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Abstract

We consider the role of R2 in general prediction models. These include linear mod-
els, generalized linear models, nonlinear regression models, nonparametric regression
models, and various complex computer models. For sample data yi and corresponding
predictors ỹi, we suggest that their squared sample correlation, called the squared pre-
dictive correlation, is the appropriate measure of the overall predictive ability of the
model. For linear models, this gives the standard definition of R2. The rationale for
this suggestion comes from putting the problem into a framework of general prediction
theory. In general prediction theory, the usual R2 from linear models can be viewed
as an estimate of the squared multiple correlation coefficient, which is a fundamen-
tal measure of how well the best linear predictor works. We extend the idea of the
squared multiple correlation coefficient by developing the maximum squared predictive
correlation which is a strictly analogous fundamental measure of how well the best
predictor works. We then argue that for nonlinear problems, R2 should be developed
as an estimate of the squared predictive correlation. The fact that we are estimating a
population parameter distinguishes this from many other attempts at extending R2 to
nonlinear models and also provides a basis for using R2 to compare nonnested models.
Of course, for standard linear models (with an intercept) this generalized procedure
gives the standard results. We observe that based on general prediction theory, the
actual predictions may be improved by finding new predictors ŷi obtained by regress-
ing the yis on the ỹis, however we also argue that in most commonly used statistical
procedures there is little to be gained by linearization. While R2 is a fundamental
measure of predictive ability, it is not a direct measure of goodness of fit. Nonetheless,
the relative sizes of R2 do bear on the issue of goodness of fit through the concept of
linearization. While most of these ideas are highly intuitive, we provide a basis for
them in general prediction theory, revisit the issue of R2 for regression through the
origin, and examine estimation and residual plots.

KEY WORDS: Best Linear Prediction; Best Prediction; Generalized Linear Models;
Linear Models; Multiple Correlation Coefficient; Nonlinear Regression; Nonparametric
Regression.
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1. Introduction

The coefficient of determination R2 is a useful measure in linear models. There have been
numerous attempts to extend the idea of R2 to nonlinear models, often creating measures
that mimic the behavior of the linear models R2, see Kvalseth (1985). Our approach is
based on predicting an observable random variable y using an observable random vector x.
A predictor f(x) is evaluated using squared error prediction loss, E[y − f(x)]2. Lack of fit
and goodness of fit relate to how far or close a (linear) predictor comes to the best (linear)
predictor.

In a (correct) linear model, R2 estimates the squared multiple correlation coefficient, that
is, the maximum of the squared correlation coefficients between y and linear predictors based
on x. It is also the squared correlation between y and the best linear predictor. In more
general problems, we suggest that R2 should estimate the squared correlation between y and
the best predictor, or the maximum of the squared correlation coefficients between y and
arbitrary predictors.

R2 is often thought to indicate how well a model fits data. There is little to justify such
a claim. The size of R2 is not directly related to lack or goodness of fit. Large R2 values
can occur with demonstrably inadequate models and small R2 values can occur with perfect
models.

Example: Table 1 contains Hooker’s data on the relationship between atmospheric pres-
sure and the boiling point of water as discussed in Weisberg (1985, p. 28) and Christensen
(1996, p. 191). A simple linear regression of pressure on temperature gives R2 = (.99588)2.
Figure 1 is a plot of the residuals versus the predicted values. It shows a palpable lack of fit.
In Section 7 we argue that an alternative residual plot is more relevant.

One can also simulate data from a known linear model (using the best predictor), and watch
R2 decrease to 0 as the error variance increases. The absolute size of R2 is not related to
goodness of fit but when comparing alternative models based on the same group of predictors,
relative sizes of R2 indicate relative goodness of fit. Based on its theoretical genesis, R2 is
properly considered an internal measure of the predictive ability of the model. (An internal
measure estimates the squared correlation with the same data used to fit the model.)

Given y predictors of y are simply functions of x. Suppressing the functional notation,
we often denote a predictor as ỹ or ŷ, with ŷ generally used as a modification of the predictor
ỹ. In practice, a predictor f(x) is often modeled as a member of a family of functions for
which data are used to identify (estimate) a particular member of the family denoted f̂(x).

For y and a predictor ỹ, the squared correlation is an appropriate theoretical measure of
the predictive ability of the model, here called the squared predictive correlation. For data
yi, i = 1, . . . , n, and corresponding predictions ỹi, estimate the squared predictive correlation
using

R2 ≡ (syỹ)
2

s2
ys

2
ỹ

≡ (syỹ)
2

syysỹỹ

=
[
∑n

i=1
(yi − ȳ·)(ỹi − ȳ∗

· )]
2

∑n
i=1

(yi − ȳ·)2
∑n

i=1
(ỹi − ȳ∗

· )
2
,
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where ȳ∗
· is the mean of the ỹis. In the Appendix we show that for a linear model with

an intercept this gives the commonly used definition of R2 which is the sum of squares for
regression divided by the sum of squares total. This measure has also been discussed by
Mittlbock and Schemper (1995) and notably by Zheng and Agresti (2000), who look at it
in the context of generalized linear models rather than general prediction theory. General
prediction theory allows us to give some different results and insights. Additional historical
perspective is presented in the closing section of this article.

Section 2 shows that the squared correlation between y and the best predictor maximizes
the squared correlation between y and arbitrary (nonlinear) predictors. Section 2 also in-
vestigates linearized predictors and provides a link between squared predictive correlation
and goodness of fit. Predictors are never harmed by linearizing them and, for linearized
predictors, the larger the squared predictive correlation, the smaller the expected squared
prediction error.

