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Linear Hypothesis

1. Introduction

The term ‘linear hypothesis’ is often used inter-
changeably with the term ‘linear model.’ Statistical
methods using linear models are widely used in the
behavioral and social sciences, e.g., regression analy-
sis, analysis of variance, analysis of covariance, multi-
variate analysis, time series analysis, and spatial data
analysis. Linear models provide a flexible tool for data
analysis and useful approximations for more complex
models.

A common object of linear modeling is to find the
most precise linear model that explains the data, to use
that model to predict future observations, and to
interpret that model in the context of the data
collection. Traditionally, analysis of variance models
have been used to analyze data from designed exper-
iments while regression analysis has been used to
analyze data from observational studies but the
techniques of both analysis methods apply to both
kinds of data. See also Experimental Design: O�er�iew
and Obser�ational Studies: O�er�iew.

2. Definition

The linear hypothesis is that the mean (average) of a
random observation can be written as a linear com-
bination of some observed predictor variables. For
example, Coleman et al. (1996) provides observations
on various schools. The dependent variable y consists
of theaverageverbal test score for sixth-grade students.
The report also presents predictor variables. A com-
posite measure of socioeconomic status x

"
is based on

father’s and mother’s education, family size and
intactness, home items, and percent of fathers who are
white collar. Staff salaries per pupil is x

#
. The average

score on a verbal test given to the school’s teachers is
x
$
. Denoting different schools using the subscript i and

the mean of y
i
by m

i
, a linear hypothesis states that

for some unknown numbers (parameters) β
!
, β

"
, β

#
,

and β
$
,

m
i
¯ β

!
­β

"
x

i"
­β

"
x

i#
­β

$
x

i$

Mosteller and Tukey (1977, pp. 326, 566) and
Mosteller et al. (1983, pp. 408–20) give excerpts and
analysis of the data.

In other applications, the predictors only identify
whether an observation is in some group. For example,
in 1978 observations y

ij
were collected on the age at

which people in Albuquerque committed suicide, see
Koopmans (1987, p. 409). Here i is used to identify the
person’s group membership (Hispanic, Native Amer-
ican, non-Hispanic Caucasian), and j identifies indi-
viduals within a group. The three categories are taken
to be mutually exclusive for the present discussion
(although the US government now allows for indi-
viduals to identify themselves with multiple races in
various surveys and the decennial census). We can
define group identifier predictor variables. Let δ

"i
take

the value 1 if an individual belongs to group 1
(Hispanic) and 0 otherwise, with similar predictors to
identify other groups, say δ

#i
and δ

$i
for Native

Americans and non-Hispanic Caucasians. Note that
the predictor variables do not depend on the value of
j identifying individuals within a group. Denoting the
mean of y

ij
by m

ij
, a linear hypothesis states that for

some unknown parameters µ, α
"
, α

#
, α

$
,

m
ij
¯µ­α

"
δ
"i
­α

#
δ
#i
­α

$
δ
$i

Since two of the δs are always zero, this model is often
written more succinctly as

m
ij
¯µ­α

i

A linear hypothesis is usually combined with other
assumptions about the observations y. Most com-
monly, the assumptions are that the observations are
independent, have the same (unknown) variance σ#,
and have normal (Gaussian) distributions. For the
two examples, these assumptions are written

y
i
indep. N(m

i
, σ#) and y

ij
indep. N(m

ij
, σ#)

where, for example, N(m
i
, σ#) indicates a normal

distribution with mean m
i

and variance σ#. Incor-
porating these additional assumptions, the linear
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hypothesis becomes a full-fledged linear model,
traditionally written

y
i
¯ β

!
­β

"
x

i"
­β

#
x

i#
­β

$
x

i$
­ε

i
, ε

i
indep. N(0, σ#)

(1)

and

y
ij
¯µ­α

i
­ε

ij
, ε

ij
indep. N(0, σ#) (2)

where the εs are unobservable random errors.
Both theoretical and computational work with

linear hypotheses and linear models is facilitated by
the use of matrices. If i¯ 1, 2, 3, 4, the model (1) can
be written as the equality of two 4¬1 matrices

