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Abstract

We study coherent synchrotron radiation (CSR) in a vacuum chamber of rectangular cross sec-

tion, treating a single bend and a following straight section. We wish to know the amount of energy

transferred to the resistive walls of the chamber, being motivated by design issues for LCLS-II. The

first-order effect of resistivity is obtained by computing the magnetic field with perfectly conduct-

ing boundary conditions, then using the resistive wall boundary condition to determine the electric

factor in the Poynting vector at the wall. The magnetic field at perfectly conducting boundaries

is obtained by numerical integration of the paraxial wave equation in the frequency domain, using

a Fourier mode expansion in the vertical coordinate. In an application to the second bunch com-

pressor for LCLS-II, the resistive wall energy deposit is totally negligible. Our paraxial field solver

determines all six field components at all space-time points, works for short bunches, incorporates

an effective new way to deal with a line charge source, and is fast in comparison to earlier codes.

It has a potential for wide applications.
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I. WAVE EQUATION FOR THE SLOWLY VARYING AMPLITUDE IN ACCEL-

ERATOR COORDINATES

We work in standard accelerator coordinates (Frenet-Serret coordinates) defined in terms

of a reference trajectory R0(s) lying in a plane, and parametrized by its arc length s. Any

spatial point in the laboratory system is represented as R = R0(s)+xn(s)+yey where n(s)

and ey are unit vectors normal to the unit tangent t(s) = R′0(s). To be definite we take the

horizontal unit vector to be n = ey × t.

The vacuum chamber is to have a rectangular form with planar surfaces at y = ±g, thus

with full height h = 2g. The vertical walls at

x = x− , x = x+ (1)

are either planar or cylindrical with constant radius of curvature, depending on s. This

accommodates a beam centered at x = y = 0, following a sequence of straights and bends.

The electromagnetic boundary conditions for perfectly conducting walls are that the

tangential component of E and the normal component of H should vanish. We shall meet

these conditions on the top and bottom walls (that Es, Ex, Hy should vanish) by making a

Fourier development in y . Assuming a source of velocity βc, any field or source component

will have a Fourier development as follows:

F (s, x, y, t) =

∫ ∞

−∞
dkeik(s−βct)

∞∑
p=0

φ(i)
p (y)F̂p(k, s, x) . (2)

The choice of the trigonometric function φ
(i)
p (y) to meet the boundary conditions at y = ±g

depends on which field or source component is expanded. We have

φ(1)
p (y) = sin(αp(y + g)) , F = Es, Ex, Hy, Js, Jx, ρ ,

φ(2)
p (y) = cos(αp(y + g)) , F = Hs, Hx, Ey, Jy .

αp = πp/h , (3)

where J and ρ are the current and charge densities of the beam. With these choices the

Maxwell equations and boundary conditions are satisfied term-by-term in the sums over p.

This follows from orthogonality,

1

g

∫ g

−g
φ(i)
p (y)φ(j)

q (y)dy = δijδpq . (4)
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Note that the representation (2) is general, since any function of s and t may also be

viewed as a function of s − βct and s. Superficially it suggests a picture of waves moving

to the right only, but that is valid only when the amplitude F̂p(k, s, x) is slowly varying as

a function of s.

Next write the Maxwell equations using the standard expressions for divergence and curl

in curvilinear coordinates. The metric tensor is diagonal with diagonal components

(gs, gx, gy) = (η(x, s), 1, 1) , η(x, s) = 1 + xκ(s) = 1 + x/R(s) , (5)

where κ(s) and R(s) are the curvature and radius of curvature of the reference orbit at s.

Substitute fields and sources in the form (2) and take the inverse Fourier transforms with

respect to z = s− βct and y to obtain the following system (in SI units).

div D = ρ :

ikÊsp + ∂sÊsp + ∂x(ηÊxp)− αpηÊyp = ηZoρ̂pc , (6)

div B = 0 :

ikĤsp + ∂sĤsp + ∂x(ηĤxp) + αpηĤyp = 0 , (7)

curl E + ∂B/∂t = 0 :

∂xÊyp − αpÊxp − ikβZoĤsp = 0 , (8)

ηαpÊsp − ikÊyp − ∂sÊyp − ikβηZoĤxp = 0 , (9)

ikÊxp + ∂sÊxp − ∂x(ηÊsp)− ikβηZoĤyp = 0 , (10)

curl H− ∂D/∂t = J :

∂xĤyp + αpĤxp + ikβÊsp/Zo = Ĵsp , (11)

−αpηĤsp − ikĤyp − ∂sĤyp + ikβηÊxp/Zo = ηĴxp , (12)

ikĤxp + ∂sĤxp − ∂x(ηĤsp) + ikβηÊyp/Zo = ηĴyp , (13)

where Zo = µoc = 1/(εoc) is the impedance of free space.
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These equations may be solved algebraically for all field components in terms of Êyp and

