\qquad

This is Exercise 1.12.2 in the notes. These are things you should have learned in the prerequisite course.

The information below relates y, a second measurement on wood volume, to x_{1}, a first measurement on wood volume, x_{2}, the number of trees, x_{3}, the average age of trees, and x_{4}, the average volume per tree. Note that $x_{4}=x_{1} / x_{2}$. Some of the information has not been reported, so that you can figure it out on your own.

Table of Coefficients

Predictor	$\hat{\beta}_{k}$	$\mathrm{SE}\left(\hat{\beta}_{k}\right)$	t	P
Constant	23.45	14.90		0.122
x_{1}	0.93209	0.08602		0.000
x_{2}		0.4721	1.5554	0.126
x_{3}	-0.4982	0.1520		0.002
x_{4}	3.486	2.274		0.132

Analysis of Variance

Source	$d f$	$S S$	$M S$	F	P
Regression	4	887994			0.000
Error					
Total	54	902773			

	Sequential	
Source	$d f$	$S S$
x_{1}	1	883880
x_{2}	1	183
x_{3}	1	3237
x_{4}	1	694

(a) How many observations are in the data?
(b) What is R^{2} for this model?
(c) What is the mean squared error?
(d) Give a 95% confidence interval for β_{2}.
(e) Test the null hypothesis $\beta_{3}=0$ with $\alpha=0.05$.
(f) Test the null hypothesis $\beta_{1}=1$ with $\alpha=0.05$.
(g) Give the F statistic for testing the null hypothesis $\beta_{3}=0$.
(h) Give $S S R\left(x_{3} \mid x_{1}, x_{2}\right)$ and find $S S R\left(x_{3} \mid x_{1}, x_{2}, x_{4}\right)$.
(i) Test the model with only variables x_{1} and x_{2} against the model with all of variables x_{1}, x_{2}, x_{3}, and x_{4}.
(j) Test the model with only variables x_{1} and x_{2} against the model with variables x_{1}, x_{2}, and x_{3}.
(k) Should the test in part (g) be the same as the test in part (j)? Why or why not?
(l) For estimating the point on the regression surface at $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(100,25,50,4)$, the standard error of the estimate for the point on the surface is 2.62 . Give the estimated point on the surface, a 95% confidence interval for the point on the surface, and a 95% prediction interval for a new point with these x values.
(m) Test the null hypothesis $\beta_{1}=\beta_{2}=\beta_{3}=\beta_{4}=0$ with $\alpha=0.05$.