One useful aspect of this theory is that it allows comparison of nonnested models. The
best predictor is unknown, and various models for it can be proposed. In binomial regression
one might consider both logistic and probit models.

Example: Christensen (1997, Table 2.1) reproduces the Challenger space shuttle O-ring
data. We predict the event that one or more O-rings failed as a function of temperature. The
squared predictive correlation for the logit and probit models are (.58813)2 and (.58201)2,
respectively, so the logit model looks slightly better although there is not much difference
in predictive ability. If we use a quadratic model in temperature, the squared predictive
correlations are (.62177)2 and (.61787)2, respectively. Not surprisingly, R2 goes up when
adding a predictor variable.

Example: Two standard approaches to dealing with the lack of fit in the Hooker data are
1) to fit a quadratic and 2) regressing log of pressure on temperature. Fitting these models
give R2s of (.99922)2 and (.99898)2, respectively. The values are not comparable, being
based on different dependent variables. Exponentiating the fitted values from log pressure
on temperature and computing their squared correlation with pressure gives (.99913)2, which
is comparable to the R2 for fitting a quadratic to pressure. These R2 values are numerical
summaries of Figures 2 and 3 which plot y versus the predicted values for the quadratic
model and the exponentiated fitted values for log pressure, respectively. Clearly, the two
models predict almost equally well.

The idea that a larger R2 means a better model is complicated by estimating, first the
parameters of the prediction models, and then the squared predictive correlations. The
double use of the data leads to complications as in linear regression where, because of the
estimation process, models with lower R2 and lower numbers of predictors are often better
than models with higher R2s and more predictors. Theoretically, the best predictor based
on p variables can never be better than the best predictor based on those p variables plus
additional variables. The worst thing that could happen is that the additional variables
are irrelevant. Nonetheless, it is better to drop marginally important variables than to
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estimate their parameters even though, outside of linear models, there is no guarantee that
the estimate of the squared predictive correlation will increase with increased model size.

Squared predictive correlation assumes only the existence of second moments and condi-
tional expectations, so it applies unchanged to almost any prediction problem. Even in an
extreme case such as y taking on only the values 0 and 1, squared error prediction loss has a
long history of use in the form of Brier scores, cf. Blattenberger and Lad (1985) and Schmid
and Griffith (1998).

Section 2 argues that for nonlinear models R2 should be defined so as to estimate the
squared predictive correlation. The question of estimation arises in two distinct forms: first,
as an effort to approximate the theoretically optimal predictor, and second, as an effort to
approximate the squared predictive correlation between y and the best predictor. Even if
one knows the best predictor, there remains the issue of estimating its squared predictive
correlation. In linear models, least squares estimates can be viewed as natural estimates
of the best linear predictor and the standard definition of R2 is a natural estimate of the
squared multiple correlation coefficient. Section 3 addresses the issue of estimating the
squared predictive correlation for general prediction models (linear or nonlinear), leaving
the issue of estimating the best predictor to Section 5.

Section 4 examines the specific problem of defining R2 for regression through the origin
and provides a new measure of R2 based on general prediction theory.

Section 5 examines method of moments estimation. Estimating equations provide a
natural method for finding method of moments estimators in nonlinear prediction problems.
Section 6 discusses error estimation and Section 7 gives a result from general prediction
theory that provides a theoretical basis for looking at residual plots as a method of detecting
lack of fit. Section 8 contains discussion and conclusions.

2. General Prediction Theory

Suppose we have random variables y, x1, x2, . . . , xp. Regression is the problem of predicting y
from the values of x1, . . . , xp. Let x be the vector x = (x1, . . . , xp)

′. The best predictor of y is
a function f(x) that minimizes the mean squared error, E[y−f(x)]2. For proofs of Theorems
1 and 2, see Christensen (2002, Sec. 6.3). Other results are proven in the Appendix.

Theorem 1. Let m(x) ≡ E(y|x), then for any other predictor f(x), E[y − f(x)]2 =
E[y − m(x)]2 + E[m(x) − f(x)]2; thus m(x) is the best predictor of y.

Technically, the conditional expectation is defined only up to sets of measure 0, but that
need not concern us in any of our calculations.

Let E(y) = µy, Var(y) = σyy , E(x) = µx, Cov(x) = Σxx, and Cov(x, y) = Σxy = Σ′
yx =

Cov(y, x)′. Let β∗ be a solution to Σxxβ = Σxy. While it is not crucial, we will assume that
Σxx is nonsingular.
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Theorem 2. Ê(y|x) ≡ µy+(x−µx)
′β∗ is the best linear predictor of y and E[y−α−x′β]2 =

E[y − Ê(y|x)]2 + E[Ê(y|x) − α − x′β]2.

Consider an arbitrary predictor ỹ(x). This is a function of x alone and not a function
of y. Let E[ỹ(x)] = µỹ, Var[ỹ(x)] = σỹỹ, and Cov[y, ỹ(x)] = σyỹ with similar notations for
other functions of x, e.g., σym = Cov[y, m(x)]. The squared predictive correlation of ỹ(x)
is Corr2[y, ỹ(x)]. The highest squared predictive correlation is obtained by using the best
predictor. Note that in the special case where m(x) is the best linear predictor, the highest
squared predictive correlation equals the squared multiple correlation coefficient.

Proposition 3. Cov[y, ỹ(x)] = Cov[m(x), ỹ(x)], so Cov[y, m(x)] = Var[m(x)] = σmm and
Corr2[y, m(x)] = σmm/σyy.

Theorem 4. Corr2[y, ỹ(x)] ≤ Corr2[y, m(x)].