Ĥyp and their derivatives, yielding the results

Êsp = − 1

γ2
p

[
αp
η

(ikÊyp + ∂sÊyp) + iβkZo(Ĵsp − ∂xĤyp)

]
, (14)

Êxp = − 1

γ2
p

[
αp∂xÊyp + iβkZo

(
Ĵxp +

1

η
(ikĤyp + ∂sĤyp)

)]
, (15)

ZoĤsp = − 1

γ2
p

[
− αpZo

(
Ĵxp +

1

η
(ikĤyp + ∂sĤyp)

)
+ iβk∂xÊyp

]
, (16)

ZoĤxp = − 1

γ2
p

[
Zoαp(Ĵsp − ∂xĤyp)−

iβk

η
(ikÊyp + ∂sÊyp)

]
, (17)

γ2
p = (βk)2 − α2

p . (18)

Moreover, Êyp and Ĥyp are obtained as solutions of two independent wave equations with

sources. To derive the wave equations one may combine the transformed Maxwell equations

as stated above, or proceed from the wave equations in Cartesian form and transform the

differential operator to Frenet-Serret coordinates. The equation for F̂p = (Êyp, Ĥhp) with

source Ŝp =
(
ŜEp, ŜHp

)
is

− 1

η2

[(
2ik − κ′x

η

)
∂F̂p
∂s

+
∂2F̂p
∂s2

]
=
∂2F̂p
∂x2

+
κ

η

∂F̂p
∂x

+

[
γ2
p −

k2

η2
− ikκ′x

η3

]
F̂p − Ŝp , (19)

where

ŜEp = Z0(αpcρ̂p − ikĴyp) , ŜHp =
κ

η
Ĵsp +

∂Ĵsp
∂x

+
ik

η
Ĵxp . (20)

The factor κ′ in (19) is nonzero where the reference trajectory (which need not be an

actual particle trajectory) changes from straight to curved or vice versa. If the change is

abrupt at s = s0 then κ′ contains δ(s − s0), and it is doubtful that the wave equation can

be given a meaning in a neighborhood of that point. On the other hand, if we give κ(s) a

smooth transition over a distance comparable to a typical fringe field extent in a bending

magnet, then each of the terms with κ′ is small compared to the term immediately preceding

it in (19). Accordingly we drop κ′ terms but then allow κ to be a step function at bend-

straight transitions, elsewhere in the equation. The solution F̂p is required to be continuous

at transitions. Integration of the equations with continuous κ but without κ′ terms seems

feasible, but has not yet been attempted.

We also drop the transverse currents Ĵxp, Ĵyp and proceed to the main approximation,

which is to assume that the amplitude F̂p in (2) is slowly varying as a function of s. We
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may state the criterion for slow variation in terms of a norm, for instance

‖f‖ =

∫
|f(x)|dx , (21)

where dependence of f on variables other than the transverse coordinate x is suppressed.

Then the requirement in (2) is∥∥∥∥∂2F̂p
∂s2

∥∥∥∥� 2k

∥∥∥∥∂F̂p∂s

∥∥∥∥ , s0 ≤ s ≤ s1 , (22)

over the interval of integration [s0, s1]. This does not make sense as k → 0, but a property

of CSR in a chamber is that values of k appreciably less than a “shielding cutoff” k0 never

occur. We shall actually monitor the condition (22) in our calculations, which as far as we

know has not been done before in similar CSR studies. For convenience (22) is called the

Slowly Varying Amplitude (SVA) Approximation or Paraxial Approximation. In our view

the former name is more apt, since it reminds us of the only condition that need be enforced.

Now within a bend of constant bending radius R the simplified wave equation takes the

form

∂F̂p
∂s

= i
(x+R)2

2kR2

[
∂2F̂p
∂x2

+
1

x+R

∂F̂p
∂x

+

(
γ2
p −

( kR

x+R

)2
)
F̂p − Ŝp

]
, (23)

ŜEp = Z0αpcρ̂p , ŜHp =
1

x+R
Ĵsp +

∂Ĵsp
∂x

. (24)

The corresponding equation in a straight section is obtained in the limit R→∞ as

∂F̂p
∂s

=
i

2k

[
∂2F̂p
∂x2

− α2
pF̂p − Ŝp

]
, (25)

ŜEp = Z0αpcρ̂p , ŜHp =
∂Ĵsp
∂x

. (26)

These equations are sometimes described as “parabolic”, but that is a misnomer. They are

of Schrödinger type owing to the factor i, with mathematical properties different from those

of a proper parabolic equation.