A

B

y
"

y
#

y
$

y
%

C

D

¯

A

B

β
!
­β

"
x
""

­β
#
x
"#

­β
$
x
"$

­ε
"

β
!
­β

"
x
#"

­β
#
x
##

­β
$
x
$$

­ε
#

β
!
­β

"
x
$"

­β
#
x
$#

­β
$
x
$$

­ε
$

β
!
­β

"
x
%"

­β
#
x
%#

­β
$
x
%$

­ε
%

C

D

Using properties of matrix algebra, this can be
rewritten as

A

B

y
"

y
#

y
$

y
%

C

D

¯

A

B

1 x
""

x
"#

x
"$

1 x
#"

x
##

x
#$

1 x
$"

x
$#

x
$$

1 x
%"

x
%#

x
%$

C

D

A

B

β
!

β
"

β
#

β
$

C

D

­

A

B

ε
"

ε
#

ε
$

ε
%

C

D

Similarly, model (6) for i¯ 1, 2, 3, j¯ 1, 2 can be
written using δ as

A

B

y
""

y
"#

y
#"

y
##

y
$"

y
$#

C

D

¯

A

B

1 1 0 0

1 1 0 0

1 0 1 0

1 0 1 0

1 0 0 1

1 0 0 1

C

D

A

B

µ

α
"

α
#

α
$

C

D

­

A

B

ε
""

ε
"#

ε
#"

ε
##

ε
$"

ε
$#

C

D

In general, a linear model is traditionally written using
matrices as

Y¯Xβ­e (3)

where Y is a n¬1 matrix containing the observable
random variables y, X is a n¬p matrix containing
observed predictors, β is a p¬1 matrix containing
unobservable parameters, and e is a n¬1 matrix
containing unobservable random errors. To have a
full-fledged model, assumptions must be made about
the distribution of e. One standard assumption is that
the mean value of each element of e is 0. Denote the

n¬1 matrix of mean (expected) values as E(e). This
assumption is written

E(e)¯ 0

The corresponding linear hypothesis involves the
mean values of the entries of Y, i.e., E(Y ). The linear
hypothesis is that

E(Y )¯Xβ

for some matrix β. Another standard assumption
about e is that the covariance matrix, the n¬n
matrix of variances and covariances between the ε

i
s

or equivalently between the y
i
s is

Cov(e)¯Cov(Y )¯σ#I

where I indicates the n¬n identity matrix that has 1s
on the diagonal and 0 elsewhere.

An alternative way to write model (3) in terms of
each y

i
using some matrices is

y
i
¯x!

i
β­ε

i

i¯ 1, …, n where β is as before and x!
i
is the ith row of

the X matrix.
See also Analysis of Variance and Generalized Linear

Models and Linear Hypothesis: Regression (Basics).

3. Estimation

The unknown parameters of the linear model are the
elements of β, the βs, and the variance of an obser-
vation, σ#; they must be estimated from the data. The
β
j
s are generally estimated using least squares esti-

mation. For given data Y, the least squares estimates
are the values of β

j
that minimize

3
n

i="

(y
i
®x!

i
β )# or equivalently (Y®Xβ )«(Y®Xβ )

where the prime on (Y®Xβ )« indicates the matrix
transpose of (Y®Xβ ). (The transpose of a matrix
turns the columns of the original matrix into the rows
of a new matrix.)

Under the standard assumptions, least squares
estimates have optimal statistical properties. If the ε

i
s

are independent N(0, σ#), then the least squares esti-
mates provide maximum likelihood estimates (MLEs)
and minimum variance unbiased estimates (MVUEs).
A MVUE is an estimate that has less variability than
any other unbiased estimate. If we drop the assump-
tion of normality but retain independence (actually
0 covariances) and equal variances, least squares
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estimates are best linear unbiased estimates (BLUEs).
A BLUE is an estimate based on a linear combination
of the observations that has less variability than any
other unbiased estimate based on a linear combination
of the observations.

