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SUMMARY

Data augmentation priors have a long history in Bayesian data analysis. Formulae for such priors have
been derived for generalized linear models, but their accuracy depends on two approximation steps. This
note presents a method for using o7sets as well as scaling factors to improve the accuracy of the approx-
imations in logistic regression. This method produces an exceptionally simple form of data augmentation
that allows it to be used with any standard package for conditional-logistic or proportional-hazards re-
gression to perform Bayesian and semi-Bayes analyses of matched and survival data. The method is
illustrated with an analysis of a matched case-control study of diet and breast cancer. Copyright ? 2001
John Wiley & Sons, Ltd.

1. INTRODUCTION

Expressing prior information in the form of data augmenting the actual observations can be
traced back to Laplace in the 18th century [1] and is now a well-established Bayesian tech-
nique [2; 3]. Such data augmentation priors (DAPs) are valuable in allowing approximate
Bayesian analyses to be carried out with popular software packages, for in some Belds (for
example, epidemiology) few researchers will employ unfamiliar software. Although approx-
imate formulae for DAPs have been presented for generalized-linear model coeCcients [2],
these formulae require special rescaling to ensure accurate results with logistic and Poisson
regression [4]. The present paper presents a method that uses o7sets as well as scaling fac-
tors to improve the approximations used to construct logistic-regression DAPs. This method
yields especially simpliBed DAPs that can be extended to Bt Bayesian and semi-Bayesian
(mixed) conditional-logistic and proportional-hazards models with common software for ordi-
nary Bxed-e7ects modelling.
The method is illustrated with a study of 140 women with breast cancer (the cases) and

222 controls selected from sisters of cases [5], so the data are matched on sistership. The
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analysis concerns 87 diet-questionnaire items recorded in a 362× 87 subject-diet matrix X ,
plus Bve confounders recorded in a 362× 5 matrix W0. Prior information includes an 87× 35
diet-nutrient matrix Z compiled from external sources, which gives the amount of each of
35 food constituents (such as nutrients) in each diet item. For details about the study see
Ursin et al. [5]. Because of the extreme data sparsity (362=92 :=four subjects per covariate),
use of prior information has a large impact on coeCcient estimates. Witte et al. [6] and
Greenland [7] analysed these data with hierarchical conditional-logistic models taking Z as a
second-stage (prior) design matrix, using special programs. We here show how these results
can be reproduced with ordinary software.

2. DATA AUGMENTATION FOR LOGISTIC AND COX REGRESSION

2.1. Unconditional logistic regression

Consider Brst data in N unstratiBed records (X;W; y; n; f) where X and W are N × J and
N ×K design matrices (one may contain a constant column), y and n are N -vectors of
independent binomial counts (‘successes’) and totals, and f is an o7set vector (that is, a
covariate vector whose coeCcient will be Bxed at 1). Let (t) be the logistic transform
(t)≡ (1+e−t)−1; note that 1−(t)=(−t); d(t)=dt=(t)(−t), and the inverse transform
is logit(p)≡ ln{p=(1− p)}. One mixed-e7ects logistic model is

E(y=n|f;X;W )=(f + X�+W�) (1)

where � and � are J and K vectors of coeCcients with �∼MVN(�; T ). If W� is dropped, this
is a fully Bayesian model; otherwise, the model is called semi-Bayes or partial Bayes [2; 8].
The logistic coeCcients are interpretable as log-odds ratios for the association of success
(y=1) with a unit increase in the covariate [9].
A Bayesian analysis by data augmentation exploits the fact that a conjugate prior is pro-

portional to the likelihood contribution from a set of prior data; those data can be read o7
the prior directly (reference [10], p. 53). For non-conjugate priors, one must Bnd an approx-
imating conjugate distribution. The following approximation is a reBnement of one given by
Bedrick et al. [2] with modiBcations based on o7setting (recentring) as well as rescaling the
prior to simplify the augmenting data and improve accuracy.
We will approximate the � prior with a product of J beta densities (the beta distribution

being the conjugate prior for the binomial). With a scaling constant s¿1 to be discussed
below, deBne Xa ≡T−1=2=s; fa ≡ − Xa�; �≡fa + Xa� and p≡ �(�). Then