We next choose a simple factored form for the charge density of the beam, good enough

for the present limited study but capable of being generalized. With the corresponding

current density it is

ρ(s, x, y, t) = qλ(s− βct)δ(x)H(y) , J(s, x, y, t) = ( βcρ, 0, 0 ) , (27)∫
λ(z)dz =

∫
H(y)dy = 1 , q =

∫
ρ(s, x, y, t)η(x, s)dsdxdy , (28)
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where q is the total charge. The continuity equation is satisfied. By (2),(3), and (4), the

Fourier transform with respect to z and y is

ρ̂p = qλ̂(k)Hpδ(x) , λ̂(k) =
1

2π

∫
e−ikzλ(z)dz , Hp =

1

g

∫ g

−g
sin(αp(y+g))H(y)dy . (29)

For H we choose a Gaussian of zero mean and variance σy � h. Then Hp is zero for even p

(as it is for any even function H(y)), while for odd p we have

Hp = (−1)(p−1)/2 1

g
exp

(
− 1

2
(αpσy)

2
)
. (30)

Thus the sources in (24) become

ŜEp = qZ0αpcλ̂(k)Hpδ(x) , ŜHp = qβcλ̂(k)Hp

(
δ(x)/R + δ′(x)

)
. (31)

II. NUMERICAL SOLUTION OF THE SIMPLIFIED WAVE EQUATION

An elementary way to approach the solution of (23) or (25) is to discretize the right

hand side on a grid in x-space, representing the x-derivatives by finite differences. The

discretization involves values of the solution at the boundaries, F̂p(k, s, x±(s)), which are to

be fixed at values required by the boundary conditions at a perfect conductor. The equation

is then regarded as a system of ordinary differential equations, with s as the independent

variable, in the complex unknowns F̂p(k, s, xi) , i = 2, · · · , N−1. Here the xi are the interior

points of the x-grid. The system is treated as an initial value problem, the initial value being

the s-independent solution in an infinite straight wave guide.

A. A Transformation to Regularize the Effective Source

There is an impediment to discretization, however, due to the δ(x) and δ′(x) in the source

terms (31). By a change of the dependent variable, this source can be replaced by a new

effective source which behaves as θ(x) at x = 0, where θ(x) is the Heaviside step function,

equal to 0 for x < 0 and 1 otherwise. A second transformation gives the continuous function

xθ(x) in the effective source, and successive transformations can make the source arbitrarily

smooth.

For F̂p = Êyp the expression in square brackets on the right hand side of (23) or (25) can

be written to emphasize the x-dependence as

Φ = u′′ + a(x)u′ + b(x)u− σδ(x) , u(x) = Êyp(k, s, x), σ = qZ0αpcλ̂(k)Hp . (32)
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Now define a new dependent variable v(x) by

u(x) = σxθ(x) + v(x) , (33)

and note that

Φ = v′′ + a(x)v′ + b(x)v + σ(a(x) + xb(x))θ(x) , (34)

Since ∂u/∂s = ∂v/∂s, the differential equation for v is the same as that for u, except for

the new source

S̃Ep = −σ(a(x) + b(x)x)θ(x) , (35)

replacing σδ(x). The new source is much more suitable for discretization, being piecewise

continuous with a jump of −σa(0) at x = 0.

Numerical integration of the differential equations with this setup was found to be only

partly successful. An instability was encountered at large p in some cases, a behavior that

could be traced to the jump. To remove the jump we put

v(x) = −σ
2
a(x)x2θ(x) + w(x) . (36)

Now the term in v′′ from the second derivative of −x2/2 takes out the term σa(x)θ(x) in

(34). The source for w is proportional to xθ(x), since Φ takes the form

Φ = w′′ + aw′ + bw − σ
(
2a′ + a2 − b+ (a′′ + aa′ + ab)x/2

)
xθ(x) . (37)

Clearly, this process can be continued, the next transformation being

w(x) =
σ

6

(
2a′(x) + a2(x)− b(x)

)
x3θ(x) + ξ(x) , (38)

which yields a source for ξ proportional to x2θ(x).

A similar procedure works for the magnetic field, even though the source to start with

is more singular. For F̂p = Ĥyp the expression in square brackets on the right hand side of

(23) or (25) has the form

Ψ = u′′+a(x)u′+b(x)u−τ(δ(x)/R+δ′(x)) , u(x) = Ĥyp(k, s, x), τ = qβcλ̂(k)Hp . (39)

The first transformation to remove δ′ also removes δ because of the special form of a(x).