Theorem 4 is also established in Rao (1973, Sec. 4g.1). From Theorem 4, the best
regression function m(x) has the highest squared predictive correlation. When we have
perfect prediction, the highest squared predictive correlation is 1. In other words, if the
conditional variance of y given x is 0, then y = m(x) a.s., and the highest squared predictive
correlation is the correlation of m(x) with itself, which is 1. On the other hand, if there is
no regression relationship, i.e., if m(x) = µy a.s., then σmm = 0, and the highest squared
predictive correlation is 0.

We would now like to show that as the squared predictive correlation increases, we get
increasingly better prediction. First we need to deal with the fact that high squared predic-
tive correlations can be achieved by bad predictors. Just because ỹ(x) is highly correlated
with y does not mean that ỹ(x) is actually close to y. Recall that ỹ(x) is simply a random
variable that is being used to predict y. As such, ỹ(x) acts as a linear predictor of y, that
is, ỹ(x) = 0 + 1ỹ(x). We can apply Theorem 2 to this random variable to obtain a linear
predictor that is at least as good as ỹ(x), namely

ŷ(x) = µy +
σyỹ

σỹỹ

[ỹ(x) − µỹ].

We refer to such predictors as linearized predictors. Note that E[ŷ(x)] ≡ µŷ = µy,

σŷŷ ≡ Var[ŷ(x)] =

(

σyỹ

σỹỹ

)2

σỹỹ =
(σyỹ)

2

σỹỹ

,

and

σyŷ ≡ Cov[y, ŷ(x)] =
σyỹ

σỹỹ

σyỹ =
(σyỹ)

2

σỹỹ

.

In particular, σŷŷ = σyŷ, so the squared predictive correlation of ŷ(x) is

Corr2[y, ŷ(x)] =
σŷŷ

σyy

.
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In addition, the direct measure of the goodness of prediction for ŷ(x) is

E[y − ŷ(x)]2 = σyy − 2σyŷ + σŷŷ = σyy − σŷŷ.

This leads directly to

Theorem 5. For two linearized predictors ŷ1(x) and ŷ2(x), the squared predictive corre-
lation of y2(x) is higher if and only if y2(x) is a better predictor.

It should be noted that linearizing m(x) simply returns m(x). In their discussion, Zheng
and Agresti (2000) were unable to draw the conclusion that increased model complexity
implies an increase in predictive correlation. Since, as mentioned in Section 1, increased
model complexity cannot hurt the best predictor, the squared predictive correlation cannot
decrease under increased model complexity.

3. General Comments on Estimation

The usual definition of R2 from linear models provides an estimate of the squared multiple
correlation coefficient, which is a fundamental measure of how well the best linear predictor
works. A strictly analogous fundamental measure of how well the best predictor works is
the maximum squared predictive correlation. For nonlinear (as well as linear) models, it is
therefore appropriate to define R2 as an estimate of the squared predictive correlation.

The general regression model is E(y|x) = m(x). Suppose we have a random sample
(x′

i, yi), i = 1, . . . , n. A generalized linear model assumes a distribution for y given x and
that E(yi|xi) = m(α + x′

iβ) for known m and unknown α and β. Here m is just the inverse
of the link function. The standard nonparametric regression model is yi = m(xi) + εi

where, conditional on the xis, the εis are independent with mean 0 and variance σ2. In
nonparametric regression, m is unknown. The standard nonlinear regression model uses
m(xi) = m(xi; α, β) where m is known but α and β are unknown. In linear regression,
m(xi) = α + x′

iβ, again with α and β unknown. The conditional mean structure of all three
parametric models is that of the nonlinear regression model: m(x) = m(x; α, β), m known.

Best prediction theory treats m(x) as a known function, so for models involving α and
β it treats them as known. With m known, an obvious estimate of the highest squared
predictive correlation is the squared sample correlation of the pairs (yi, m(xi)). In practice,
m(x) must be estimated with m̂(x). This is either done nonparametrically, or by estimating
α and β and substituting them into the known function m(x; α, β). The highest squared
predictive correlation is estimated by the squared sample correlation of the pairs (yi, m̂(xi)).

In practice, we do not know the conditional expectation m(x). We simply create some
model for the conditional expectation, say, f(x). The model can be nonparametric, nonlinear,
generalized linear, or linear. Again, if f is known, the pairs (yi, f(xi)) provide an estimate
of the squared predictive correlation. If f has to be estimated, we define ỹi ≡ f̂(xi) and
use the pairs (yi, ỹi). This is estimating the squared predictive correlation of f(x), which we
know is no greater than the squared predictive correlation provided by the best predictor
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m(x). Zheng and Agresti (2000) investigated the bias that results from using the same
data to estimate both the predictor and predictive correlation. In addition to the estimate
discussed here, they considered jack-knife, modified jack-knife, and cross-validation estimates
and found the naive estimate to be quite good.

As we have seen, the squared predictive correlation does not actually measure how well
f̂(x) predicts y, it measures only the potential of f̂(x) to predict y. To ensure that we have a
good predictor based on f̂(x), we need to regress the yi’s on the f̂(xi)’s to get a new predictor
ŷi = β̂0 + β̂1ỹi. Since ŷi is based on the theory of best linear prediction, the appropriate
estimates for β̂0 and β̂1 would seem to be least squares estimates, see Christensen (2002, Sec.
6.3), regardless of whether the conditional distribution of y given x has constant variance.
(If f is known, least squares are certainly appropriate.) With y given x being homoscedastic
normal data, standard tests of β0 = 0 and β1 = 1 might be used to determine whether this
linearization is really necessary.

Based on the theory of Section 2, there are three equivalent ways to define the squared
predictive correlation,

σ2

yỹ

σyyσỹỹ

=
σ2

yŷ

σyyσŷŷ

=
σŷŷ

σyy

.

