 3 to estimate
∣∣∣∣ sup
t′∈Nε

d

dt′
t′ − tk
g(t′)

∣∣∣∣ ≤
3M3

2M2
1

.

Now, using Lemma 1, we can conclude that the integral in (2.7) converges uniformly

in t. This also allows us to exchange limits

lim
t→t∗

lim
ε′→0

(∫ tk−ε′

tk−ε

+

∫ tk+ε

tk+ε′

)
K(t, t′)pj(t

′)

g(t′)
dt′

= lim
ε′→0

lim
t→t∗

(∫ tk−ε′

tk−ε

+

∫ tk+ε

tk+ε′

)
K(t, t′)pj(t

′)

g(t′)
dt′.

Obviously
∫
[a,b]\Nε

K(t,t′)pj(t′)

g(t′)
dt′ is continuous in t. Therefore vi is continuous in t.

QED

Lemma 5. If the conditions (r1-8) hold, then vi ∈ C1(Nε).

Proof Since

K(t, t′)pj(t
′)

g(t′)
and

∂

∂t

(
K(t, t′)pj(t

′)

g(t′)

)

are continuous in Nε × [a, b]\Nε′ ,then

∂

∂t

∫

[a,b]\Nε′

K(t, t′)pj(t
′)

g(t′)
dt′ =

∫

[a,b]\Nε′

∂

∂t

K(t, t′)pj(t
′)

g(t′)
dt′.
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The functions and variables in Lemma 4 can have different meanings than in this

Lemma. If we apply lemma 4 to ∂K
∂t

in place of K, then we can conclude that the

integral in the right-hand side of the last equation converges uniformly in t as ε′ → 0.

Therefore we can exchange the operators ∂
∂t

and limε′→0:

∂

∂t
lim
ε′→0

∫

[a,b]\Nε′

K(t, t′)pj(t
′)

g(t′)
dt′ =

lim
ε′→0

∂

∂t

∫

[a,b]\Nε′

K(t, t′)pj(t
′)

g(t′)
dt′ = lim

ε′→0

∫

[a,b]\Nε′

∂

∂t

K(t, t′)pj(t
′)

g(t′)
dt′.

The last expression is known to converge uniformly in t as ε′ → 0 and to be continuous

once (r8) holds because of Lemma 4.

QED

38



References

[1] R. Warnock, M. Venturini, J.A. Ellison, Nonsingular integral equation

for stability of a bunched beam, Proceedings of EPAC 2002, Paris, France.

[2] R. Warnock, G. Stupakov, M. Venturini, J.A. Ellison, Linear Vlasov

Analysis for stability of a bunched beam, Proceedings of EPAC, Lucerne, Switzer-
land, 2004.

[3] K.M. Case, Plasma oscillations, Ann. Physics, 7 (1959), pp. 349-364.

[4] N.G. van Kampen, On the theory of stationary waves in plasma, Physica 21
(1955) pp. 949-963.

[5] G.R. Bart and R.L. Warnock, Linear integral equations of the third kind,

SIAM J. Math. Anal. Vol. 4, No. 4 (1973) pp. 609-622.

[6] G.R. Bart, Three theorems on third-kind linear integral equations, J. Math.
Anal. and Appl. Vol. 79, No. 1 (1981) pp. 48-57.

[7] K. E. Atkinson, A Survey of Numerical Methods for the Solution of Fredholm

Integral Equations of the Second Kind, SIAM, Philadelphia, 1976.

[8] W. Rudin, Principles of Mathematical Analysis, 3rd Ed. McGraw-Hill, New
York, 1976.

39



Chapter 3

Averaging Approach for Evolving

Distributions

3.1 Introduction

The method of averaging is often applied to systems of the form

ẋ = εf(t, x) + ε2R(t, x, ε), x(t0) = x0, (3.1)

where f(t, x) is periodic in t. In order to obtain an approximate solution of (3.1), it

is natural to average f(t, x) over t keeping x fixed and solve

ẏ = εf̄(y), x(t0) = x0. (3.2)

One then usually proves that y(t) is an order O(ε) estimate of x(t) on the timescale

O(1/ε) although sometimes different time intervals are considered, and different es-

timates can be obtained. The averaging approach can also be applied to evolution
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equations of the form

xn+1 = xn + εf(xn, nθ), (3.3)

where x0 is given, and similar results can be obtained. This method was already

used as early as the 18th century by Lagrange and Laplace for studying secular

perturbations of the solar system. Originally formulated for x evolving in R
m, this

approach was applied for x evolving in more general spaces such as Banach spaces

[1]. A large number of results relaxing smoothness and periodicity conditions on

f has been obtained during 20th century. Special techniques have been developed

for finite-dimensional Hamiltonian systems, and for the Schrödinger equation [2]

Averaging methods were studied for weakly nonlinear parabolic [3, 4] and hyperbolic

[5, 6] partial differential equations. A review of recent results on averaging methods

for PDE is given in [7]. Higher order approximations for ODE are also available [8, 9].

Historical and bibliographical information about earlier work on averaging methods

can be found in [10]. The averaging approach has been previously applied to study

the beam dynamics in the so-called weak-strong case [11, 12], where the changing of

the density of the strong beam is neglected and the problem reduces to tracking the

trajectories of the particles in the weak beam from turn to turn.

In this chapter, we study the density evolution under collective beam-beam ef-

fects (the strong-strong case) in particle colliders. Unlike the weak-strong case, which

can be studied considering particle position independently, here we study the density

evolving as a whole; the evolving elements become infinite-dimensional. Unlike most

of the results in the literature on averaging, we study a discrete-time evolving sys-

tem. The closest continuous-time system would be the nonlinear integro-differential

transport equation. We rigorously prove the classical O(ε) estimate on the time scale

O(1/ε) for the evolving functions Ψn : R
m1 → R

m2 . The components of Ψn repre-

sent the densities of m2 beams evolving as n, the number of turns, increases. The
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theorems we prove here apply to the model with two beams (m2 = 2) and densities

defined in 4-dimensional phase-space (m1 = 4 × 2) as described in Chapter 1. The

theorems formulated in Section 3.2 however allow arbitrary m1 and m2, therefore the

results also apply to a more generalized model with more bunches, more interaction

points, and densities evolving in 6-dimensional phase-space.