Thus

u(x) = τθ(x) + v(x) , (40)
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yields

Ψ = v′′ + a(x)v′ + b(x)V + τ
(
b(x)θ(x) + (a(x)− 1/R)δ(x)

)
= v′′ + a(x)v′ + b(x)v + τb(x)θ(x) , (41)

thus a new source

S̃Hp = −τb(x)θ(x) , (42)

replacing τ(δ(x)/R+δ′(x)). The δ drops out because in the bend a(x)δ(x) = δ(x)/(x+R) =

δ(x)/R whereas in the straight a = 0 and R = ∞. As in the discussion above, the second

transformation will be

v(x) = −1

2
b(x)x2θ(x) + w(x) , (43)

giving

Ψ = w′′ + aw′ + bw − τ
(
2b′ + ab+ (b′′ + ab′ + b2)x/2

)
xθ(x) , (44)

from which we see that the third transformation is

w(x) =
τ

6

(
2b′(x) + a(x)b(x)

)
x3θ(x) + ξ(x) . (45)

Now let us summarize the net effect of two smoothing transformations, invoking the

explicit forms of the coefficients a and b. The effective source for the smoothed field w =

(wE, wH) is denoted by S̃p = (S̃Ep, S̃Hp), and kR is denoted by n, as is conventional in

periodic problems where n is an integer. In the bend,

Êyp = σ

[
1− 1

2

x

x+R

]
xθ(x) + wE(x) ,

S̃Ep = −σ
[
γ2
p −

n2 − 1

(x+R)2

][
1− 1

2

x

x+R

]
xθ(x) . (46)

Ĥyp = τ

[
1− 1

2

(
γ2
p −

n2

(x+R)2

)
x2

]
θ(x) + wH(x) ,

S̃Hp = τ

[
1

x+R

(
γ2
p +

3n2

(x+R)2

)
+

1

2

(
− 4n2

(x+R)4
+
(
γ2
p −

n2

(x+R)2

)2
)
x

]
xθ(x) .

(47)

The corresponding formulas for the straight section, obtained in the limit R→∞, are

Êyp = σxθ(x) + wE(x) , S̃Ep = σ(α2
p + k2/γ2)xθ(x) , (48)

Ĥyp = τ
(
1 +

1

2
α2
px

2
)
θ(x) + wH(x) , S̃Hp =

τ

2
(α2

p + k2/γ2)2x2θ(x) , (49)
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where γ is the Lorentz factor.

Note that Êyp and Ĥyp must be continuous at the transitions between bend and straight,

while the corresponding wE, wH are not continuous. This must be kept in mind in designing

the algorithm for s-integration.

In (15) and (17) we have the factor Ĵsp − ∂xĤyp, where Ĵsp = τδ(x) . Fortunately, the

τδ(x) is cancelled by the term τ∂xθ(x) in ∂xĤyp as given by (47). Such a cancellation was

noticed long ago in analytical models [4], but a good way to handle it in a numerical context

was lacking before the present innovation.

B. Boundary Conditions at the Vertical Walls

With perfect conductivity the boundary conditions at the vertical walls are

Êyp(k, s, x±(s)) = Êsp(k, s, x±(s)) = 0 , Ĥxp(k, s, x±(s)) = 0 . (50)

From (14) and (17) we see that these conditions are met if Êyp satisfies a Dirichlet condition

and Ĥyp a Neumann condition, namely

Êyp(k, s, x±(s)) = 0 , ∂xĤyp(k, s, x±(s)) = 0 . (51)

The corresponding conditions on the smoothed fields w at the outer walls can be read off

from (46) and (47). Thus in the bend,

wE(x−) = 0 , wE(x+) = bE(x+) := −σ
[
1− 1

2

x+

x+ +R

]
x+ , (52)

∂xwH(x−) = 0 , ∂xwH(x+) = ∂xbH(x+) := τ

[
γ2
p −

n2

(x+ +R)2
+

n2x+

(x+ +R)3

]
x+ ,

(53)

and in the straight

wE(x−) = 0 , wE(x+) = −σx+ , (54)

∂xwH(x−) = 0 , ∂xwH(x+) = −τα2
px+ . (55)

C. Finite Difference Scheme

We suppose that the field values are interpolated by 4-th degree polynomials in x, and

that derivatives are given by differentiating the interpolation. The 4-th degree interpolation
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[16] of a function f(x) on a grid {xi}Ni=1 with uniform cell size ∆x is

f(x) =
2∑

j=−2

L(p, j)f(xi + j∆x) + ε , x = xi + p∆x , (56)

with Lagrange coefficients

L(p,−2) =
1

24
(p2 − 1)p(p− 2) ,

L(p,−1) = −1

6
(p− 1)p(p2 − 4) ,

L(p, 0) =
1

4
(p2 − 1)(p2 − 4) ,

L(p, 1) = −1

6
(p+ 1)p(p2 − 4) ,

L(p,−2) =
1

24
(p2 − 1)p(p+ 2) . (57)

The error ε is O((∆x)5), and is estimated in terms of the 5-th derivative [16]. For evaluation

at interior points of the grid x = xk, k = 3, · · · , N − 2 we take i = k and p = 0 for

centered interpolation, whereas at border points x = xk, k = 1, 2, N − 1, N we take i =

3, 3, N−2, N−2 with p = −2,−1, 1, 2, respectively, for the necessary off-center interpolation.