Using least squares to create the linearized predictor ŷi = β̂0 + β̂1ỹi, there are four equivalent
ways to estimate the squared predictive correlation,

R2 =
s2

yỹ

syysỹỹ

=
s2

yŷ

syysŷŷ

=
sŷŷ

syy

as well as R2 = 1 − [sε̂ε̂/syy] where the ε̂is are the residuals from regressing the yis on the
ỹis. The last two of these forms are simply R2 = SSReg/SSTot and R2 = 1− [SSE/SSTot]
from the regression on the ỹis.

The squared predictive correlation is an overall measure of predictive ability. It is based
on the joint distribution of x and y, not the conditional distribution. As such, the xis must
be considered a random sample from some population. The nature of that population should
be given careful consideration. For example, in logistic regression, the size of the estimated
squared predictive correlation will depend crucially on where the xis are sampled, cf. also
Zheng and Agresti (2000).

The quality of predictions often change depending on x. In logistic regression, x val-
ues corresponding to true probabilities near 0 or 1 predict y very accurately, but x values
corresponding to true probabilities near .5 can never predict y with high accuracy. R2 is
a measure of overall predictive ability. If the xi are sampled from areas corresponding to
probabilities near .5, R2 will be relatively small. If the sample of xis contains mostly vectors
corresponding to probabilities near 0 or 1, R2 will be large. Note that in logisitic and other
forms of binomial regression, it is almost impossible to achieve perfect prediction, so even
with a perfect model the squared predictive correlation will be less than 1.

It is often suggested that comparing the R2 of (even linear) models from data that have
different xi values is inappropriate. In the present context in which the xis are considered
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a random sample from some population, very different collections of xi values suggest that
the two sets of xis are being sampled from different populations, in which case it is clearly
inappropriate to compare R2 values.

The assumption that the (x′
i, yi)s are iid is important. Designed experiments might be

thought of as samples from a discrete distribution on x. Correlated data is more difficult to
treat.

4. Regression Through the Origin

A subject that has long been of some controversy has been how to properly define R2 for
regression through the origin. We will see that the issue is not how to define the squared
multiple correlation coefficient, but rather how to estimate it. In regression through the
origin, we assume the m(x) = x′β for some vector β. With the techniques used in proving
Theorem 2, it is not difficult to see that

E[y − x′β]2 = E[y − x′µ−1

xx µxy]
2 + E[x′µ−1

xx µxy − x′β]2, (4.1)

where µxy ≡ E[xy] and µxx ≡ E[xx′]. From equation (4.1) it is clear that the best predictor
in this class and therefore, by assumption, the best predictor is

m(x) = x′µ−1

xx µxy. (4.2)

The key fact is that taking expectations on both sides of (4.2) gives

µy = µ′
xµ

−1

xx µxy. (4.3)

We need to use this fact in estimating the squared multiple correlation.
Using equation (4.3) and the general theory, we find that

Var[x′µ−1

xx µxy] = Cov[y, x′µ−1

xx µxy] = µyxµ
−1

xx µxy − µ2

y,

so the squared multiple correlation is

µyxµ
−1

xx µxy − µ2

y

σyy

=
µyxµ

−1

xx µxy − µ2

y

µyy − µ2
y

.

To estimate this quantity, we set up the usual linear model Y = Xβ + e, let M =
X(X ′X)−1X ′ denote the perpendicular projection operator (ppo) onto the column space of
X, C(X). Like all ppos, M is idempotent and symmetric, i.e., MM = M and M = M ′.
The vector of 1’s is denoted J with 1

n
JJ ′ = J(J ′J)−1J ′ the ppo onto C(J). Define estimates

µ̂yy ≡ 1

n
Y ′Y µ̂xy ≡ 1

n
X ′Y µ̂xx ≡ 1

n
X ′X.
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The trick is to use estimates of µy and µx that satisfy (4.3) when µyx and µxx have been
replaced by their estimates. The sample means ȳ· and x̄· do not meet this criterion. We
propose to use

µ̂y ≡ 1

n
Y ′MJ

and

µ̂x ≡ 1

n
X ′MJ =

1

n
X ′J = x̄·.

Clearly, E(µ̂x) = µx but note that from (4.2) and (4.3)

E(µ̂y) = ExEy|x

[

1

n
Y ′MJ

]

= Ex

[

1

n
µyxµ

−1

xx X ′MJ
]

= Ex

[

µyxµ
−1

xx x̄·

]

= µyxµ
−1

xx µx = µy.

With these estimates

R2 =
µ̂yxµ̂

−1

xx µ̂xy − µ̂2

y

µ̂yy − µ̂2
y

=
Y ′X(X ′X)−1X ′Y − 1

n
Y ′MJJ ′MY

Y ′Y − 1

n
Y ′MJJ ′MY

=
Y ′[M − M( 1

n
JJ ′)M ]Y

Y ′[I − M( 1

n
JJ ′)M ]Y

=
Y ′M [I − ( 1

n
JJ ′)]MY

Y ′(I − M)Y + Y ′M [I − ( 1

n
JJ ′)]MY

=
sŷŷ

SSE/(n − 1) + sŷŷ

Obviously, R2 = 1 when there is no error in the predictions and R2 = 0 when the predictions
do not change with the xis.