In matrix terms, the least squares estimates, say, β# ,
are obtained as solutions to the normal equations

X«Xβ¯X«Y

Typically, in regression problems, the unique solution
is

βW ¯ (X«X )−"X«Y

In general, if X«X is singular, so that (X«X )−" does not
exist, an infinite number of solutions exist, giving an
infinite number of least squares estimates. Any one of
these estimates is just as valid as any other, but
fortunately, for all practical purposes, the estimates
are unique. This means that whenever a linear par-
ameter λ«β is identifiable in the model (estimable), the
least squares estimate of the parameter is uniquely
defined. See also Statistical Identification and Esti-
mability and Analysis of Variance and Generalized
Linear Models.

The other unknown parameter to be estimated is σ#,
the variance of an observation. To estimate the
variance, first rearrange the model into

ε
i
¯ y

i
®x!

i
β or e¯Y®Xβ

Then estimate β to get the residuals

εW
i
¯ y

i
®x!

i
βW or eW ¯Y®XβW

The sum of the squared residuals is called the sum of
squares error,

SSE ¯ 3
n

i="

εW #
i
¯ (Y®XβW )«(Y®XβW )

The degrees of freedom error (dfE) is n minus the rank
of the matrix X, i.e.,

dfE¯ n®r(X )

The rank of X is the number of free parameters that
can be fitted to the model by least squares. The
variance σ# is estimated by the mean squared error,

MSE¯
SSE

dfE

See also Estimation: Point and Inter�al.

4. Testing

The basic idea of testing is to create some model for the
process of generating the data, and evaluate whether
the observed data are consistent with that model. For
example, such a model might be

y
i
¯ β

!
­β

"
x

i"
­β

#
x

i#
­β

$
x

i$
­ε

i
, ε

i
indep. N(0, σ#)

One can think of this model has having four parts: (a)
ε
i
are independent, (b) ε

i
have E(ε

i
)¯ 0, i.e.,

E(y
i
)¯m

i
¯ β

!
­β

"
x

i"
­β

#
x

i#
­β

$
x

i$

(c) ε
i
have common variance σ#, (d) ε

i
are normally

distributed. Data that are inconsistent with the model
may occur whenever any of these four parts is
inappropriate.

In the context of testing the linear hypothesis, it is
assumed that these four specifications are correct and
a further refinement of the model is then imposed by
placing an additional restriction on

E(y
i
)¯m

i
¯ β

!
­β

"
x

i"
­β

#
x

i#
­β

$
x

i$

The test is usually thought of as a test of this additional
restriction, generally called the null hypothesis. For
example, the additonal restriction could be the null
hypothesis H

!
: β

"
¯ β

$
¯ 0. In the sixth grade verbal

test example, this hypothesis indicates that the vari-
ables x

"
, socioeconomic status, and x

$
, teachers mean

verbal test score, have no ability to help predict sixth
graders’ mean verbal test scores. The test of whether
the data are consistent with a model that incorporates
β
"
¯ β

$
¯ 0 is based on assuming that the null hy-

pothesis and items (a) through (d) are all correct. If
assumptions (a) through (d) are correct, then data that
are inconsistent with the model suggest that either
β
"
1 0 or β

$
1 0 or both, i.e., that the null hypothesis

is not true. However, in reality, data that are incon-
sistent with the model can result if any of the
assumptions are violated, i.e., any of the four itemized
assumptions or the null hypothesis. Because of this, if
one is interested in testing only the null hypothesis, it
is crucial to do everything possible to validate the
assumptions embodied in items (a) through (d). See
also Hypothesis Testing in Statistics and Significance,
Tests of.

There are two ways to think about testing a linear
hypothesis. One is to think in terms of testing models
and the other is to think in terms of testing parameters.