Differentiating (56) with respect to p∆x gives the formulas for derivatives. Define

L1(p, j) =
1

∆x

∂

∂p
L(p, j) , L2(p, j) =

1

(∆x)2

∂2

∂p2
L(p, j) . (58)

Now we can write the discretized form of the wave equation (23) for Êyp as follows, in terms

of the smooth field wE:

∂wE(xi)

∂s
= i

(xi +R)2

2kR2

[
D2(xi) +

1

xi +R
D1(xi) +

(
γ2
p −

n2

(xi +R)2

)
wE(xi)− S̃Ep(xi)

]
,

i = 2, · · · , N − 1 , (59)

where

Dk(xi) =
2∑

j=−2

Lk(0, j)wE(xi + j∆x) , i = 3, · · · , N − 2 ,

Dk(x2) =
2∑

j=−2

Lk(−1, j)wE(x3 + j∆x) ,

Dk(xN−1) =
2∑

j=−2

Lk(1, j)wE(xN−2 + j∆x) . (60)
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In view of (52) the boundary values that appear in these sums are

wE(x1) = 0 , wE(xN) = bE(xN) . (61)

where the inner and outer boundaries are at (x−, x+) = (x1, xN). The equation for Ĥyp in

terms of the smooth field wH has the same form, with the appropriate definitions from (47),

except that the boundary values are expressed in terms of interior values by discretizing the

Neumann conditions (53):

∂wH(x1) ≈
2∑

j=−2

L1(−2, j)wH(x3 + j∆x) = 0 ,

∂wH(xN) ≈
2∑

j=−2

L1(2, j)wH(xN−2 + j∆x) = ∂xbH(xN)

Solving for the boundary values we have

wH(x1) = − 1

L1(−2,−2)

2∑
j=−1

L1(−2, j)wH(x3 + j∆x) , (62)

wH(xN) =
1

L1(2, 2)

[
−

1∑
j=−2

L1(2, j)wH(xN−2 + j∆x) + ∂xbH(xN)

]
(63)

In a straight section the discretized equation like (59) is

∂wE(xi)

∂s
=

i

2k

[
D2(xi)− α2

pwe(xi)− S̃Ep(xi)
]
, i = 2, · · · , N − 1 , (64)

with the definitions of (48), (60) and the boundary conditions of (54).

D. Initial Values for the Evolution in s

The system of linear differential equations (59) is to be solved as an initial value problem.

Within a single bend it is autonomous; i.e., its coefficients are independent of s. We take

the initial value for s = 0 at the beginning of the bend to be the steady-state field produced

by the source in an infinitely long straight chamber. Thus the equation for an initial field

F̂p is (25) with ∂F̂p/∂s = 0, or

∂2F̂p
∂x2

− α2
pF̂p = Ŝp . (65)

Its general solution is a particular solution plus the general solution of the homogeneous

equation,

F̂p(x) = A exp(αpx) +B exp(−αpx) +

∫ x

x−

sinh
(
αp(x− y)

)
Ŝp(y)dy . (66)
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in which A and B must be chosen to meet the boundary conditions. With the notation

defined in (32) and (39) we have ŜEp(x) = σδ(x), ŜHp(x) = τ(δ(x)/R + δ′(x)). Evaluating

the integral in (66) and applying the boundary conditions (51) we find

Êyp =
σ

αp

[
− sinh(αpx+)

sinh(αp(x+ − x−))
sinh(αp(x− x−)) + sinh(αpx)θ(x)

]
, (67)

Ĥyp = τ

[
− sinh(αpx+)

sinh(αp(x+ − x−))
cosh(αp(x− x−)) + cosh(αpx)θ(x)

]
. (68)

The corresponding initial values of the other field components are derived from (14)-(17):

Êsp = −ikαp
γ2
p

1

(1 + β)γ2
Êyp , (69)

Êxp =
Z0

β
Ĥyp , (70)

Ĥsp = 0 , (71)

Ĥxp = − β

Z0

[
1 +

(
k

γγp

)2]
Êyp , (72)

where γ is the Lorentz factor. The mechanism for the expected small value of Êsp at large

γ is the near cancellation of the terms from Êyp and Ĵsp − ∂xĤyp in (14). The cancellation

becomes less precise during field evolution in the bend, but Êsp is still a small difference of

two large terms.