The literature is full of ideas for creating R2 like measures for problems other than linear
models with an intercept. In the case of regression through the origin, one such measure is
to use the usual definition of SSReg/SSTot except not correct either sum of squares for the
mean, i.e, use R̃2 = Y ′MY/Y ′Y . This can be viewed as an estimate of ρ̃2 = µyxµ

−1

xx µxy/µyy

which is not the squared predictive correlation. Both R̃2 and ρ̃2 will be 1 when the regression
through the origin gives perfect prediction and 0 when the model has no predictive ability.
Note that when there is no predictive ability, m(x) = µy and since, by assumption, m(0) = 0,
m(x) = 0. On the other hand, there is nothing to keep one from using R̃2 and ρ̃2 for linear
models with an intercept, in which case R̃2 and ρ̃2 are 1 for perfect prediction but would not
be 0 whenever there is no predictive ability. In particular, ρ̃2 will only be 0 if m(x) = 0.

While ρ̃2 may be a reasonable measure for comparing alternative models of regression
through the origin, the argument above illustrates that it does not extend to comparing
regression through the origin models to other models, either linear regression not through the
origin or other nonlinear models. Theoretically, squared predictive correlation has no such
drawbacks because regression through the origin is merely a special case of best prediction.
The only difficulty with regression through the origin is in finding an appropriate estimate
of the squared predictive correlation.
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5. Method of Moments Estimation

General prediction theory is based solely on the existence of first (conditional) and second
moments. The only basis it provides for parameter estimation is method of moments (MOM)
estimation. A natural way to perform estimation in general prediction theory is through
linear estimating equations, cf. McCullagh and Nelder (1989, Section 9.5). Consider a
parametric model E(y|x) ≡ m(x; β) where m is known but β is an unknown r vector.

We assume that β is both well defined, i.e., that m(x; β) = m(x; β∗) for all x implies
that β = β∗ and well defined in the estimation problem, i.e., that with m(X; β) denoting an
n vector that applies m(·; β) to each row of X, m(X; β) = m(X; β∗) implies that β = β∗.
Obviously, if β is well defined in the estimation problem, β is well defined. (These properties
for all x need only apply almost surely.)

If β is well defined in the estimation problem and E(Y |X) is known, E(Y |X)−m(X; β) =
0, so we can identify β by solving

H ′[E(Y |X) − m(X; β)] = 0

for any n× r matrix H as long as the r equations are not redundant. H can be as simple as
H ′ = [Ir, 0] but H may also depend on X and β. H cannot depend on Y . Any such solution
allows us to find β exactly, so how we pick H is irrelevant.

Unfortunately, we don’t know E(Y |X), but we can estimate β using the linear estimating
equation

H ′[Y − m(X; β)] = 0.

Now the challenge is to find a matrix H with good statistical properties. It is well known
that, conditional on X, solutions to the quasi-likelihood equations are asymptotically optimal
among all solutions to linear estimating equations. The quasi-likelihood equations are

dβm(X; β)′V −1(X; β)[Y − m(X; β)] = 0,

where dβm(X; β) is an n×r matrix with ith row dβm(xi; β) which is the row vector of partial
derivatives of m with respect to β evaluated at xi and V −1(X; β) is a diagonal matrix having
elements V (xi; β) ≡ Var(y|xi). Any additional parameters that relate solely to the variance
must be estimated separately or iteratively.

The prediction theory used here is based only on first and second moments and conditional
moments. Typically, to get better estimates, one needs to make stronger assumptions. Both
generalized linear models and nonlinear regression make explicit assumptions about the
distribution of y given x, thus allowing one to find maximum likelihood estimates, but the
maximum likelihood estimates agree with the solutions to the corresponding quasi-likelihood
equations.

These estimation methods have implications for the idea of linearizing predictors. The
best predictor is unchanged by linearizing it, but in practice, the primary way to see whether
linearization will improve prediction is to try it and see. Since these estimation methods are
directed at finding β̂ to be consistent with m(x; β̂) being the best predictor, there should be
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little room for improvement by linearizing the fitted regression function m(x; β̂). In the case
of m̂ obtained from linear regression, linearizing makes no change in the predictors, no matter
how bad the model is, that is, no matter how far E(y|x) is from the chosen form m(x; β).
For generalized linear models and nonlinear regression models, it would probably take an
extraordinarily bad choice for m before linearizing would show that there is a problem.
However, for complex computer models, in which the estimation method is not so clear,
linearizing may be valuable. In particular, linearization will have no effect at all whenever
[J, m̂]′(Y −m̂) = 0, because then ȳ· =

∑n
i=1

m̂i/n and sm̂y = sm̂m̂, so the regression coefficient
for linearization will be 1 and the intercept will be 0. From Proposition 3, Cov[m(x), y−m(x)]
should be 0, and here m̂′(Y − m̂)/n is just an estimate of that covariance. So the effect of
linearization in nonlinear models will depend on how close [J, m̂]′(Y − m̂) is to 0.

Example: For the O-ring data, regressing the failures y on the predicted values ỹ from
the logistic regression on temperature gives ŷ = −0.0073 + 1.0239ỹ, so clearly there is little
to be gained by linearizing the maximum likelihood fit. Similar results occur from regressing
the failures on the predicted values from the quadratic model and both probit models.

Recently, Nayak (2002) discussed a Cramer-Rao lower bound for prediction problems and
methods of finding best unbiased predictors by attaining the bound.

6. Error Estimation and Residuals

With m known, it is a simple matter to estimate the prediction error variance Varxy[y−m(x)]:
use

∑n
i=1

[yi−m(xi)]
2/n. When estimating m using, say, r parameters, a reasonable estimate

is
∑n

i=1
[yi − m̂(xi)]

2/(n− r). Note that if the conditional variance of y given x is a constant
σ2 that does not depend on x,

∑n
i=1

[yi − m̂(xi)]
2/(n− r) provides an estimate of σ2 because

Varxy[y − m(x)] = Exy[y − m(x)]2 = ExEy|x[y − m(x)]2 = Exσ
2 = σ2.