�=T−1=2(�− �)=s ∼ MVN(0; I=s2)

The Brst-order Taylor expansion of the logistic transform (�j) about 0 is

(�j)
:=(0) + (0)(−0)�j =1=2 + �j=4

hence the logit-normal components pj =(�j) of p are independent and approximately normal,
with

E(pj)=1=2 + E(�j)=4=1=2

Copyright ? 2001 John Wiley & Sons, Ltd. Statist. Med. 2001; 20:2421–2428
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exactly, and

var(pj)
:=var(�j)=42 =1=16s2

the accuracy of the approximation improving as the precision var(�j)−1 = s2 increases.
We next approximate the density of pj by a beta density with the same mean and vari-

ance. A beta(a; a) density for pj has E(pj)= a=2a=1=2 and var(pj)= a2=(2a)2(2a + 1)=
1=4(2a + 1); letting a=2s2 − 1=2 yields var(pj)=1=16s2, as desired. Furthermore, letting
c= a − 1=2s2 − 3=2, the density for pj is proportional to pa−1

j (1 − pj)a−1 =c(�j)c(−�j),
a binomial likelihood contribution from c successes on 2c trials. This approximating density
concentrates about 1=2 and approaches normality as s2 (and hence a) increases without
bound.
The prior density for � has now been approximated by a product of J densities that are

proportional to the product over the components of (fa + Xa�)c and (−fa − Xa�)c. Con-
sequently, under model (1) with � ∼ MVN(�; T ), the posterior density is approximately
proportional to the unconditional logistic likelihood for the data augmented by the J pseudo-
records (Xa;Wa; cu; 2cu; fa), where u is a J -vector of ones and Wa is a J ×K matrix of zeros.
Note that the number of added ‘subjects’ is 2cJ , and so is a function only of the scal-
ing constant s; it does not in any way measure the amount of information in the prior
for �.
Recentring the � prior by fa and rescaling by s concentrates the �j priors between − ln(3)

and ln(3), the domain over which (t) is nearly linear, and so improves the Taylor ap-
proximation; an application of Chebychev’s inequality shows that taking s¿10 will ensure
Pr{− ln(3)¡�j¡ ln(3)}¿0:99, even if � is not multivariate normal. Recentring and rescaling
also improves the second (beta-to-normal) approximation by ensuring that the approximat-
ing beta density is symmetric and concentrated about 1=2. The impact of rescaling may be
seen by noting that when s=1 the exact 95th percentile of pj given normal � is only the
90th percentile of the approximating beta(1.5,1.5) distribution, whereas when s=10 the exact
distribution for pj and its beta(19.5,19.5) approximation have virtually the same 1st to 99th
percentiles. The size of s is limited only by numeric precision.
Recentring by the prior o7set fa also greatly simpliBes the form of the augmenting counts.

This simpliBcation can be important because some packages will truncate the input counts to
integers. In the above method the augmenting counts become the arbitrary constants c and 2c,
so one can set s to ensure that c is an integer or truncation error is negligible (with s=50
use of c=5000 is more than adequate).
Unfortunately, some packages lack a provision for o7sets. This lack can be accommodated

by recognizing that Btting an o7set f in a model is numerically equivalent to entering f as
just another covariate, one however whose coeCcient �f is given an independent prior with
mean 1 and variance 0. This degenerate prior for �f will force the estimated (posterior) �f
to be 1 with 0 variance, as needed. The impact of this degenerate �f prior can in turn be
approximated by giving (�f) a beta prior with mean (1) and very small variance. This prior
can then be incorporated into the above DAP procedure by adding a pseudo-record (row) for
�f in Xa that has a 1 in the o7set column, 0 for the other covariates, and (1)106 =731059
successes out of 106 total. Of course, this column will not be needed if f=0 (no o7sets in
the real data) and �=0 (so that fa=0).