4.1 Models

In testing models one assumes the validity of a (full)
model and tests to see if some smaller (reduced) model
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is consistent with the data. For example, with the
verbal test score data a full model might be

y
i
¯ β

!
­β

"
x

i"
­β

#
x

i#
­β

$
x

i$
­ε

i
, ε

i
indep. N(0, σ#)

incorporating all three predictors. The reduced model
may incorporate the idea that the socioeconomic and
mean teacher verbal score variables x

i"
and x

i$
are not

important, yielding

y
i
¯ β

!
­β

#
x

i#
­ε

i
, ε

i
indep. N(0, σ#)

In this context, the null hypothesis is that the reduced
model provides an adequate explanation for the data.
In any particular test, the full model need not
incorporate all of the variables that have been
measured. It need only be a model that is plausibly
correct.

Both the full model and the reduced model have
sums of squares error, degrees of freedom error, and
mean squared errors associated with them. The
reduced model is rejected as being inconsistent with
the data if the following F statistic is too large,

F¯
SSE(Red)®SSE(Full)

dfE(Red)®dfE(Full)
}MSE(Full)

If the reduced model is true, then both the full model
and the reduced model are true, so both MSE(Red)
and MSE(Full) are estimates of σ#. It can then
be shown that (SSE(Red)®SSE(Full))}(dfE(Red)®
dfE(Full)) is also an estimate of σ#, so both the numer-
ator and the denominator of F are estimates of σ#, and
the ratio should be about 1. Of course, there is sam-
pling variability associated with the F statistic. The
theoretical F distribution describes the usual distri-
bution of values one will encounter when making
such calculations. It depends on two parameters:
dfE(Red)®dfE(Full) degrees of freedom for the
numerator and dfE(Full) degrees of freedom for the
denominator.

On the other hand, if the reduced model is an
inadequate explanation of the data, it can be shown
that (SSE(Red)®SSE(Full))}(dfE(Red)®dfE(Full))
estimates σ# plus a positive number, so that if the
reduced model is bad, the F statistic should be larger
than 1. If the observed value of the F statistic is so
much larger than 1 as to be inconsistent with the
theoretical F distribution, one can reasonably con-
clude that the reduced model is an inadequate
explanation of the data, i.e., one rejects the null
hypothesis.

4.2 Parameters

The other way to perform tests in the linear hypothesis
is to specify a null hypothesis in terms of the

parameters. For example, if we assume the verbal test
score model

y
i
¯ β

!
­β

"
x

i"
­β

#
x

i#
­β

$
x

i$
­ε

i
, ε

i
indep. N(0, σ#)

we might be interested in testing the null hypothesis
H

!
: β

"
¯ β

$
¯ 0 in which socioeconomic status and

teachers mean verbal test score have no ability to
predict. One way to test this hypothesis is to identify
the reduced model associated with it, i.e.,

y
i
¯ β

!
­0x

i"
­β

#
x

i#
­0x

i$
­ε

i
, ε

i
indep. N(0, σ#)

or

y
i
¯ β

!
­β

#
x

i#
­ε

i
, ε

i
indep. N(0, σ#)

For a more complicated example, suppose two
previous studies had suggested the hypothesis H

!
:

β
"
­β

$
¯ 5 and β

#
¯ 0. We can rewrite the hypothesis

as H
!
: β

"
¯ 5®β

$
and β

#
¯ 0, and create a reduced

model by substitution,

y
i
¯ β

!
­(5®β

$
)x

i"
­0x

i#
­β

$
x

i$
­ε

i
,

ε
i
, indep. N(0, σ#)

Rearranging terms gives a reduced model

y
i
®5x

i"
¯ β

!
­β

$
(x

i$
®x

i"
)­ε

i
, ε

i
indep. N(0, σ#)

This is just a new linear model with a new dependent
variable y

i
®5x

i"
and one predictor variable (x

i$
®x

i"
).

One can compute SSE(Red) and dfE(Red) in the usual
way for this new model, and simply substitute these
quantities into the usual formula for the F statistic to
get the test.

If the data are consistent with the reduced model, we
have a more precise model than the one we started
with. While testing provides no assurance that the
reduced model is correct, the data are at least con-
sistent with it. This more precise model can be
investigated for the validity of its predictions and its
usefulness in explaining the data collection process.