Constant conditional variance is a standard assumption for linear and nonlinear regression,
but is not standard in many generalized linear models such as logistic regression. On the
other hand, heteroscedasticity in the conditional distribution plays no role in the estimation
because we are estimating a property of the joint distribution, not a property of the condi-
tional distribution. The presumption is that the pairs (xi, yi) are iid, but clearly that does
not imply that the yi|xi are iid or even homoscedastic.

More generally, if Vary|x(y) = σ2w(x) for some fixed function w(·), an estimate of σ2

is
∑n

i=1
[yi − m̂(xi)]

2/w(xi)(n − r). This works if w(·) is a known function or, if w(·) is a
known function of m(·), w(·) can be estimated. Note that having heterogenous conditional
variances does not affect the general prediction theory, even though they would affect the
process of estimating the parameters in a model for the best predictor. If w(x) is unknown,
σ2w(x) is ill-defined unless one value of w(x) is taken as known. With this proviso, σ2w(x)
is the best predictor of the random variable [y − m(x)]2, so all of the standard methods of
regression can be used to estimate σ2w(x).
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Although we have discussed R2 as a tool in model fitting, the prediction theory fundamen-
tally evaluates a predictor ỹ(x) based on Exy[y− ỹ(x)]2. One could argue that we should base
model evaluations on estimates of this quantity. The obvious estimate is

∑n
i=1

[yi− ỹ(xi)]
2/n,

but as discussed earlier, this will be overly optimistic when using the data to estimate ỹ.
As suggested earlier, one possible way to adjust for fitting different numbers of predictor
variables is to use

∑n
i=1

[yi − ỹ(xi)]
2/(n − r).

Example: The Challenger data involves 23 flights of which 7 experienced O-ring failures.
The mean squared prediction errors for the logit and probit models using temperature alone
are .138527 and .140069, respectively. Using quadratic models the squared prediction errors
are .129888 and .130973, respectively. Qualitatively, these tell the same story as the R2

values. The corresponding value for the constant predictor p̂ = 7/23 is .211720. If we
adjust the denominator for the number of predictor variables, the numbers become .151439,
.153409, .149371, .150615, .221344, respectively.

Various other ideas have been proposed to deal with the bias. Breiman (2000) and others
have suggested estimating ỹ using a randomly selected, say, 90% of the data, and computing
∑n

i=1
[yi−ỹ(xi)]

2/n on the other 10%. Moreover, Breiman suggests doing the random selection
many times and averaging the results. Another idea is to simply view θ ≡ Exy[y − ỹ(x)]2 as

a parameter, θ̂ ≡ ∑n
i=1

[yi − ỹ(xi)]
2/n as an estimate, and jackknife the estimate to reduce

bias. It is not difficult to see that for linear models, the jackknifed estimator of θ is the mean
squared error times the sum of squares of the standardized residuals divided by the sample
size, see Christensen (2002, Sec. 13.5) for background. Note that this is different from the
PRESS statistic or the average of the PRESS statistic.

Example: Atkinson (1985) and Hader and Grandage (1958) presented Prater’s data on
gasoline. The variables are y, the percentage of gasoline obtained from crude oil; x1, the
crude oil gravity oAPI; x2, crude oil vapor pressure measured in lbs/in2; x3, the temperature,
in oF, at which 10% of the crude oil is vaporized; and x4, the temperature, in oF, at which
all of the crude oil is vaporized. Table 2 gives the four subset models with the lowest Cp

statistics along with their R2, adjusted R2, MSE, and jackknifed prediction error values
(JK).

7. Residual Plots

Figure 1 contained a residual plot for the Hooker data of regression y (pressure) on x (tem-
perature). It shows a nonrandom pattern. We now provide a theoretical justification for
looking at residual plots and for using them as a tool for adding linear predictors.

Theorem 6. Suppose ỹ(x) is any predictor with E[ỹ(x)] = µy, then Cov[f(x), y−ỹ(x)] = 0
for any function f if and only if m(x) = ỹ(x).

From Theorem 6, the theoretical residuals y − m(x) are uncorrelated with any function
f(x). Thus, for any function f , plot the pairs [f(xi), yi − ỹ(xi)] to see if it gives a nice
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structureless plot. If there is a correlation, obviously ỹ is not acting like the best predictor.
We should be able to improve the predictor by a multiple linear regression of the yis on
ỹ(xi)s and any f(xi)s that are correlated with the residuals.

Conversely, again by Theorem 6, if we have the wrong mean function, that is, if ỹ(x) 6=
m(x), there exist functions f(x) that have a nonzero correlation with the residuals y − ỹ(x)
and we can hope to find an f(x) using a residual plot.

Example: Although Figure 1 displays structure, the theory of linear models establishes that
the sample correlation between the two variables plotted is 0. Figure 4 contains a plot of
the residuals versus f(x) = (x− x̄)2. It shows a clear linear relationship, suggesting that we
may improve prediction by adding f(x) as a linear predictor, that is, by fitting a quadratic
model.

8. Conclusions and Discussion

Measuring predictive ability by the squared correlation between observations and predictions
is a simple and obviously good idea. At a December, 1999, National Academy of Sciences
workshop in Santa Fe, NM on Statistical Approaches for the Evaluation of Complex Com-
puter Models, numerous nonstatistical scientists justified the quality of their complex predic-
tion models by plotting y versus ỹ, see Berk et al. (2002). We simply propose summarizing
this plot by computing the squared correlation. Outside of Mittlbock and Schemper (1996)
and Zheng and Agresti (2000), this idea has rarely appeared in the statistics literature.
In the collective works Agresti (1986, 1990, 1996), Bates and Watts (1988), Cameron and
Windmeijere (1997), Christensen (1997), Draper and Smith (1981), Eubank (1988), Green
and Silverman (1994), Hart (1997), Hosmer and Lemeshow (1989), McCullagh and Nelder
(1989), Menard (2000), and Seber and Wild (1989), for all of whom the idea of extending
R2 to nonlinear models is relevant, the only discussion (that I could find) is Draper and
Smith mentioning that this idea gives R2 for linear models and Menard (2000) dismissing it
because Kvalseth (1985) dismissed it.