Copyright ? 2001 John Wiley & Sons, Ltd. Statist. Med. 2001; 20:2421–2428
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2.2. Conditional logistic regression

Consider next data subclassiBed into M strata, with D the M ×N matrix of stratum indicators
and no constant in X or W . Conditional logistic regression provides estimates of � and � in
the model

E(y=n|D;f; X;W )=(D + f + X�+W�) (2)

using a likelihood conditional on the stratum margins D′y and D′(1 − y). That likelihood
is free of the nuisance parameters  ; see Breslow and Day [9] for details. Most commercial
software accepts data of the form (X;W; y; f; d; r) where d is a vector of stratum identiBcation
numbers, and r is a vector of stratum repetition counts or prior weights; r is constant within
strata. Because each record refers to only one subject, y is a vector of Bernoulli indicators
while n is identically 1 and so is omitted. See, for example, Stata proc clogit [11].
A stratum with only two members is a matched pair. Consider a matched pair with one

success and one failure, both with zero W -covariates, and a repetition count of rm. The
contribution of this pair to the conditional likelihood is

[
exp(f1 + x1�)

exp(f0 + x0�) + exp(f1 + x1�)

]rm
=[f1 − f0 + (x1 − x0)�]rm (3)

where f1, x1 and f0, x0 are the o7set and the X-covariate row vector for the success and failure
in the pair, respectively. This expression is proportional to the binomial-likelihood contribution
from rm successes in rm trials under the logistic model [f1 −f0 + (x1 − x0)�] for the success
probability. It follows that we can enter the DAP based on expression (3) into the conditional
likelihood by augmenting the data with 2J pairs as follows. Let g≡ max(d) be the largest
real-data identiBcation number, let da1 = (g+ 1; : : : ; g+ J )′ and da0 = (g+ J + 1; : : : ; g+ 2J )′,
let Xa, Wa, fa and c be as before, and let u and v be J vectors of ones and zeros. Then the
augmenting data are the 4J pseudo-records



Xa Wa u fa da1 cu
vv′ Wa v v da1 cu
vv′ Wa u v da0 cu
Xa Wa v fa da0 cu


 (4)

Substituting these pair data into expression (3) shows that the Brst 2J records (J pairs) yield
the J conditional-likelihood contributions in the vector (fa + Xa�)c, and the last 2J records
yield the J contributions in (−fa − Xa�)c.

As in the unconditional-logistic case, if o7sets are not allowed by the package they can be
added as a covariate column whose coeCcient is given a prior with mean 1, variance 0. The
e7ect of this prior can then be approximated by augmenting the DAP matrix (4) with four
pseudo-records composing two pairs with one success in each. One pair has o7sets of 1 for
the success and 0 for the failure, and a repetition count of (1)106; the other has o7sets of 0
for the success and 1 for the failure, and a repetition count of (−1)106; all other covariates
are zero.

Copyright ? 2001 John Wiley & Sons, Ltd. Statist. Med. 2001; 20:2421–2428
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2.3. Proportional-hazards regression

Consider next the stratiBed Cox proportional-hazards model

hk(t|f;X;W )= exp(f + X�+W�)h0k(t) (5)

with h0k(t) an unspeciBed baseline hazard function for stratum k. The algebraic equiva-
lence [12] of the partial likelihood for (�; �) based on model (5) to the conditional-logistic
likelihood for model (2) allows use of the above method in proportional-hazards regression.
The augmenting data are identical to those in expression (4), with the case-indicator column
corresponding to the failure indicator (y=1 if failure, 0 if censored). The data will also con-
tain a time-on-test column, which may be augmented by a vector of 4J ones (or any other
constant). If the original data are not stratiBed, they may be declared a single (Brst) stratum
to the program, whence the augmenting data become an additional 2J strata.

3. APPLICATION TO THE EXAMPLE

In the example, a case is a ‘success’ and a control is a ‘failure’, D is the 362× 140 ma-
trix of matched-set (sistership) indicators, X is the 362× 87 matrix of subject-speciBc diet
information, W0 is the 362× 5 matrix of confounders, and y is the vector of case indicators
(1= case; 0=control). Because each pair is unique, r is a 362-vector of ones; because there is
no o7set, f is a 362-vector of zeros. Witte et al. [6] used a two-stage weighted least-squares
(WLS) procedure to Bt the hierarchical model

E(y|D;X;W0)=(D + X)+W0�0) (6a)