The full system of the evolution equations obtained in Chapter 1 (see equation

(1.17) ) is





Ψn+1 = Ψn ◦ (I − ζR−nK̃[Ψ ∗

n ] ◦ Rn),

Ψ ∗
n+1 = Ψ ∗

n ◦ (I − ζR−nK̃[Ψn] ◦ Rn).
(3.4)

We can rewrite this system combining (Ψn(z),Ψ ∗
n(z∗)) in one vector Ψ

n
(z), which

depends on z = (z, z∗):

Ψn+1(z) = Ψn ◦ (z − ζK[Ψ, nν̄](z)), (3.5)

where ν̄ = (νx, νy, ν
∗
x, ν

∗
y) is a vector with components that are horizontal and ver-

tical tunes of unstarred and starred beams, and K is implicitly defined here. As

we established in Chapter 1 in equations (1.18) and (1.21), R−nK̃[Ψ ∗
n ] ◦ Rn has a

representation

R−nK̃[Ψ ] ◦ Rn(v) =

∫
∇vH (v − v ′, nν̄)Ψ(v ′)dv ′. (3.6)

(One can show that ∇v and
∫

can be exchanged.) In the next section, we will

consider evolution equations slightly more general than (3.5). We will allow Ψ, z,

and ν̄ to have arbitrarily many dimensions. To simplify the notation, we will use H

instead of ∇vH , and the regular font for Ψ, z, and ν̄. We use indexes to refer to the

components of these vectors.
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3.2 Averaging Approximation Theorems

To simplify notation throughout this chapter, we use L(f) as a shorthand for a

Lipschitz constant for symbol f :

L(f) = sup
x,x′

||f(x) − f(x′)||
||x − x′|| , (3.7)

and the norms are understood from the context according to symbol f . For multi-

indexes, vectors α of dimension m3 with integer components, we define a shorthand

for the norm and differential operator:

|α| = |α1| + ...|αm3
|, Dα

s =
∂|α|

∂sα1

1 ...∂s
αm3
m3

. (3.8)

Let H be a matrix-valued function H : R
m1+m1+m3 → R

m1×m2 . Define a map

K[Ψ, s] : R
m1 → R

m1 that depends on a smooth function Ψ : Rm1 → R
m2 and a

vector s ∈ R
m3 :

K[Ψ, s](x) =

∫
H(x, y, s)Ψ(x + y)dy. (3.9)

When the set that we take the integral over is omitted, it is implied to be R
m1

throughout this chapter. Let Ψn be a sequence of smooth functions Ψn : Rm1 → R
m2

satisfying the evolution equation

Ψn+1 = Ψn ◦ (I + εK[Ψn, nθ]) (3.10)

with some known Ψ0. We transform (3.10) to the equation

Φn+1 = Φn ◦ (I + εK̄[Φn] + ε2R[Φn, n, ε]), (3.11)
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and then drop the order ε2 term. The equation obtained in this way (the so-called

averaged equation) has a solution that is close to the solution of the original equa-

tion. The transformation from (3.10) to (3.11) is done by the so-called near-identity

transformation

Ψn = Φn ◦ [I + εP [Φn, n]], (3.12)

where P [Φn, n] : Rm1 → Rm1 .

Next we will derive a recursive equation for P using the following trivial property.

Lemma For two functions F1 and F2,

[I + εF1] ◦ [I + εF2](x) = [I + εF1 + εF2 + ε2R](x), (3.13)

where the expression for R is given by

R(x) = [F1(x + εF2(x)) − F1(x)]/ε. (3.14)

This statement is particularly useful when the functions F1 and F2 are Lipschitz, and

F2 is bounded. Using the expressions for Ψn and Ψn+1 given by (3.12), we rewrite

(3.10) as

Φn+1 ◦ (I + εP [Φn+1, n + 1]) = Φn ◦ (I + εP [Φn, n]) ◦ (I + εK[Ψn, nθ]). (3.15)

We express Φn+1 using (3.11) in the left-hand side, in order to get

Φn ◦ (I + εK̄[Φn] + ε2R[Φn, n, ε])◦

(I + εP [Φn ◦ {I + εK̄[Φn] + ε2R[Φn, nε]}, n + 1]) (3.16)

= Φn ◦ (I + εP [Φn, n]) ◦ (I + εK[Ψn, nθ]).
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This expression will be satisfied if the maps following Φn are identical. We use the

identity (3.13) in (3.16) and keep only the ε-order terms:

εK̄[Φn] + εP [Φn ◦ (I + εK̄[Φn] + ε2R[Φn, n, ε], n + 1]

= εP [Φn, n] + εK[Ψn, nθ] + O(ε2) (3.17)

Assume that P [Φ, n] is Lipschitz in Φ:

||P [Φ + ∆Φ, n](x) − P [Φ, n](x)||∞ ≤ LΦ(P )||∆Φ||. (3.18)

Here ||∆Φ|| can be either the L2 or the uniform norm. From (3.17), we obtain a

recursive relation for P :

P [Φ, n + 1] = P [Φ, n] + K[Φ, nθ] − K̄[Φ]. (3.19)

Without loss of generality, we can set P [Φ, 0] ≡ 0. Recursive relation (3.19) implies

that

P [Φ, N ] =

N−1∑

n=0

K[Φ, nθ] − K̄[Φ]. (3.20)

It is natural to require that the term P [Φ, N ] does not grow. If we assume that

lim
N→∞

1

N
P [Φ, N ] = 0, (3.21)

then it follows from (3.20) and (3.21) that

K̄[Φ] = lim
N→∞

1

N

N−1∑

n=0

K[Φ, nθ]. (3.22)
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In the case where θ is a vector with rational components, then for some integer m,

K[Φ, nθ] = K[Φ, (n + m)θ], and the choice of K̄ is obvious:

K̄[Φ] =
1

m

m∑

n=0

K[Φ, nθ]. (3.23)

In the case where θ is a vector with irrational components, the existence of the K̄ is

given by the following theorem.

Theorem 1. Assume that the matrix-valued function H(x, y, s) and its compo-

nents hij(x, y, s) satisfy the following conditions:

(c1) H(x, y, s) is periodic in each component of s with period 1,

(c2) θ has irrational components whose ratios are also irrational,

(c3) H(x, y, s) is continuous in {(x, y, s) : |y| > ε} for all ε > 0.

(c4) the improper integral
∫

1
N

∑N−1
n=0 H(x, y, nθ)Φ(x+y)dy converges uniformly

in N and x,

(c5) Dα
s hij(x, y, s) exists, is continuous and periodic in each component of s,

for all α such that |α| ≤ m3,

(c6) Dα
s hij(x, y, s) exists and is piecewise continuous in s, for all α such that

|α| = m3 + 1,

(c7) for some function C(y) independent from s, and x,

|Dα
s hij(x, y, s)| < C(y), for all α such that |α| ≤ m3 + 1

Then for continuous Φ, the operator K̄[Φ] satisfying (3.22) exists and given by

K̄[Φ] =

∫
H̄(x, y)Φ(x + y)dy, where H̄(x, y) =

∫ 1

0

H(x, y, s)ds. (3.24)
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Note that, in this theorem, we allow the kernel to have singularities in y, which

is essential in the physical applications. Theorem 1 gives sufficient conditions for

the existence of K̄[Φ] satisfying (3.22). However to fulfill the assumptions we made

about P being bounded, we need the following stronger theorem.