A numerical difficulty arises in the application of (67) and (68) because of a close cancel-

lation of large terms at large x ≈ x+. The increasing part of the second term in (67) or (68),

namely exp(αpx)/2, cancels against a part of the first term. By some rearrangement we can

write the first term as − exp(αpx)/2 plus a remainder, and the residual after cancellation is

suitable for numerical evaluation. It takes the following forms:

Êyp = − σ

2αp

[
e−αpx + eαpx(a+ c+ ac)

]
, Ĥyp = −τ

2

[
− e−αpx + eαpx(b+ c+ bc)

]
,

a = −e−2αpx+ − e−2αp(x−x−) + e−2αp(x+x+−x−) ,

b = −e−2αpx+ + e−2αp(x−x−) + e−2αp(x+x+−x−) ,

c = e−2αp(x+−x−)/(1− e−2αp(x+−x−)) . (73)
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E. Evolution in s

Suppressing irrelevant variables we write the system of differential equations for evolution

of w = (wE, wH) as
dw

ds
= f(w, s) , (74)

where w and f are vectors with N complex components, and f is linear in w. For the

approximation at s = s(n) = n∆s+ s(0) we write w(n) ≈ w(s(n)), where the integration step

∆s is allowed to be different in bends from what it is in straight sections. We adopt the

leapfrog integration rule, based on the central difference approximation to the derivative:

w(n+1) − w(n−1)

2∆s
= f(w(n), s(n)) , n = 1, 2, · · · (75)

To define w(1) for the first step we use Euler’s rule,

w(1) − w(0)

∆s
= f(w(0), s(0)) . (76)

As remarked above, the value of w at the end of a bend is not in general equal to the value

of w at the beginning of a following straight, owing to a change in definition of w through

source smoothing. Consequently, we use an Euler step to initialize a leapfrog integration

in the straight, with the appropriate initial value defined by continuity of the physical

(unsmoothed) field at the bend-straight transition.

Of course there are more powerful methods than the finite difference method for dis-

cretizing in x and the leapfrog method for s. We have chosen these simple schemes merely

to make our strategies clear and to avoid complications in programming for this exploratory

study. We have in fact compared results from a more sophisticated x-discretization using

the Discontinuous Galerkin Method [17], as will be reported presently.

III. POYNTING FLUX AT THE WALLS

The Poynting vector E×H evaluated at a wall describes, through its outwardly directed

normal component, the flow of energy into that wall, per unit area and per unit time. At

a perfectly conducting wall E is normal to the wall while H is tangential, so the Poynting

vector vanishes. The resistive wall boundary condition (A14) implies a tangential component

of E at the wall and a non-zero energy flow. We can calculate this flow to lowest order from
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a knowledge of H0, the magnetic field computed for perfectly conducting walls. We replace

H by H0 in both the second factor of the Poynting vector and in the boundary condition.

In this approximation the Poynting vector at a point r = (s, x, y) on the wall is

E×H = (1− i)
(
βZ0

2σ

)1/2 ∫
dkeik(s−βct)k1/2n× Ĥ0(k, r)×

∫
dk′eik

′(s−βct)Ĥ0(k′, r) . (77)

From here on we write Ĥ for Ĥ0 in accord with the notation of previous sections.

Since we are interested in the total energy loss we may integrate over t. Note that∫ ∞
−∞

dt exp(−iβct(k + k′)) =
2π

βc
δ(k + k′) , Ĥ(−k, r) = Ĥ(k, r)∗ , (78)

so that∫ ∞
−∞

dt E(r, t)×H(r, t) = (1− i)
(

2Z0

βσ

)1/2
π

c

∫
dk k1/2

(
n× Ĥ(k, r)

)
× Ĥ(k, r)∗ (79)

Here the integrand has finite support in t because the fields follow the source, and are

negligible for |s−βct| greater than some length L, the maximum range of wake or predecessor

fields. Now notice that(
n× Ĥ

)
× Ĥ∗ = (n · Ĥ∗)Ĥ− (Ĥ · Ĥ∗)n = −(Ĥ · Ĥ∗)n , (80)

since H satisfies the boundary condition for a perfect conductor, with zero normal compo-

nent. Moreover, (1− i)k1/2 goes into its complex conjugate as k → −k, since k1/2 → i|k1/2|

as we have defined it in the complex plane in Appendix A. Then in view of (78) the integral

on k is twice the real part of the integral on positive k and∫ ∞
−∞

dt E(r, t)×H(r, t) = −n
(

2Z0

βσ

)1/2
2π

c

∫ ∞
0

dk k1/2Ĥ(k, r) · Ĥ(k, r)∗ (81)

We see that the time-integrated energy flux is solely along the normal direction and is

positive toward the wall at all points (since n is directed inward toward the vacuum).

Next we wish to integrate (81) over one transverse dimension at the walls; namely, over

y at x = x± for vertical walls and over x at y = ±g for horizontal walls. By (2) and (3) the

Fourier development in y is

Ĥ(k, s, x, y) =
∞∑

p(odd)=1

(
esφ

(2)
p (y)Ĥsp(k, s, x)+exφ

(2)
p (y)Ĥxp(k, s, x)+eyφ

(1)
p (y)Ĥyp(k, s, x)

)
.