Kvalseth (1985) argued, “Such a correlation interpretation of R2 would not seem to
be particularly attractive or useful on intuitive grounds as a goodness-of-fit measure for
nonlinear models. Furthermore, the use of R2 for nonlinear models can produce potentially
misleading results since it is clearly possible for y and [ỹ] to be highly correlated even if their
corresponding values deviate substantially.” While both of these criticisms are valid, both are
easily dealt with. First, the squared correlation between y and ỹ is a very intuitive measure
of the predictive ability of a model but as mentioned earlier, it is not a direct measure of
goodness of fit. R2 does play a key role in assessing relative goodness of fit. Second, while
it is true that a high R2 can occur with very bad predictors ỹ, this is easily remedied by
simply obtaining new “linearized” predictors ŷ from regressing y on ỹ. Moreover, there are
some applications, for example in psychometrics and data mining, that do not require such
linearization because any linear transformation of the predictor is as good as any other. For
such problems, R2 is appropriate but squared error loss is not.
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Other R2 measures share with squared predictive correlation some ability to compare
nonnested models. For example, if one identifies a saturated model Ms, a model M0 that
characterizes no predictive ability, and a model of interest M , a commonly used measure
based on the likelihood function L(·) is

R2

L =
L(M) − L(M0)

L(Ms) − L(M0)
.

The saturated model gives “perfect” predictions (for the data used to estimate the param-
eters), so R2

L will be 0 for no predictive ability and 1 for perfect prediction. Of course the
saturated model does not really give perfect prediction, that is only an artifact of using
the same data both to estimate parameters and to evaluate predictive ability. In fact, the
best predictor will only give perfect prediction in the degenerate case where y = E(y|x) a.s.
The very use of the likelihood function makes R2

L a measure of how well the data estimate
parameters in various models rather than a true measure of predictive ability. It is not clear
what fundamental population parameter R2

L might estimate. Squared predictive correlation
also applies in this situation and has a clearer theoretical basis, one that is not tied to the
specific method of parameter estimation (which is maximum likelihood). See also Mittlbock
and Schemper (1996) and Zheng and Agresti (2000).

Additionally, when comparing different transformations, say y and log(y), the models
typically suggest different distributions for y|x, so, unlike squared predictive correlation,
likelihood based comparisons across models are inappropriate. In reality, there is only one
conditional distribution for y|x, the assumed models are changing, not the distribution.
Regardless of the correct conditional distribution, squared predictive correlation gives a
useful measure of predictive ability and relative goodness of fit.

The results in Section 2 are based on squared error prediction loss. It might be possible
to develop an alternative general prediction theory based on another loss function such as
entropy, but squared error is the standard loss function. For particular applications, it may
be appropriate to develop measures of predictive ability using a predictive loss function
that depends on the conditional distribution of y given x, however, by their very nature,
such techniques will not apply beyond the specific application and not contribute to general
prediction theory. It should also be noted that in general prediction theory, predictors f(·)
are treated as known and the issue is to find the best (linear) predictor. In this context it
makes no sense to let the predictive loss function depend on the estimation method that one
might choose to employ for approximating the optimal predictor.

We have seen that generalizing the linear prediction concept of squared multiple correla-
tion to the general prediction concept of squared predictive correlation provides a theoretical
basis for estimating the predictive ability of a nonlinear model by looking at the squared
correlation between the observations and their model based predictions. This extends the
theoretical basis behind the standard measure R2 from linear models to nonlinear models.

The absolute size of the squared predictive correlation for ŷ has little to do with how well
the model fits. Estimated squared predictive correlations can be small for perfect models
and large for demonstrably incorrect models. A prediction model f(x) is a good fit if f(x)

13



closely approximates the best predictor m(x) (see Theorem 1). The prediction model can
be improved by linearizing f(x). How well the linearized model fits is a function of how
close the squared predictive correlation of f(x) is to the squared predictive correlation of
m(x). This is something we cannot know because we do not know m, we can only model it.
However, the absolute size of the squared predictive correlation of f(x) does tell us about
how well the linearized model will predict.

With linearized predictors the relative size of the squared predictive correlation provides
information on which of two models is closer to the ideal. In linear regression, for a fixed
number of predictors, the standard model selection criteria Cp and adjusted R2 both give
their highest rankings to the models with the largest R2. In linear models it is standard
(and good) advice that with different numbers of predictors, one should not simply look at
R2 because R2 can only increase or stay the same when new variables are added. This is a
problem with using R2 as an estimate of the squared predictive correlation. Theoretically,
adding another predictor variable can never hurt prediction. The worst thing that can
happen is that the theoretical regression coefficient for the new variable may be 0, in which
case no harm has been done. The harm occurs in estimating regression coefficients that
are close to 0. More generally, with linearized predictors, finding a predictor that increases
the theoretical squared predictive correlation only helps prediction. But when using an
estimated predictor, and an estimated squared predictive correlation, adding parameters
that need to be estimated when the result is only a small increase in estimated squared
predictive correlation, can be counterproductive. The issue of how Cp and adjusted R2

penalize models for including additional variables is also really a question of how best to
estimate the ideal function m(x).