Theorem 1b. Assume that hij(x, y, s) satisfy the the conditions (c1-c3) of the

previous theorem, and for some integer r > 0,

(c5’) Dα
s hij(x, y, s) exists, is continuous, and periodic in in each component of

s, for all α such that |α| ≤ m3 + r,

(c6’) Dα
s hij(x, y, s) exists and is piecewise continuous in s, for all α such that

|α| = m3 + r + 1,

(c7’) for some constant C,

|Dα
s hij(x, y, s)| < C, for all α such that |α| ≤ m3 + r + 1 ,

(c8) There is some M5 > 0 such that for all k, | exp{2πik · θ} − 1||k|r ≥ M5.

Then P is a bounded operator in Φ uniformly in N:

||P [Φ, n]||∞ ≤ C1||Φ||1, for some C1. (3.25)

Remark If |r| > m3 + 1, then it is easy to prove that the set of θ satisfying the

condition (c8) is not empty, therefore the theorem is not vacuous.

Our goal is to show that Φn can be approximated with Φ̄n, which is a sequence

of distributions Φ̄n evolving according to

Φ̄n+1 = Φ̄n ◦ (I + εK̄[Φ̄n]), Φ̄0 = Φ0. (3.26)

47



Chapter 3. Averaging Approach for Evolving Distributions

Theorem 2. Assume that the components of the matrix H̄ and vector Φ̄0 satisfy

max
i,j

sup
x,x′

∫
|h̄ij(x, y) − h̄ij(x

′, y)|dy/||x− x′|| = M2 < ∞, (3.27)

sup
y,j

|ϕ0,j(y)| = M3 < ∞. (3.28)

Then

L(Φ̄n) ≤ L(Φ̄0) exp{εM2M3m1m2n}. (3.29)

Theorem 3. Assume that the conditions of Theorem 1b and 2 hold, and

max
ij

sup
x

∫
|h̄ij(x, y)|dy = M1 < ∞ for all x. (3.30)

Assume that n is of order O(1/ε), i.e. for some M4,

n ≤ M4

m1m2M2M3ε
. (3.31)

Then ||Φn − Φ̄n||∞ → 0 as ε → 0.

3.3 Proofs

Proof of Theorem 1. To prove this theorem, we will analyze (3.23) by components.

We will show that if the limit can be taken inside the integral, it can be calculated

as in the conclusion of the theorem (3.24). Then we will show that exchanging the

integration and limit is a valid operation.

From the conditions (c5-c7), it follows that the Fourier coefficients

hk
ij(x, y) =

∫

[0,1]m3

e2πik·shij(x, y, s)ds
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satisfy |hk
ij(x, y)| < C|k|−m3−1. Using this inequality, we can estimate

1

N

N−1∑

n=0

L∑

k:|k|=L′

| exp{2πink · θ}hk
ij(x, y)| ≤ 1

N

N−1∑

n=0

L∑

k: |k|=L′

C(y)|k|−m3−1

= C(y)

L∑

k: |k|=L′

|k|−m3−1 → 0 as L, L′ → ∞. (3.32)

This means that 1
N

∑N
n=0

∑L
k: |k|=0 exp{2πink · θ}hk

ij(x, y) converges as L → ∞ uni-

formly in N . The other limit exists:

1

N

N−1∑

n=0

L∑

k: |k|=0

exp{2πink · θ}hk
ij(x, y) =

L∑

k: |k|=0

1

N

e2πiNk·θ − 1

e2πik·θ − 1
hk

ij(x, y) → 0

as N → 0. Therefore both of the following double limits exist and are equal:

lim
N→∞

lim
L→∞

1

N

N−1∑

n=0

L∑

k: |k|=0

exp{2πink · θ}hk
ij(x, y)

= lim
L→∞

lim
N→∞

1

N

N−1∑

n=0

L∑

k: |k|=0

exp{2πink · θ}hk
ij(x, y).

The right-hand side and the left-hand side of the last equality are

L.H.S. = lim
N→∞

1

N

N−1∑

n=0

lim
L→∞

L∑

k: |k|=0

exp{2πink · θ}hk
ij(x, y)

= lim
N→∞

1

N

N−1∑

n=0

hij(x, y, nθ),

R.H.S. = lim
L→∞

L∑

k: |k|=0

hk
ij(x, y) lim

N→∞

1

N

N−1∑

n=0

exp{2πink · θ} = h0
ij(x, y).

The last equality holds because for all k 6= 0

lim
N→∞

1

N

N−1∑

n=0

exp{ink · θ} = lim
N→∞

1

N

e2πiNk·θ − 1

e2πik·θ − 1
= 0, (3.33)
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and if k = 0, the same limit equals 1. This implies that the limit

lim
N→∞

1

N

N∑

n=1

H(x, y, nθ)Φ(x + y) (3.34)

exists and is continuous. Because sums and products of continuous functions are

continuous functions, 1
N

∑N
n=1 H(x, y, nθ)Φ(x+y) is continuous in the set {(x, y, N) :

|y| > ε} for all ε > 0.

The last two conclusions along with Condition (c4) of the theorem allow us to

exchange the integration and limit:

lim
N→∞

∫

Rm1

1

N

N∑

n=1

H(x, y, nθ)Φ(x + y)dy

=

∫

Rm1

lim
N→∞

1

N

N−1∑

n=0

H(x, y, nθ)Φ(x + y)dy (3.35)

=

∫

Rm1

H̄(x, y, nθ)Φ(x + y)dy.

QED

Proof of Theorem 1b. The conditions (c5’-c7’) are stronger than (c5-c7), therefore

we can repeat the steps of the proof of Theorem 1, and obtain

lim
N→∞

1

N

N∑

n=1

hij(x, y, nθ), = h0
ij(x, y). (3.36)

Let us estimate the kernel of P :

S(x, y, N) =
N−1∑

n=0

L∑

k: |k|>0

exp{2πink · θ} =
L∑

k: |k|>0

e2πiNk·θ − 1

e2πik·θ − 1
hk

ij(x, y). (3.37)
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We can also obtain |hk
ij(x, y)| < C|k|−m3−r−1.

L∑

k: |k|>L′

∣∣∣∣
e2πiNk·θ − 1

e2πik·θ − 1
hk

ij(x, y)

∣∣∣∣ ≤
L∑

k: |k|>L′

∣∣e2πiNk·θ − 1
∣∣ |k|

r

M5
C|k|−m3−r−1

≤
L∑

k: |k|>L′

2C

M5
|k|−m3−1 → 0

as L′ → ∞. Therefore (3.37) converges absolutely and uniformly in x and y. Apply-

ing Hölder’s inequality yields the conclusion of the theorem.

QED

Corollary The assumptions of Theorem 1b also imply conclusions of Theorem 1

because (3.21) implies (3.22).