(82)
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On the vertical walls this reduces to

Ĥ(k, s, x±, y) =
∞∑

p(odd)=1

(
esφ

(2)
p (y)Ĥsp(k, s, x±) + eyφ

(1)
p (y)Ĥyp(k, s, x±)

)
. (83)

while on the horizontal walls it becomes

Ĥ(k, s, x,±g) = ±
∞∑

p(odd)=1

(
esĤsp(k, s, x) + exĤxp(k, s, x)

)
. (84)

At the vertical walls we can use the orthogonality of (4) to find the y-integral as

−n ·
∫ g

−g
dy

∫ ∞
−∞

dt E(s, x±, y, t)×H(s, x±, y, t) =(
2Z0

βσ

)1/2
2gπ

c

∫ ∞
0

dk k1/2
∑
p

(
|Ĥsp(k, s, x±)|2 + |Ĥyp(k, s, x±)|2

)
(85)

At the horizontal walls the x-integral is

−n ·
∫ x+

x−

dx

∫ ∞
−∞

dt E(s, x,±g, t)×H(s, x,±g, t) =(
2Z0

βσ

)1/2
2π

c

∫ ∞
0

dk k1/2
∑
p,p′

∫ x+

x−

dx

(
Ĥsp(k, s, x)Ĥ∗sp′(k, s, x) + Ĥxp(k, s, x)Ĥ∗xp′(k, s, x)

)
.

(86)

To find the total energy deposited in the walls the expressions (85) and (86) must be inte-

grated over s using the numerical solutions for the tangential H fields.

IV. TOTAL ENERGY RADIATED AND THE WAKE FIELD

Here we derive the formula for the total energy radiated, for comparison to the amount

of energy absorbed in resistive walls. By conservation of energy this is just the negative of

the work done on the beam by the longitudinal component of the electric field. The work

done on an infinitesimal charge element dQ = ρ(r, t)dr in time dt is

dW = ρ(r, t)drEs(r, t)βcdt , Es(r, t) =

∫
dk eik(s−βct)

∞∑
p(odd)=1

sinαp(y+ g)Êsp(k, r) . (87)

Then the power radiated from all elements is

P = dE/dt = −βc
∫
drρ(r, t)Es(r, t) , (88)
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and the energy radiated while the bunch center moves from s = 0 to s = s̄ is

E(0, s̄) = −βc
∫ s̄/βc

0

dt

∫
drρ(r, t)Es(r, t) , (89)

For our simple model of the charge density in (27) we have

P = −qβc
∫
dsdxdyλ(s− βct)δ(x)H(y)

∫
dk eik(s−βct)

∞∑
p(odd)=1

sinαp(y + g)Êsp(k, s, x) =

= −qβcg
∑
p

Hp

∫
dk

∫
dsλ(s− βct)eik(s−βct)Êsp(k, s, 0) . (90)

The slowly varying amplitude Êsp(k, s, 0) changes little over the length of the bunch, so that

it may be replaced by Êsp(k, βct, 0) in (90). Then the s-integral gives just the conjugated

Fourier transform of λ so that

P = −2πqβcg
∑
p

Hp

∫
dk λ̂∗k Êsp(k, βct, 0) = −4πqβcg

∑
p

Hp

∫ ∞
0

dk λ̂∗k Êsp(k, βct, 0) ,

(91)

and

E(0, s̄) = −4πqβcg
∑
p

Hp

∫ ∞
0

dk λ̂∗k

∫ s̄

0

ds Êsp(k, s, 0) . (92)

For comparison to earlier work we are also interested in the longitudinal wake field,

W (z, s, x, y) = 2Re

∫ ∞
0

dk eikz
∑
p

Hp sinαp(y + g)Êsp(k, s, x) , z = s− βct (93)

Evaluated at x = 0 and integrated against the vertical charge distribution H(y) this becomes

W (z, s) = 2gRe

∫ ∞
0

dk eikz
∑
p

H2
p Êsp(k, s, 0) . (94)

For the parameters of our examples, H2
p from (30) is nearly equal to 1/g2 for the small values

of p that appear in the calculations.

APPENDIX A: RESISTIVE WALL BOUNDARY CONDITION

We recall the derivation of the resistive wall boundary condition, adapting it to our

particular context. We apply the wave equation obeyed by the field within the wall material,

which is assumed to have magnetic permeability µ, electric permittivity ε, and conductivity

σ, all independent of position and frequency. The basic assumption is that the variation
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of the field within the wall is by far the strongest in the direction normal to the wall.

This picture can be checked a posteriori by first assuming it to be true, then deducing the

consequent normal variation. This variation, characterized by a small penetration depth

(skin depth) can be compared with estimates of variation in the tangential directions.