In addition, (estimable) parametric hypotheses can
be tested directly using matrices, without identifying
the reduced model. For example, the hypothesis H

!
:

β
"
­β

$
¯ 5 and β

#
¯ 0 can be written in matrix form by

creating a matrix Λ« that, when multiplied by β,
isolates β

"
­β

$
and β

#
. The hypothesis is

Λ«β3
A

B

0 1 0 1

0 0 1 0

C

D

A

B

β
!

β
"

β
#

β
%

C

D

¯
A

B

β
"
­β

$

β
#

C

D

¯
A

B

5

0

C

D

3 d
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In matrix terms the F statistic for a null hypothesis
H

!
: Λ«β¯ d is

F¯
(Λ«βW ®d )«[Λ«(X«X )−Λ]−(Λ«βW ®d )

r(Λ)MSE
(4)

where β# is a least squares estimate of β, r(Λ) is the
rank of the matrix Λ, and A− is a generalized in-
verse of the matrix A. If A− exists, it is the unique
generalized inverse. The reduced model test and this
direct test give the same F statistic and use the same
degrees of freedom.

Confidence regions can be constructed using the F
distribution. For the example, we can construct a
simultaneous confidence region for β

"
­β

$
and β

#
as

follows. Let F(0.95, r(Λ), n®r(X )) be the number so
that with probability 0.95

(Λ«βW ®Λ«β )«[Λ«(X«X )−Λ]−(Λ«βW ®Λ«β )

r(Λ)MSE

%F(0.95, r(Λ), n®r(X ))

Here, MSE (X«X )− is an estimate of the covariance
matrix of β# and MSE [Λ«(X«X )−Λ] is an estimate of
the covariance matrix of Λ«β# . After substituting the
observed values of Λ«β# and MSE into the inequality,
the only thing that is unknown in this inequality is the
value of Λ«β. A confidence region for Λ«β consists of
all the values that can be substituted for Λ«β while
maintaining the truth of the inequality. A precise
definition of the 95 percent confidence region is as the
collection of all values d in (4) that would not be
rejected by an α¯ 0.05 level F test. If Λ« has only one
row, the confidence region simplifies to a confidence
interval. See also Estimation: Point and Inter�al.

5. Bayesian Estimation

An alternative to least squares estimation is Bayesian
estimation. In Bayesian estimation the parameters of
the linear model are considered to be random and
probability distributions reflecting the investigator’s
prior knowledge about the parameters are specified.
Using Bayes theorem, the prior probability distri-
butions are updated into posterior distributions that
reflect the information embodied in the data. All
statistical inferences are then based on the posterior
distributions. Sometimes, a noninformative (im-
proper) prior is used in which case, interval estimates
arrived at using Bayesian methods are numerically
equal to the interval estimates obtained from classical
methods, only the interpretations of the intervals
change. Alternatively, real prior information is often
specified by taking the prior distribution of β given σ#

to be a multivariate normal distribution and the prior

distribution of σ# to be an inverse gamma distribution.
This leads to modified least squares estimates that are
shrunk towards the mean of the prior distribution β
with corresponding changes to interval estimation. See
also Bayesian Statistics; Distributions, Statistical:
Special and Continuous; Elicitation of Probabilities and
Probability Distributions.

6. Model Checking

Valid testing of a null hypothesis requires that all of
the four itemized assumptions embodied in the model
be true. Confidence intervals and regions are collec-
tions of parameter values that cannot be rejected by
tests, so they also require the validity of the basic
assumptions in the model as do Bayesian and non-
Bayesian estimation. Model checking is considered an
integral part of all statistical inference. A variety of
methods have been developed for model checking.
Most are based on plotting the residuals, see Linear
Hypothesis: Regression (Graphics). These methods
include checking the normality assumption by plotting
the ordered (standardized (Studentized)) residuals
against (some approximation to) the expected order
statistics of a standard normal distribution. Such a
plot should be approximately linear if the data are
normal.