Proof of Theorem 2. It immediately follows from (3.26) that

sup
y

|ϕ̄n,j(y)| ≤ M3. (3.38)

We can estimate

L(Φ̄n+1) ≤ L(Φ̄n)L(I + εK̄[Φ̄n])) ≤ L(Φ̄n)(1 + εL(K̄[Φ̄n])). (3.39)

L(K̄[Φ̄n]) = sup
x,x′

||
∫

H(x, y)Φ̄(y)dy −
∫

H(x′, y)Φ̄(y)dy||/||x− x′||

= sup
x,x′

||
∫

(H(x, y) − H(x′, y))Φ̄n(y)dy||/||x− x′|| (3.40)

= sup
x,x′

[
m1∑

i=1

[∫ ∑
(h̄ij(x, y) − h̄ij(x

′, y))ϕ̄n,j(y)dy

]2
]1/2

/||x − x′||
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≤ sup
x,x′

[
m1∑

i=1

[∑ ∫
|h̄ij(x, y) − h̄ij(x

′, y)|dy

||x − x′|| sup
y

|ϕ̄n,j(y)|
]2
]1/2

≤ M2M3m1m2. (3.41)

Using (3.41), we continue (3.39) to obtain the recursive estimate

L(Φ̄n) ≤ L(Φ̄n−1)(1 + εM2M3m1m2) ≤ L(Φ̄0)(1 + εM2M3m1m2)
n, (3.42)

and the conclusion of the theorem follows:

L(Φ̄n) ≤ L(Φ̄0) exp{εM2M3m1m2n}. (3.43)

QED

We use the following Lemma in the proof of Theorem 3.

Lemma 1. Assume that a sequence {xn}∞n=0 satisfies

xn ≤ xn−1(1 + εa) + ε2b,

where εa > 0. Then

xn ≤ (x0 + εb/a)eaεn − εb/a.

Proof We can estimate

xn≤ x0(1 + εa)n + ε2b

n−1∑

k=0

(1 + εa)k ≤ x0(1 + εa)n + ε2b
(1 + εa)n − 1

εa

≤ (1 + εa)n(x0 + εb/a) − εb/a.

QED
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Corollary In the case where x0 = 0, a > 0, and b > 0, the following simpler

estimate can be useful:

xn ≤ εbeaεn/a.

Proof of Theorem 3. Using the triangle inequality, we can estimate

||Φn+1 − Φ̄n+1||∞ = sup
x

||Φn ◦ (I + εK̄[Φn] + ε2R[Φn, n, ε])(x)

−Φ̄n ◦ (I + εK̄[Φ̄n])(x)||

= sup
x

||Φn ◦ (I + εK̄[Φn] + ε2R[Φn, n, ε])(x)

−Φ̄n ◦ (I + εK̄[Φn] + ε2R[Φn, n, ε])(x)

+Φ̄n ◦ (I + εK̄[Φn] + ε2R[Φn, n, ε])(x)

−Φ̄n ◦ (I + εK̄[Φ̄n] + ε2R[Φn, n, ε])(x)

+Φ̄n ◦ (I + εK̄[Φ̄n] + ε2R[Φn, n, ε])(x) − Φ̄n ◦ (I + εK̄[Φ̄n])||

≤ ||Φn − Φ̄n||∞ + L(Φ̄n) sup
x

||[I − εK̄[Φn] + ε2R[Φn, n, ε]](x)

−[I − εK̄[Φ̄n] + ε2R[Φn, n, ε]](x)||

+L(Φ̄n) sup
x

||[I + εK̄[Φ̄n] + ε2R[Φn, n, ε]](x) − [I + εK̄[Φ̄n]](x)||

≤ ||Φn − Φ̄n||∞ + εL(Φ̄n)||K̄[Φn − Φ̄n]||∞ + ε2L(Φ̄n)||R[Φn, n, ε](x)||∞. (3.44)

We can estimate

||K̄[Φ]||∞= sup
x

||K̄[Φ](x)||2
||x||

≤ sup
x




∑

i

[
∑

j

∫
h̄ij(x, y)ϕj(y)dy

]2



1/2

≤ sup
x




∑

i

[
∑

j

∫
|h̄ij(x, y)dy| sup

y
ϕj(y)

]2



1/2
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≤ sup
x




∑

i

[
m2 max

j

∑

j

∫
|h̄ij(x, y)|dy max

j
sup

y
|ϕj(y)|

]2



1/2

≤ m1m2 max
ij

sup
xy

∫
|h̄ij(x, y)|dy max

j
sup

y
|ϕj(y)|. (3.45)

Therefore, using (3.30), we obtain

||K̄[Φn − Φ̄n]||∞ ≤ M1||Φn − Φ̄n||∞ (3.46)

in (3.44), and obtain

||Φn+1 − Φ̄n+1||∞ ≤ (1 + εL(Φ̄n))||Φn − Φ̄n||∞ + ε2L(Φ̄n)||R[Φn, n, ε](x)||∞.(3.47)

Because of (3.31), L(Φ̄k) ≤ eM4 for all k ≤ n. Therefore, (3.47) can be rewritten as

||Φn+1 − Φ̄n+1||∞ ≤ (1 + εeM4)||Φn − Φ̄n||∞ + ε2eM4 ||R[Φn, n, ε](x)||∞. (3.48)

Using the corollary of the lemma, we obtain

||Φn+1 − Φ̄n+1||∞ ≤ ε max
k≤n

||R[Φk, k, ε](x)|| exp{eM4nε − M4}. (3.49)

Next we estimate ||R[Φk, k, ε](x)||. Writing the ε2-order term in (3.16) gives the

following expression for R:

R[Φn, n, ε]◦(I + εP [Φn+1, n + 1])(x)+

{K̄[Φn](x + εP [Φn+1, n + 1](x)) − K̄[Φn](x)}/ε

= {P [Φn, n](x + εK[Φn, nθ]) − P [Φn, n](x)}/ε. (3.50)

For ε small enough, (x + εP [Φn+1, n + 1](x)) can be inverted. Since K̄[Φn] and

P [Φn, n] are Lipschitz, and bounded, R remains bounded. Along with estimate

(3.49), this completes the proof of the theorem.
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Chapter 4

The Simulation of the

Strong-Strong Beam-Beam

Interaction in Circular Particle

Colliders by Tracking Densities in

4D Phase-Space

4.1 Introduction

The most straightforward approach, macro-particle tracking (MPT), has been suc-

cessfully implemented in a number of parallel codes [1, 2, 3]. Such codes can simulate

rather complicated physical models: particles with 3 DF, synchrotron radiation, fi-

nite dimensional crossing angles, and many IPs. However fully complete modeling

of a real machine is still beyond current computational power. These models suffer

from statistical noise, and do not directly compute the beam’s densities. The neces-
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sary number of particles is determined from numerical experiment rather than from

analytic estimates. There is, of course, a trade-off between the number of particles

and the number of the time steps (turns), and the reasonable number of time steps

limits the number of macro-particles to 106.