Invoking Ohm’s Law J = σE, we have the curl equations within the wall as

curl H = σE + ε
∂E

∂t
, (A1)

curl E = −µ∂H
∂t

. (A2)

Next we take the Fourier transform with respect to t to obtain

curl H̃ = (σ − iωε)Ẽ , (A3)

curl Ẽ = iωµH̃, (A4)

where

F̃ (ω, r) =
1

2π

∫
dt eiωtF (r, t) , r = (s, x, y) . (A5)

The term −iωε from the displacement current is typically tiny in comparison to σ, and will

be dropped henceforth.

We define a positive depth coordinate ξ, the distance from the beginning of the wall to

an interior point of the wall medium, and a unit vector n normal to the wall and directed

from the wall toward the vacuum. At the horizontal walls ξ = ±(y− g), whereas at vertical

walls ξ = ±(x− x±). Then with the assumption of dominant normal variation the gradient

is represented as ∇ = −n∂/∂ξ, so that

−n× ∂H̃

∂ξ
= σẼ , −n× ∂Ẽ

∂ξ
= iωµH̃ , (A6)

We can then eliminate Ẽ in (A6) by taking the curl of the first equation and substituting

the second:

n× ∂

∂ξ

(
n× ∂

∂ξ
H̃

)
=

(
n · ∂

2H̃

∂ξ2

)
n− (n · n)

∂2H̃

∂ξ2
= iωµσH̃ . (A7)

Since ∇ · H̃ = ∂(n · H̃)/∂ξ = 0, we have

∂2H̃

∂ξ2
+ iωµσH̃ = 0 (A8)
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The general solution of this harmonic equation with complex frequency is

H̃ = a+ exp(ξ/∆) + a− exp(−ξ/∆) , ∆ = (iωµσ)−1/2 . (A9)

The a± depend only on coordinates other than ξ. Since the solution must decay at large

ξ > 0 we retain only the second term and choose the branch of the square root so that

Re∆ > 0, namely as

∆−1 = e−iπ/4(µωσ)−1/2 , (A10)

where the square root in (A10) is positive at positive real ω. We define this root in the

complex ω-plane with a cut on the positive real axis. It then acquires a factor of i in

analytic continuation to negative ω, so that ∆−1 has positive real part at negative as well

as positive ω. The conventional skin depth δ is defined by

∆−1 = (1− i)/δ , δ =

(
2

µωσ

)1/2

, (A11)

so that the field decays by a factor 1/e in a distance δ.

By (A9) we have ∂H̃/∂ξ = −H̃/∆ which when substituted in the first equation of (A6)

yields

Ẽ = (1− i)
(
µω

2σ

)1/2

n× H̃ . (A12)

Taking the limit ξ → 0 in (A12) we have the resistive wall boundary condition, since there

must be continuity with the fields in the vacuum.

The Fourier transform (A5) with respect to time is related to the transform (2) with

respect to s− βct by the phase factor exp(−iks)/βc, which cancels out in (A12). That is,

F̂ (k, s, x, y) =
1

2π

∫
d(s−βct)e−ik(s−βct)F (s, x, y, t) =

βc

2π
eiks

∫
dteikβctF (s, x, y, t) . (A13)

Thus with ω = βkc the boundary condition for the Fourier amplitudes used in this paper is

Ê(k, s, x, y) = (1− i)
(
βµck

2σ

)1/2

n× Ĥ(k, s, x, y) , (A14)

at every point (s, x, y) on the boundary, with the unit normal n to the boundary directed

toward the vacuum. With the good approximation µ = µ0, which we adopt henceforth, the

square root may be written in the convenient form (βZ0k/2σ)1/2. Similarly the skin depth

is δ = (2/βZ0kσ)1/2.
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To test the assumption of dominant normal variation, consider the parameters for the

example studied above, for the second bunch compressor in LCLS-II. The dominant fre-

quencies are such that 5 · 104 < kR < 106, R = 12.9 m, and for aluminum we have

σ ≈ 3.6 · 107 Ω−1m−1, while Z0 = 120π Ω. Thus the range of skin depth is about

4.5·10−8m < δ < 2·10−7m. Assuming that the variation of fields with s in the wall is compa-

rable to that in the vacuum, it will be characterized by the rapidly varying factor exp(iks),

hence with a length scale corresponding to the range of 1/k. We then should compare δ to 1/k

to test the assumption of dominant normal derivative. We have 7.5·10−4 < δ/k−1 < 3.4·10−3,

so the longitudinal variation indeed appears to be minor compared to the normal. On the

vertical walls we can estimate the variation in the y-direction from the highest important

mode in the Fourier development (2), which was found to be around p = 5 in the calcu-

lations. This mode has wavelength 2h/p with h = 2 cm in our example, so that the scale

of variation is in the sub-centimeter range. For the x-variation at the horizontal walls we

can refer to the numerical results as reported in Fig. showing variations on a sub-millimeter

scale at the highest relevant k. To summarize, it appears that tangential field variations are

slow compared to the normal variation due to the small skin depth, as was assumed in the

derivation of (A14).
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