)=Z�1 + �; � ∼ MVN(�; T ) (6b)

with T diagonal; here, � is a vector of residual diet e7ects that remain after factoring out
log-linear nutrient e7ects. The WLS algorithm has done well in simulation studies, including
one based on the example data [13–15]. None the less, better performance has been obtained
using a penalized-likelihood (PL) algorithm [14; 16], which is equivalent to proBle posterior
analysis [17] and which yields the exact posterior mode for �.
Greenland [7] reanalysed the example via PL with �=0 and T =0:125I (I the 87 × 87

identity matrix); the prior variance 0.125 was chosen because it translates into a 95 per cent
prior interval for the odds ratio exp(�j) of exp [±1:96(0:125)1=2]=1=2; 2. To approximate this
PL analysis using data augmentation, Brst transform model (6) to the mixed-model form (2)
by substituting the second-stage regression (6b) into the Brst stage (6a)

E(y|D;X;W )=(D + X (Z�1 + �) +W0�0)=(D + X�+W�) (7)

where W =[XZ W0] and �=(�′1; �
′
0)

′. Then add 2(87)=174 pairs as 4(87)=348 records in
the DAP matrix (4). With s=10; Xa=T−1=2=10=0:081=2I; Wa is an 87× (35 + 5) matrix of
zeros, u and v are 87-vectors of ones and zeros, and c=2(100)− 3=2=198:5; because f=0
and �=0, the entire o7set column is zero and so is omitted. There are now 362+348=710
records, but the new data are of very simple form, mostly zero covariate entries, a constant

Copyright ? 2001 John Wiley & Sons, Ltd. Statist. Med. 2001; 20:2421–2428
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Table I. Selected odds-ratio estimates (coeCcient antilogs) from conditional logistic regressions of breast
cancer on 35 food constituents (Bxed e7ects) and 87 diet items (mixed e7ects) Bt to 140 cases and 222
matched controls. Approximate (Wald) 95 per cent intervals in parentheses; Bve potential confounders also

forced into each model as Bxed e7ects.

Regression
Model (6ab) Bt by PL∗ Model (6ab) Bt by DA† Model (6a) only Bt by CML‡

s=10 s=1

Fixed e7ects (�):
protein 0:80 (0:32; 2:02) 0:79 (0:31; 2:00) 0:77 (0:14; 4:28)
phytate 0:83 (0:38; 1:81) 0:87 (0:40; 1:90) 0:97 (0:24; 3:94)

Mixed e7ects ()):
tuna Bsh 1:66 (0:93; 2:94) 1:69 (0:95; 3:00) 2:06 (1:00; 4:25) 3:55 (1:14; 11:0)
white rice 0:88 (0:67; 1:17) 0:87 (0:66; 1:16) 0:73 (0:51; 1:04) 0:36 (0:19; 0:72)
white wine 1:23 (0:80; 1:90) 1:25 (0:81; 1:93) 1:75 (0:92; 3:35) 7:57 (1:68; 34:1)
ice cream 1:12 (0:66; 1:92) 1:15 (0:67; 1:96) 1:57 (0:73; 3:37) 6:27 (1:55; 25:4)

∗Penalized likelihood (PL), using prior covariance matrix of 0:125I for the residual diet e7ects �.
†Data augmentation approximations to PL analysis, using scaling constant s; s=1 corresponds to no rescaling.
‡Conditional maximum likelihood (no prior).

repetition-count column ra of 198.5, and an identiBer column da=(d′
a1; d

′
a1; d

′
a0; d

′
a0)

′ whose
elements range from 141 to 141 + 174=315. The DAP estimate of the mixed coeCcient
vector ) is then computed from the estimates for model (7) as )̃=Z�̃1 + �̃.