Different 1 DF models have been considered [5], [6] and shown to capture im-

portant basic characteristics of beam-beam interaction. Much less computationally

expensive methods that assume that the beam density can be represented as Gaus-

sian or Hermitian polynomial [4] are able to capture some of the properties of real

beams and are free from statistical noise, though they cannot capture the details of

the phases-pace densities of the beams.

More sophisticated mathematical techniques can significantly improve the speed

and precision of the calculations. One such technique, calculating the beam den-

sities in slowly varying coordinates, is described in this chapter. Other techniques

may utilize the autonomous continuous-time averaged Vlasov equation introduced in

Chapter 3. The main idea of such improvements is to calculate numerically pertur-

bations around some analytically obtained solutions that capture the most essential

properties of the model. Here we are interested primarily in studying such essential

properties rather than implementing a code that able to predict the beam evolution

in some particular real accelerator.

We simulate the density evolution in the beam-beam interactions for many turns

at the circular particle accelerators using the Perron-Frobenious (PF) method. In

this method, the beams are represented by their densities approximated on a fixed

grid, and we solve a Vlasov-type equation by tracking the density values along the

particle’s trajectories in a 4D phase-space. We study the evolution of the densities of

two counter-rotating colliding beams with one bunch in each beam. The PF method

is implemented in a parallel C++ code using MPI libraries. For solving Poisson’s

equation, we calculate the solution on the boundary of a rectangular uniform grid

58



Chapter 4. The Simulation of the Strong-Strong Beam-Beam Interaction

and find the values in the interior points using the conjugate-gradient (CG) method

similarly to [3].

In 1DF case, a similar approach has been successfully applied, and compared

with the macro-particle tracking method in [7]. The codes for simulating collective

beam-beam dynamics are hard to compare against experiments, because the beam-

beam interaction is almost always designed to be weak, and the interpretation of the

measurements can be obscured by other effects.

This chapter is organized as follows. First, we describe the algorithm that im-

plements the model described in Chapter 1. The separate sections describe the data

structures that represent the beams, the distribution of the data between the nodes

of the parallel computer, and the communication between nodes. Finally we dis-

cuss the results of the simulations, and the code’s properties such as efficiency, the

preservation of probability and other quantities.

4.2 Algorithm

We have implemented evolution equations (1.15) in earlier simulation codes, however

in the latest code we use the evolution equations in slowly varying coordinates (1.17).

They are more suitable for the numerical simulation because of the following reasons.

First, it dramatically reduces the data exchange between the different nodes on

the parallel computer performing the simulation. In order to compute the value of

the Ψn+1(z) using (1.15), one would need to know the values of Ψn that are far

away from z, and the corresponding data may be located on a different node. The

fact that ζ is small combined with the structure of the equation (1.17) guarantees

that the values of Ψn+1 can be computed using the information located on the same

node for most of the gridpoints of Ψn. The only data that needs to be exchanged
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between nodes are Ψn values at the points on the boundary of the region locally

stored on the node. This reduces the amount of communication by the so-called

“volume-to-surface” factor.

Second, computing evolution of Ψn does not involve computing the evolution on

the rotation part. Even though the “rotation part” of the evolution is trivial in a way,

it introduces the largest error. If the kick is small, the error in (1.17) is proportional

to O(ζ2) with ζ ≈ 0.0036, while the error in (1.13) is O(h2), where h ≈ 0.05 is the

grid step size.

We can choose the linear change of variables such that the rotation matrix is

orthonormal in (1.17) or close to orthonormal. We model Ψn defined on R
4, such that

Ψ0 is Gaussian, and all Ψn also decay very fast, so we can limit the domain to some

finite rectangle. Since the density rotates in the domain, it makes sense to choose the

mesh symmetric with respect to the origin. In most of our numerical experiments,

we chose a rectangular mesh with a span from −5.5σ to 5.5σ in each dimension,

where σ is approximately the RMS of Ψ0 . The beam density is represented as an

array

Psi[i][j][k][l] = Ψn(z1
i , z

2
j , z

3
k, z

4
l ),

where zs
i – are the gridpoints of the uniform rectangular 4 dimensional grid. To

calculate the values of Psi on every turn, we iterate over the gridpoints and track

back the coordinate of the gridpoint according to (1.17). Then we approximate

the value of Ψn on the previous turn between the gridpoints from values of Psi

calculated for the previous turn stored in a different array. For this approximation,

we use quadratic interpolation in the 4D phasespace, which involves 81 neighboring

gridpoints.

At the same time as the 4D beam density is being calculated, the spatial density
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is calculated according to

ρn+1(x, y) =

∫
Ψn+1 ◦ R−n−1

(
x x′ y y′

)T

dx′dy′. (4.1)

The spatial density ρ is represented by a 2D array

rho[i][j] = ρ(xi, yj),

where (xi, yj) are the gridpoints of the uniform 2-dimensional rectangular mesh.

The values of rho are calculated by projecting the 4D gridpoints on the (x, y)-plane

and distributing the charge between the cells that corresponds to the four closest

gridpoints on 2D mesh.

The potential is calculated by approximating the Laplace operator using the 5-

point stencil method in ∆ϕ = −4πρ, and solving this linear equation using the CG

method. We will not go into the details of this algorithm here, and give only a very

short description for the convenience of the reader.

x=b;

r=Ax-b;

p:=r;

while (|r|>eps){

k=(r,Ap)/(p,Ap);

p=r-kp;

a=(p,r)/(p,Ap)

x=x-ap;

r=Ax-b;

}

The boundary values can either be set to be zero or calculated using the Green

function. The kick is calculated on the grid as −∇ϕ using a 2 point finite difference

method and interpolated between points using linear interpolation.
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4.3 Distributing Data Between the Processes

A user specifies in the PBS file how many processors and processes must be allocated

for the computation. Normally there is only one process running on each processor

though for debugging purposes one may want to run many processes on one processor.

Many parallel computers have several processors on each node. Here we describe the

calculation in terms of processes, since it is the basic execution unit.

At the beginning of the program execution, a special MPI routing splits the

available processes in two groups such that communication between the processes

within the groups is the fastest. The processes in each group calculate the density

of one beam on every turn, therefore each beam has its own set of processes. Each

processor contains values of Psi approximating Ψn on the subdomains of the full

grid. We call these subdomains the process grids. A special MPI routing helps assign

each process a subdomain, therefore organizing them in a 4-dimensional grid, which

we call the grid of processes, such that the communication between the neighbors in

the grid is the fastest.

We refer to the points on the edge of the process grid as padding, and to the

rest of the points as owned. The padding points that are also on the edge of the

full grid are set to zero, and referred to as zero padding. The rapid decrease of

the density justifies setting the value of Psi to zero at these points. We allocate

memory for padding gridpoints in order to have the same procedure of calculating

all gridpoints without any conditional statement in the inner for-loop. This requires

more memory, but eliminating conditional statements and makes computation faster.