Finally, it should be noted that this approach requires y to be a random variable, a
requirement that may preclude its use with some multinomial response models.

Appendix: Proofs

First, we show that for a linear model the sample correlation between y and the predicted
values ŷ equals the sum of squares regression divided by the sum of squares total. That is
followed by proofs of propositions and theorems.

Consider a linear model Y = Xβ + e in which the first column of X is the vector of 1’s,
J . M is the ppo onto C(X), 1

n
JJ ′ is the ppo onto C(J), and the vector of predicted values

is Ŷ = MY . A vector that consists entirely of the mean of the yis is ȳ·J = 1

n
JJ ′Y . The

sample variance of the yis is

s2

y ≡ syy =
1

n − 1
SSTot =

1

n − 1

n
∑

i=1

(yi − ȳ·)
2

=
1

n − 1
[(I − 1

n
JJ ′)Y ]′[(I − 1

n
JJ ′)Y ] =

1

n − 1
Y ′(I − 1

n
JJ ′)Y.
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The sample variance of the ŷis is

s2

ŷ ≡ sŷŷ =
1

n − 1

n
∑

i=1

(ŷi − ȳ·)
2 =

1

n − 1
[(M − 1

n
JJ ′)Y ]′[(M − 1

n
JJ ′)Y ]

=
1

n − 1
Y ′(M − 1

n
JJ ′)Y =

1

n − 1
SSReg.

Now, using the fact that J ∈ C(X), so MJ = J , the sample covariance between the yis and
the ŷis is

syŷ =
1

n − 1

n
∑

i=1

(yi − ȳ·)(ŷi − ȳ·)

=
1

n − 1
[(I − 1

n
JJ ′)Y ]′[(M − 1

n
JJ ′)Y ]

=
1

n − 1
Y ′[M − 1

n
JJ ′M − 1

n
JJ ′ +

1

n
JJ ′ 1

n
JJ ′]Y

=
1

n − 1
Y ′(M − 1

n
JJ ′)Y

=
1

n − 1
SSReg.

It follows that

R2 ≡ s2

yŷ

s2
ys

2

ŷ

=
[SSReg/(n − 1)]2

[SSTot/(n − 1)][SSReg/(n − 1)]
=

SSReg

SSTot
.

Proof of Proposition 3. Recall that from the definition of conditional expectation
E[m(x)] = µy.

Cov[y, ỹ(x)] = Eyx[(y − µy)ỹ(x)]

= ExEy|x[(y − m(x) + m(x) − µy)ỹ(x)]

= Ex[(m(x) − µy)ỹ(x)]

= Cov[m(x), ỹ(x)].

Proof of Theorem 4. By Cauchy-Schwartz, (σmỹ)
2 ≤ σmmσỹỹ, so (σmỹ)

2/σỹỹ ≤ σmm.
Using Proposition 3

(σyỹ)
2

σyyσỹỹ

=
(σmỹ)

2

σyyσỹỹ

≤ σmm

σyy

.

The result follows from the last part of Proposition 3.

Proof of Theorem 5. σŷ1ŷ1
/σyy < σŷ2ŷ2

/σyy if and only if σŷ1ŷ1
< σŷ2ŷ2

if and only if
σyy − σŷ2ŷ2

< σyy − σŷ1ŷ1
.
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Proof of Theorem 6. If m(x) = ỹ(x), the fact that Cov[f(x), y − m(x)] = 0 for any
function f is an immediate consequence of Proposition 3.

Now suppose that E[ỹ(x)] = µy and Cov[f(x), y − ỹ(x)] = 0 for any function f . In
particular, using Proposition 3,

0 = Cov[ỹ(x), y − ỹ(x)] = σỹy − σỹỹ = σỹm − σỹỹ

and
0 = Cov[m(x), y − ỹ(x)] = σmy − σmỹ = σmm − σmỹ.

Therefore,
σmm = σmỹ = σỹỹ.

This implies that the correlation between m(x) and ỹ(x) is 1, so they are linear functions of
each other. Moreover, because they have the same mean and variance, the functions must
be identical (almost surely).
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Case Temperature Pressure Case Temperature Pressure
1 180.6 15.376 17 191.1 19.490
2 181.0 15.919 18 191.4 19.758
3 181.9 16.106 19 193.4 20.480
4 181.9 15.928 20 193.6 20.212
5 182.4 16.235 21 195.6 21.605
6 183.2 16.385 22 196.3 21.654
7 184.1 16.959 23 196.4 21.928
8 184.1 16.817 24 197.0 21.892
9 184.6 16.881 25 199.5 23.030

10 185.6 17.062 26 200.1 23.369
11 185.7 17.267 27 200.6 23.726
12 186.0 17.221 28 202.5 24.697
13 188.5 18.507 29 208.4 27.972
14 188.8 18.356 30 210.2 28.559
15 189.5 18.869 31 210.8 29.211
16 190.6 19.386

Table 1: Hooker data.
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Adj. Included variables

Vars. R2 R2 Cp

√
MSE JK x1 x2 x3 x4

2 95.2 94.9 8.2 5.88 5.88 X X
3 95.9 95.5 5.2 5.21 5.08 X X X
3 95.5 95.0 8.2 5.74 5.65 X X X
4 96.2 95.7 5.0 4.99 4.78 X X X X

Table 2: Model Selection Criteria: Prater Data
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Figure 1: Residuals versus fitted values for simple linear regression on Hooker data.

Figure 2: y versus quadratic model fitted values on Hooker data.

Figure 3: y versus exponentiated fitted values of simple linear regression on log(y) for Hooker
data.

Figure 4: Residuals versus (xi − x̄)2 for for simple linear regression on Hooker data.
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