The (standardized (Studentized)) residuals are also
plotted against their corresponding predicted variables
or any other variable (that does not depend on y) for
which a measurement is available for each obser-
vation. In these plots, any identifiable systematic
structure is an indication of problems with the assump-
tions.

Heteroscedasticity refers to having observations
with different variances. In some models, formal tests
for equal variances are available, e.g., Bartlett’s test
and the model-based tests discussed in Carroll and
Ruppert (1988).

Lack of fit refers to the problem of having specified
an incorrect linear mean structure, i.e., an incorrect
linear hypothesis. Formal tests for lack of fit are often
based on identifying clusters of observations that have
similar predictor variables, i.e., similar rows of the X
matrix, see Christensen (1996a, Sect. 6.6). Miller et al.
(1998) have provided optimal methods for grouping
observations into near replicate clusters.

The independence assumption is perhaps the
hardest to evaluate. If the observations are taken at
equally spaced time intervals, standard time series
methods are often applied to the residuals. More
generally, Christensen and Bedrick (1997) proposed
creating rational subgroups (clusters) of the obser-
vations in which one suspects the observations may be
more similar within clusters than between clusters.
The methods of near replicate lack of fit tests can then
be applied to test the independence assumption.
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7. Weighted Models and Co�ariance Estimation

The standard assumption in linear models is that the
observations all have the same variance and that the
observations are all independent. If either or both of
those assumptions is invalidated, different methods of
estimation and testing are required. The usual linear
model has

Y¯Xβ­e, E(e)¯ 0, Cov(e)¯σ#I

Writing a model

Y¯Xβ­e, E(e)¯ 0, Cov(e)¯σ#V

where σ#V is the variance–covariance matrix of the
observations (and also of the unobservable errors), V
can incorporate unequal variances for observations as
well as correlations between observations. Assume
that V has an inverse matrix V−".

Rather than using least squares estimates of β, we
use weighted least squares estimates that minimize

(Y®Xβ )«V−"(Y®Xβ )

for given Y and X. The estimates can be obtained by
solving the normal equations

X«V−"Xβ¯X«V−"Y

Typically, in regression problems, the unique solution
is

βW ¯ (X«V−"X )−"X«V−"Y

These estimates are also BLUEs. Moreover, under the
assumption that the observations have a multivariate
normal distribution, the weighted least squares esti-
mates are MLEs and MVUEs. The variance σ# is
estimated by MSE¯SSE}dfE as before, except now

SSE¯ (Y®XβW )«V−"(Y®XβW )

Testing a full model and a reduced model, works as
before, with the F statistic still being

F¯
SSE(Red)®SSE(Full)

dfE(Red)®dfE(Full)
}MSE(Full)

Note that incorporating the more general matrix V
has no effect on the process of identifying reduced
models—which only depend on the mean structure
and not on the variance–covariance structure of the
data.

All of these methods presume that V is known. In
practice, V is often unknown and must be estimated

from the data. This greatly complicates the entire
process of data analysis. Typically, when V is esti-
mated, weighted least squares estimates are not
BLUEs or MVUEs, nor does the F statistic have an F
distribution under the null hypothesis that the reduced
model is true. Nonetheless, the ideas behind weighted
regression are fundamental to many applications of
the linear hypothesis.

A common application of weighted regression is
when the observations are independent but have
different variances. If the relative sizes of the variances
are known, then V is known. Often the variance of
each observation is modeled as a function of some
predictor variables, see Carroll and Ruppert (1988).

Split plot models involve groups of observations
that all have the same correlation. For example, in an
experiment that involves different ways of scheduling
classes in schools and different ways of assigning
homework to students, the behavior of the schools
might be considered independent of each other, but a
group of five students taken from the same school
should have similarities with each other, while being
independent of students from other schools. This
correlation structure must be incorporated into V. If
the same number of students are measured from each
school, i.e., if the groups of observations having the
same correlation are all of the same size, many linear
models still allow one to use least squares estimates
and their associated F tests.