The padding gridpoints that are not on the edge of the full grid are called shared.

The coordinates of these gridpoints are the same as the coordinates of some of the

owned gridpoints of the corresponding neighbor process, and the value of Psi at

these points is communicated between the processes on every turn.
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Sometimes the number of the process gridpoints is still very large, and the corre-

sponding data does not fit the cache. In order to perform the 4-dimensional quadratic

interpolation quickly, the process grid can be split into smaller subgrids. This way

of reorganizing data increases the portion of data kept and retrieved from the cache,

which speeds up the computation. Therefore there are three level of grids: (1) the

grid of processes, (2) the process grids, and (3) the subgrids.

On every turn, each node calculates the values of Psi only at the gridpoints that

it owns using the values of Psi on the previous turn at the owned gridpoints as well

as at the padding gridpoints. Then the values of Psi at the shared gridpoints are

received from the neighbor processes, where they are calculated.

To calculate the ”kick”, the Poisson equation is solved in parallel. The 2D arrays

that approximate ρ and ϕ are distributed between the processes similarly to the way

4D arrays are distributed. While solving the Poisson equation, the same processes

that constitute the 4D grid of processes are organized in a 2D grid. Similarly, the edge

gridpoints are classified as padding and owned points. The values of rho at the edge

of the full grid are either set to zero at the very beginning and never recalculated

(zero padding option), or calculated using the Green function on every turn (free

boundary option). The values at the shared gridpoints have to be received from

the corresponding neighbor on every CG iteration. Besides collecting some scalar

values, this is the only communication needed in the CG algorithm. The amount of

data involved in solving the Poisson equation is smaller, which makes the task much

easier.

In our numerical experiments, we usually choose the mesh step for the Poisson

solver to be about the same size as the mesh step for Ψ, and twice as many gridpoints,

such that the Poisson solver grid always spans the projection of the rotating 4D cube

where Ψ is interpolated on two spacial dimensions.
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4.4 Input Parameters

At the beginning of the program execution, the densities of the beams are set to have

a normal distribution with arbitrary mean and covariance matrix specified as input

parameters. The tunes in definition (1.14) of R are specified independently for each

beam. If desired, a general 4×4 matrix R for the linear lattice can be specified. The

dimensions of each level of 4D and 2D grids are specified, and the splitting of the

full grid into subgrids must agree with the number of the available processors. The

various parameters related to the Poisson solver, such as precision and the maximum

number of iterations, are specified as input parameters as well.

This gives a rather large number of parameters. The runs take hours if not days,

and some hours may pass even before the program starts executing. Thus it would

be nice to have a special language for the input file, and some tool for validating

its syntax, which would guarantee that the input file does not have any typos. It

would be convenient for the input language to be able to perform some calculations.

For example, we use tunes related to the golden mean, and it is convenient to state

explicitly how these irrational numbers were calculated. Currently we have used 15

different versions of this program, adding new features to each next version, and

there would be a serious issue of compatibilities of the input file format.

Surprisingly there is a very simple solution to all these problems. All desired

features, such as validation and the ability to use expressions in the input file, are

indeed available in C itself, and the compiler can take care of reading and interpreting

the file. So the program does not have any input in the usual sense, instead all

parameters are set before the main loop by calling the procedure setParam() defined

in the file param.cpp, which is compiled before every run. Successful compiling

guarantees that, after hours waiting in a cue, the program will not quit or produce

some garbage just because there was a typo in the input file. Before compiling the
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program, one must set the variable DEST DIR in the makefile to let the compiler

know where to take “param.cpp” and where to put the executable file.

Since the program is expected to be run by an experienced user and to be compiled

about as many times as executed, additional compilation for “setting the parameters”

does not create any significant overhead. If there will be ever a need to run this

program with different parameters without recompiling, the procedure of reading an

input file can, of course, be implemented.

4.5 Results of Simulations

We executed the program with the largest grid sizes set to 128 points per dimension.

In 48 hours, the natural limit of execution time on seaborg.nersc.gov, we were able

to calculate 5000 turns of 128 ppd grid using 512 nodes. The numerical experiments

have shown that the smaller grids with 96 or even 60 ppd can be quite adequate. If

we allocate the same amount of resources, we can calculate 14000 turns for 96 a ppd

grid. For most of the runs, we used an initial offset of 0.2σ for one beam and 0 for

the other. We set the mesh size for the Poisson solver to have twice as many points

per dimension as the grid for Ψ. This allows us to fully cover the projection of an

arbitrary rotated 4d cube on the square, assuming that the step size in the 2d and

4d meshes are the same.

It is not possible to save the full density of two beams with 1284 gridpoints for

thousands of turns. Such an amount of data can neither be stored nor directly

visualized. The output of the program is two files (one for each beam). For every

turn, these files contain the first and second moments of the beam distributions, the

total sum of the values of Psi (zero moment), the number of CG iterations, and

the precision achieved by the Poisson solver. Optionally, the 2D spatial density can

be saved at the selected turns, and visualized after the program is finished. For
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example, the user can select to save the spatial densities on each 10th turn from the

3000th through 5000th turns. We wrote a special tool in C++ that can create and

execute a series of gnuplot scripts. These scripts read the files with density data and

create *.eps files, which in turn, can be combined together using the ImageMagick

tool called convert to form a single movie file with the extension *.mpeg or any

other supported by ImageMagick. In addition, a separate file can be created by

every process with information about code execution. These files can be used for

debugging purposes in case if the process crushes.

One of the first moments of each beam can be extracted from the output, and

added to form a series, which we call the σ-mode. Similarly, the difference of these

moments forms the π-mode series. The discrete Fourier transform of these series

gives information about the frequency spectrum of beam oscillation. It is known

from experiments and has been confirmed by analytical estimates of Yokoya [4] that

we must observe a certain tune shift in these spectra. In our numerical experiments,

the π-mode had a tune shift close to 1.21 which is the expected tuneshift for the round

beam, and the σ-mode did not have significant tune shift, which is also expected (see

fig. 4.1). The 14000 turns allows a fairly good resolution in calculating the peak of

the π-mode.

It is remarkable that the total number of particles (i.e. total probability) is

preserved and stays within 1% of 1.0, which indicates a sufficient grid span (see

Fig. 4.2). As expected, after some initial growth, the emittance stays almost a

constant. The figure 4.4 indicates that the Poisson solver reaches high precision on

every iteration.