Table I presents odds-ratio estimates exp()̃j) from the PL and DAP analyses, including those
with the largest disparity. Also shown are estimates from unconstrained conditional maximum-
likelihood (CML) Btting of model (6a) to the unaugmented data, which are quite wild (as one
would expect given the number of parameters). For every covariate, the di7erence between
the PL and DAP results with s=10 were statistically and scientiBcally trivial, especially in
comparison to their di7erences from the CML (ordinary non-Bayesian) estimates. In contrast,
the DAP analysis with no rescaling (s=1) poorly approximates the PL analysis, rePecting the
poor approximation of the beta(3=2,3=2) density to the actual logit-normal density of the pj.
The approximate 95 per cent posterior intervals in the table were computed by the Wald

method (that is, based on a normal approximation to the augmented-likelihood proBle for )j)
as exp()̃j ± 1:96*̃j), where *̃2

j is the jth diagonal element of

cõv()̃)= cõv(�̃) + Zcõv(�̃1; �̃) + cõv(�̃; �̃1)Z ′ + Z cõv(�̃1; �̃1)Z ′ (8)

and the cõv are blocks from the inverse negative second derivative of the conditional log-
likelihood at (�̃; �̃). For comparability, the PL intervals were also computed by the Wald
method, taking *̃2

j as the jth diagonal element of the inverse negative of the second deriva-
tive of the log posterior distribution at )̃. This type of interval performed acceptably in the
simulations cited earlier, though one can do better using PL-ratio or Monte Carlo methods
[4; 17–19]. Unlike empirical Bayes procedures, T is here speciBed a priori as in classical
Bayesian analyses, and so no correction for estimating T is needed; see Greenland [7; 8; 13]
for arguments and simulations favouring prespeciBcation of T in small-sample and sparse-data
epidemiologic analysis.

Copyright ? 2001 John Wiley & Sons, Ltd. Statist. Med. 2001; 20:2421–2428
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4. DISCUSSION

Data augmentation allows approximate Bayesian analysis of conditional-logistic and
proportional-hazards regression with standard maximum-likelihood Btting programs with
rescaled DAP input; the outputted ‘MLEs’ and ‘standard errors’ will be identical to penalized-
likelihood approximate marginal posterior modes and standard deviations. Its rapidity also
facilitates direct computation of proBle posterior limits [17], which can provide even better
approximations to the exact marginal posterior limits [4]. These and other Bayesian meth-
ods have returned to general acceptability over the last three decades, though issues remain.
One of us has discussed some of the issues from an epidemiologic perspective in other ar-
ticles [4; 7; 8; 20; 21]; we here recap those concerning prior speciBcation and approximation
accuracy.
Much of the Bayesian literature employs so-called non-informative prior speciBcations,

which can generate procedures with desirable classical frequentist properties (for example,
posterior intervals with good coverage properties for all parameter values) [19]. In many epi-
demiologic contexts, however (including the examples given here and elsewhere [4; 8; 21]),
such priors are scientiBcally absurd; like ordinary maximum likelihood estimates, estimates
based on non-informative priors preserve global performance at the cost of poor performance
where accuracy is most important, that is, in neighbourhoods of the null value such as ‖)‖¡2
or ‖)‖¡1. This problem is most acute in ‘data dredging’ studies like the present example, for
which epidemiologists vehemently reject classical multiple-comparisons procedures [22; 23],
but in which numerous random artefacts should be expected. Here, hierarchical Bayesian anal-
yses can provide at least a cautionary counterpoint to the abundance of ‘Bndings’ often seen
in maximum-likelihood and even exact results [7; 8; 13; 15; 24], one that is more acceptable
to epidemiologists than standard multiple-comparisons adjustments [23; 25].
Much of the modern Bayesian literature also focuses on Monte Carlo methods for computing

posterior distributions [18; 19]. As valuable as these methods may be in many applications, in
our epidemiologic experiences to date the di7erence between results from those methods and
results from even very crude approximations has been an order of magnitude below statistical
uncertainty, and trivial in comparison to the total uncertainty in typical problems (that is, after
informally considering e7ects of uncontrolled confounders, measurement error and selection
bias in addition to random error); for example, see Greenland [4]. In comparison, the beneBts
of seeing the sensitivity of results to prior information can be dramatic, even if one is limited
to crude approximations (as in Table I, where the apparent risks associated with white wine are
spectacularly sensitive to the prior). It thus seems that simple Bayesian extensions to popular
software remain valuable, insofar as they allow more investigators to examine Bayesian as
well as frequentist results.
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