Mixed models involve the use of random effects,
Partition X and β into two parts, so as to write

Y¯X
"
β
"
­X

#
β
#
­e

Instead of considering β
"

and β
#

as fixed un-
known parameters, treat β

#
as random. Assume that

E(β
#
)¯ 0 and Cov(β

#
)¯σ#D with, say, e and β

#
independent. Consolidate all of the random parts into
ξ¯X

#
β
#
­e and write a linear model

Y¯X
"
β
"
­ξ, E(x)¯ 0, Cov(ξ)¯σ#(X

#
DX !

#
­I )

where V¯X
#
DX !

#
­I. Typically, D has to be esti-

mated. To estimate β
"
, simply use the estimate of D to

get an estimate of V which is then treated as the true V.
Mixed models get much more complicated. X

#
is

often partitioned into submatrices Z
"
, …, Z

r
and β

#
is

correspondingly partitioned into γ
k
, so as to write

Y¯X
"
β
"
­3

r

k="

Z
k
γ
k
­e

where E(γ
k
)¯ 0, Cov(γ

k
)¯σ#

k
I, and the γ

k
are

independent. The σ#
k

are unknown parameters,
and various methods such as residual (restricted)
maximum likelihood (REML) and minimum norm
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quadratic unbiased estimation (MINQUE) are used to
estimate them. See also Hierarchical Models: Random
and Fixed Effects; Longitudinal Data.

Another application of weighted estimation is in the
analysis of spatial data. With spatial data, obser-
vations that are taken close together spatially are
usually more correlated than observations taken far
apart. V reflects the spatial correlations of the obser-
vations and X may reflect the locations of the
observations. Models for V are developed based on
the distances between observations. A common appli-
cation in geographic information systems is map
making, in which predictions are made for a very fine
grid of locations. An individual best linear unbiased
predictor for an observation on the grid, say, y

!
corresponding to location x!

!
is

yW
!
¯x!

!
βW ­V

OY
V−"(Y®XβW )

where V
!Y

is a matrix of covariances between y
!

and
the original observations in Y. In practice, both V and
V

!Y
must be estimated from the data. See also Spatial

Statistical Methods.
Multivariate linear models involve creating linear

models for several variables at once. For example, y
i"

might measure verbal ability and y
i#

mathematical
ability. Obviously, for any individual i, y

i"
and y

i#
may

be correlated. The multivariate linear model fits

y
i"

¯x!
i
β
"
­ε

i"
and y

i#
¯x!

i
β
#
­ε

i#

simultaneously. See also Multi�ariate Analysis: O�er-
�iew.

Time series data involve observations y
"
, y

#
, y

$
, …,

taken at regular time intervals. The correlation be-
tween two observations depends on the amount of
time between them. One simple linear model for
explaining the behavior of such data is a first order
autoregression model.

y
i
¯ β

!
­β

"
y
i−"

­ε
i

in which the observation at time i®1 is used to predict
the observation at time i. See also Time Series: General
and Time Series: ARIMA Methods

Generalized linear models involve transforming the
mean before making the linear hypothesis. For ex-
ample, if observations y

i
have means m

i
one might

make the hypothesis that

log(m
i
)¯ β

!
­β

"
x

i"
­β

#
x

i#
­β

$
x

i$

This hypothesis together with assumptions about the
distribution of y

i
form a generalized linear model. In

particular, since the linear hypothesis is based on the

log transformation, this would be called a log-linear
model. Parameter estimates are typically found by
performing a series of weighted least squares analyses.
Generalized linear models allow for the analysis of a
variety of nonnormally distributed data. See also
Analysis of Variance and Generalized Linear Models;
Multi�ariate Analysis: Discrete Variables (Loglinear
Models); Multi�ariate Analysis: Discrete Variables
(Logistic Regression)

8. Conclusion

Models based on the linear hypothesis, and their
generalizations provide tools for analyzing a wide
variety of data. Linear hypotheses allowone to address
numerous interesting questions about the mean struc-
ture of the data. Moreover, the models can adjust for
very general forms of dependence among the data.
Linear models and their generalizations continue to be
the most important and widely used models for the
statistical analysis of data.