Table 4.1 shows the amount of time spent per gridpoint for different grid sizes

and different numbers of processors involved in the computation. This table indicates

that the code is very scalable, i.e. the time spent calculating one iteration is inversely

proportional to the number of processors.
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ppd proc turn time / point
64 32 0.000111766
64 16 0.000111321
64 8 0.000110102
64 4 0.000110667
48 32 0.000116182
48 16 0.000111411

ppd proc turn time / point
48 8 0.000110185
48 4 0.000111356
32 32 0.000113655
32 16 0.000112052
32 8 0.000110703
32 4 9.12059E-05

Table 4.1: Calculation Time Spent per Gridpoint.
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Figure 4.1: Fourier transformation of the π and σ modes for 96 ppd and 128 ppd.
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Appendix A

Potential Generated by the Round

Gaussian Distribution

Lemma 1. The solution of

∆ϕ = −4πρ(x), x ∈ R
2 (A.1)

where ρ(x) =
1

2πσ2
exp

{
−|x|2

2σ2

}
, (A.2)

is given by ϕ(x) = U(|x|), (A.3)

where

U(r) =

∫ ∞

0

1

2σ2 + q

(
exp

{
− r2

2σ2 + q

}
− 1

)
dq + C (A.4)

with arbitrary C.
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Proof First let us calculate U ′(r). Since σ > 0, we can exchange the differenti-

ation and integral in (A.4):

U ′(r) = −
∫ ∞

0

2r

(2σ2 + q)2
exp

{
− r2

2σ2 + q

}
dq. (A.5)

This integral can be calculated if we change the variables:

s =
1

2σ2 + q
, ds = − dq

(2σ2 + q)2
. (A.6)

Then

U ′(r) =

∫ 0

1/(2σ2)

2re−r2sds = −2

r

∫ 1/(2σ2)

0

e−r2sd(r2s)

= −2

r
(−e−y)

∣∣∣
y= r2

2σ2

y=0
=

2

r

(
exp

{
− r2

2σ2

}
− 1

)
. (A.7)

We know that the solution of (A.1) for arbitrary ρ is given by

ϕ(x) =

∫
G(x − y)ρ(y)dy, (A.8)

where

G(x) = ln(1/|x|2). (A.9)

Therefore we conclude that ϕ(x) depends only on |x|, and in other words, has a

representation (A.3). Now we have to verify that (A.1), (A.2), and (A.3) imply

(A.4). If two functions defined on R have the same derivatives and coincide at one

point, then they are the same. Since C is arbitrary we only have to show that (A.1),

(A.2), and (A.3) imply (A.7). Define B(R) = {|x| < R}. Using consequently (A.3),
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the Gauss theorem, (A.1), (A.2), we obtain

2πRU ′(R) =

∫

∂B(R)

∇ϕ · ndS =

∫

B(R)

∆ϕ(x)dx

∫

B(R)

(−4)πρ(x)dx

= −4π

∫ R

0

2πrρ(r)dr = −4π

∫ R

0

2πr
1

2πσ2
e−

r2

2σ2 dr

= 4π

∫ R

0

e−
r2

2σ2 d

(
− r2

2σ2

)
= 4π

(
e−

R2

2σ2 − 1

)
. (A.10)

Therefore (A.1), (A.2), and (A.3) imply

U ′(R) =
2

R

(
e−

R2

2σ2 − 1

)
. (A.11)

Comparing the last equality with (A.7) concludes the proof.
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Calculation of Ω

Lemma 2. The integral functional H̄ defined in (1.19) applied to the equilibrium

distribution Ψe defined in (1.30) is given by

H̄[Ψe](J) =

∫ ∞

0

1

2 + q

(
exp

(
−J1 + J2

2 + q

)
I0

(
J1

2 + q

)
I0

(
J2

2 + q

)
− 1

)
dq.

Proof

H̄[Ψe](J) =

∫

R
2
+

∫

[0,2π]2
Ḡ(J, J ′, θ′ − θ)Ψe(J

′, θ′)dJ ′dθ′

=

∞∫ ∫

0

2π∫ ∫

0

1∫ ∫

0

G(D1(J1, J
′
1, θ

′
1 − θ1) cos 2πt1,

D2(J2, J
′
2, θ

′
2 − θ2) cos 2πt2)dt1dt2

1

4π2
e−J ′

1
−J ′

2dθ′1dθ′2dJ ′
1dJ ′

2.

Since the inner integral is taken over a whole period, we can add anything we want

to the arguments of cos:

... =

∞∫ ∫

0

2π∫ ∫

0

1∫ ∫

0

G(D1(J1, J
′
1, θ

′
1 − θ1) cos(θ′1 − θ1 + 2πt1),
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D2(J2, J
′
2, θ

′
2 − θ2) cos(θ′2 − θ2 + 2πt2))dt1dt2

1

4π2
e−J ′

1
−J ′

2dθ′1dθ′2dJ ′
1dJ ′

2

Again because the θ′m run over a whole period, H̄ [Ψe](J) does not depend on θm.

We can integrate over θ1 and θ1 and divide by 4π2.

... =

∫ 2π

0

dθ1

∫ 2π

0

dθ2
1

4π2

∫ ∞

0

dJ ′
1

∫ ∞

0

dJ ′
2

∫ 2π

0

dθ′1

∫ 2π

0

dθ′2

∫ 1

0

dt2

∫ 1

0

dt1

G(D1(J1, J
′
1, θ

′
1 − θ1) cos(θ′1 − θ1 + 2πt1),

D2(J2, J
′
2, θ

′
2 − θ2) cos(θ′2 − θ2 + 2πt2))

1

4π2
e−J ′

1−J ′
2.

Next we exchange the order of integration:

... =

∫ 1

0

dt2

∫ 1

0

dt1

∫ 2π

0

dθ1

∫ 2π

0

dθ2
1

4π2

∫ ∞

0

dJ ′
1

∫ ∞

0

dJ ′
2

∫ 2π

0

dθ′1

∫ 2π

0

dθ′2

G(D1(J1, J
′
1, θ

′
1 − θ1) cos(θ′1 − θ1 + 2πt1),

D2(J2, J
′
2, θ

′
2 − θ2) cos(θ′2 − θ2 + 2πt2))

1

4π2
e−J ′

1−J ′
2.

We change variables

x =
√

2J1 cos(θ1 − 2πt1), px =
√

2J1 sin(θ1 − 2πt1),

y =
√

2J2 cos(θ2 − 2πt1), py =
√

2J2 sin(θ2 − 2πt1), (B.1)

x′ =
√

2J ′
1 cos(θ′1), p′x =

√
2J ′

1 sin(θ′1),

y′ =
√

2J ′
2 cos(θ′2), p′y =

√
2J ′

2 sin(θ′2).

(The Jacobian of the transformation is 1.)

... =

∫ 1

0

dt2

∫ 1

0

dt1

∫ 2π

0

dθ2

∫ 2π

0

dθ1
1

4π2

∫

R4

dz′ G(x′ − x, y′ − y)
1

4π2
e−|z′|2/2

︸ ︷︷ ︸
♥

,

where x and y must be understood as functions of tm, θm, and Jm defined in (B.1).

It is clear that the expression ♥ does not depend on t1, t2, and therefore we can
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remove the integral over these two variables. The integral over p′x, and p′y can be

calculated:

... =

∫ 2π

0

dθ2

∫ 2π

0

dθ1
1

4π2

∫

R2

G(x′ − x, y′ − y)
1

2π
e−

x2
+y2

2 dx′dy′.

We have shown above in Appendix A that the inner integral equals

U(x, y) =

∫ ∞

0

1

2 + q

(
exp

(
−x2 + y2

2 + q

)
− 1

)
dq. (B.2)

Therefore

... =

∫ 2π

0

dθ2

∫ 2π

0

dθ1
1

4π2

∫ ∞

0

1

2 + q

(
exp

(
−x2 + y2

2 + q

)
− 1

)
dq

=

∫ ∫

[0,2π]2

d2θ
1

4π2

∫ ∞

0

1

2 + q

(
exp

(
−(

√
2J1 cos θ1)

2 + (
√

2J2 cos θ2)
2

2 + q

)
− 1

)
dq

=

∫ ∫

[0,2π]2

d2θ
1

4π2

∫ ∞

0

1

2 + q

(
exp

(
−J1 + J2

2 + q

)

exp

(
−J1 cos 2θ1 + J2 cos 2θ2

2 + q

)
− 1

)
dq.

We used 2 cos2 θm = cos 2θm + 1 in the last equality. Now we use the Jacobi-Anger

equality

e−s cos 2τ = I0(s) + 2
∞∑

k=1

(−1)kIk(s) cos 2kτ, (B.3)

where I0 is the modified Bessel function, and obtain

H̄(J)[Ψe] =

∫ 2π

0

dθ1

∫ 2π

0

dθ2
1

4π2

∫ ∞

0

1

2 + q

(
exp

(
−J1 + J2

2 + q

)
×

[

I0(
J1

2 + q
) + 2

∞∑

k=1

(−1)kIk(
J1

2 + q
) cos 2kθ1

]

×
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[

I0(
J2

2 + q
) + 2

∞∑

k=1

(−1)kIk(
J2

2 + q
) cos 2kθ2

]

− 1

)

dq

=

∫ ∞

0

1

2 + q

(
exp

(
−J1 + J2

2 + q

)
I0

(
J1

2 + q

)
I0

(
J2

2 + q

)
− 1

)
dq.

QED

Lemma 3. For H [Ψe](J) given in the conclusion of the previous lemma, and

Ω := ∇H [Ψe](J), the expressions for Ω1(J1, 0) and Ω1(0, 0) can be calculated in

terms of elementary functions:

Ω1(J1, 0) = (e−J1/2I0(J1/2) − 1)/J1, (B.4)

Ω1(0, 0) = −1/2. (B.5)

Proof

H̄[Ψe](J1, 0) =

∫ ∞

0

1

2 + q

(
exp

(
− J1

2 + q

)
I0

(
J1

2 + q

)
− 1

)
dq. (B.6)

Let us change variables

s =
Jx

2 + q
, q = Jx

s
− 2, dq =

−Jx

s2
ds.

H̄[Ψe](J1, 0) =

∫ 0

J1/2

1

Jx
s{e−sI0(s) − 1}(−J1

s2
)ds =

∫ J1/2

0

{e−sI0(s) − 1}/sds,

∂

∂J1
H̄[Ψe](J1, 0) = Ω1(J1, 0) =

1

2
(e−J1/2I0(J1/2) − 1)

2

J1
= (e−J1/2I0(J1/2) − 1)/J1.
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We can calculate Ω1(0, 0) using l’Hospital’s rule

Ω1(J1, 0) = lim
J1→0

∂

∂J1
(e−J1/2I0(J1/2) − 1) =

lim
J1→0

(−1/2)e−Jx/2I0(J1/2) + e−J1/2I1(J1/2) = −1/2.

QED
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Optimization of the Numerical

Solution of the Integral Equation

The kernel given by (1.39) and (1.35) of the integral equation (1.40) is a function

that depends on 4 variables, and in order to calculate the value at every point, a

four-fold integral needs to be taken. It is impossible to do numerically unless we find

an efficient way to calculate the kernel. In this appendix, we reduce the four-fold

integral in (1.39) to a 2-fold integral.

We define a shorthand for part of the expression for Kk:

Z(A, B) =

∫ 1

0

∫ 1

0

ln(A cos2 2πtx + B cos2 2πty)dtxdty, (C.1)

where A > 0, and B > 0, and we transform

Z(A, B) =

∫ 1

0

∫ 1

0

ln(A + B) + ln(
A

A + B
cos2 2πtx +

B

A + B
cos2 2πty)dtxdty.

Next, we use the trivial identity

cos2 α =
2 cos α2α − 1

2
+

1

2
=

1

2
cos 2α +

1

2
.
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Appendix C. Optimization of the Numerical Solution of the Integral Equation

Z(A, B) = ln(A + B) +

∫ 1

0

∫ 1

0

ln

(
A

A + B
cos2 2πtx

+
B

A + B

1

2
+

B

A + B

1

2
cos 4πty

)
dtxdty

= ln(A + B) +

∫ 1

0

1

4π

∫ 4π

0

ln(
A

A + B
cos2 2πtx

+
B

A + B

1

2
+

B

A + B

1

2
cos ty)dtxdty.

Using a known integral

∫ π

0

ln(a ± b cos x)dx = π ln
a +

√
a2 − b2

2
,

we continue the equality:

... = ln(A + B) +
1

π

∫ 1

0

∫ π

0

ln(...)dtxdty

= ln(A + B) +
1

π

∫ 1

0

π ln

([
A

A + B
cos2 2πtx +

B

A + B

1

2
+

√(
A

A + B
cos2 2πtx +

B

A + B

1

2

)2

−
(

1

2

B

A + B

)2


 /2



 dtx

= ln(A + B) + 4F

(
B

A + B

)
,

where

F (α) =

∫ 1/4

0

ln
([

(1 − α) cos2 2πtx +
α

2

+

√(
(1 − α) cos2 2πtx +

α

2

)2

− α2

4

]

/2

)

dtx.

We can calculate the values of this function with arbitrary precision in the con-

stant time using an interpolation, after we calculate the values of this function at

sufficiently many gridpoints. This allows us to remove two inner integrals in the
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Appendix C. Optimization of the Numerical Solution of the Integral Equation

expression for Kk. Therefore Kk is given by

Kk(J, J ′) = − 1

16π4
e−(J1+J2+J ′

1+J ′
2)/2

∫ ∫

[0,2π)2

d2θe−θ·k

[
ln(D1(J, J ′, θ) + D2(J, J ′, θ)) + 4F

(
D2(J, J ′, θ)

D1(J, J ′, θ) + D1(J, J ′, θ)

)]
.
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