See also: Analysis of Variance and Generalized Linear
Models; Bayesian Statistics; Distributions, Statistical:
Special and Continuous; Elicitation of Probabilities
and Probability Distributions; Estimation: Point and
Interval; Experimental Design: Overview; Hierarch-
ical Models: Random and Fixed Effects; Hypothesis
Testing in Statistics; Linear Hypothesis: Regression
(Basics); Linear Hypothesis: Regression (Graphics);
Longitudinal Data; Multivariate Analysis: Discrete
Variables (Logistic Regression); Multivariate Analy-
sis: Discrete Variables (Loglinear Models); Multi-
variate Analysis: Overview; Observational Studies:
Overview; Significance, Tests of; Spatial Statistical
Methods; Statistical Identification and Estimability;
Time Series: ARIMA Methods; Time Series:
General
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R. Christensen

Linear Hypothesis: Fallacies and

Interpretive Problems (Simpson’s

Paradox)

The study of relationships between two quantities has
been important since earliest times: from the con-
nection between weather and the hunted animals,
down to cigarettes causing lung cancer. In the lab-
oratory sciences it is possible to determine the re-
lationship by controlling the conditions, changing one
quantity and observing the effect of the change on the
other. In the social and behavioral sciences this
determination is not possible for three, related,
reasons. First, conditions can rarely be controlled.
Second, it is often not possible to set a quantity at an
assigned value. Third, the relationship may not be
exact but possess a random element, as with the
heights of parents and their children. As a result, it is
not easy to determine the nature of any possible
relationship between quantities. Often an apparent
connection has been found, on further study, to be
spurious. We begin by looking at one of the more
bizarre possibilities, usually known as Simpson’s
paradox (Simpson, 1951), but known to earlier writers.
A more recent reference is Lindley and Novick (1981).
Chapter 6 of Pearl (2000) contains a fine discussion in
terms of causation. It is explained using some illus-
trative, medical data.

Patients were given either a treatment T, or a
placebo T«, to alleviate a condition. After a fixed time,
it was observed whether they had recovered, R, or not,
R«. Table 1 gives the data in the form of a 2¬2
contingency table: thus 16 patients recovered, even
with the placebo. The table also provides the marginal
totals and the two recovery rates. The treatment
appears to have been effective in increasing the
recovery rate over the placebo by 10 percent. (As an
aside, the numbers here are small, 80 patients in all;
but the phenomenon could persist with 8,000. It is not
the effect of small samples that is at issue.) There is an
apparent relationship between treatment and recov-
ery, but it has a random element and outside con-
ditions have not been controlled.

One of these conditions is the patient’s sex. Table 2,
in the same form, gives the data for the men who
participated in the study. Again the treatment has an
effect but in the opposite direction, reducing the
recovery rate by 10 percent. Common sense might
suggest that a treatment which was overall beneficial,
but harmful to men, would be highly beneficial for
women. The data for them can be found by subtracting
the cell entries in Table 2 for men from those for all
patients in Table 1. Thus no new information is
needed. The results are given in Table 3. Common
sense misleads: the recovery rate for women also drops
by 10 percent as a result of the treatment, just as with
the men. This is a treatment which is bad for men, bad
for women, but good for all of us. This is the paradox.
It is here in an extreme form of complete reversal when
an additional factor is included. It often arises in the
form where there is some change in relationship when
extra information is included. How can this happen?

It is easy to see what has gone wrong in the medical
example. The condition is more serious for the women,
with lower recovery rates than the men. Yet the
treatment has been mainly given to the men—30 of
them, against only 10 women. Perhaps the doctor was
suspicious of the treatment and felt it was too

Table 1

R R« Rate

T 20 20 40 50%
T« 16 24 40 40%

36 44 80

Table 2

Males R R« Rate

T 18 12 30 60%
T« 7 3 10 70%

25 15 40
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