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Chapter 17

Basic experimental designs

In this chapter we examine basic experimental designs: completely randomized designs (CRDs),
randomized complete block (RCB) designs, Latin square (LS) designs, balanced incomplete block
(BIB) designs, and more.

17.1 Experiments and Causation

The basic object of running an experiment is to determine causation. Determining causation is dif-
ficult. We regularly collect data and find relationships between “dependent” variables and predictor
variables. But this does not imply causation. One can predict air pressure extremely well from the
boiling point of water, but does the boiling point of water cause the air pressure? Isn’t it the other
way around? We found that females scored lower in a particular statistics class than males, but does
being female cause that result? Doesn’t it seem plausible that something that is correlated with sexes
might cause the result? Interest in statistics? Time devoted to studying statistics? Understanding the
instructor’s teaching style? Being Native American in Albuquerque in 1978 was highly associated
with lower suicide ages. But to claim that being Native American caused lower suicide ages would
be incredibly simplistic. Causation is fundamentally tied to the idea that if you change one thing
(the cause), you will change something else (the result). If that is true, can sex or race ever cause
anything, since we cannot really change them?

In constructing an experiment we randomly assign treatments to experimental units. For exam-
ple, we can randomly assign (many kinds of) drugs to people. We can randomly assign which em-
ployee will operate a particular machine or use a particular process. Unfortunately, there are many
things we cannot perform experiments on. We cannot randomly assign sexes or races to people. As
a practical matter, we cannot assign the use of illegal drugs to people.

The key point in determining causation is randomization. If we have a collection of experimental
units and randomly assign the treatments to them, then (on average) there can be no systematic
differences between the treatment groups other than the treatments. Therefore, any differences we
see among the treatment groups must be caused by the treatments.

Alas, there are still problems. The randomization argument works on average. Experimental
units, whether they be people, rats, or plots of ground, are subject to variability. One can get unlucky
with a particular assignment of treatments to experimental units. If by chance one treatment happens
to get far more of the “bad” experimental units it will look like a bad treatment. For example, if you
want to know whether providing milk to elementary school students improves their performances,
you cannot let the teachers decide who gets the milk. The teachers may give it to the poorest students
in which case providing milk could easily look like it harms student performances. Similar things
can happen by chance when randomly assigning treatments. To infer causation, the experiment
should be repeated often enough that chance becomes a completely implausible explanation for the
results.

Moreover, if you measure a huge number of items on each experimental unit, there is a good
chance that one of the treatment groups will randomly have an inordinate number of good units for
some variable, and hence show an effect that is really due to chance. In other words, if we measure
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396 17. BASIC EXPERIMENTAL DESIGNS

enough variables, just by chance, some of them will display a relationship to the treatment groups,
regardless of how the treatment groups were chosen.

A particularly disturbing problem is that the experimental treatments are often not what we think
they are. An experimental treatment is everything we do differently to a group of experimental units.
If we give a drug to a bunch of rats and then stick them into an asbestos filled attic, the fact that
those rats have unusually high cancer rates does not mean that the drug caused it. The treatment
caused it, but just because we call the treatment by the name of the drug does not make the drug the
treatment.

Alternatively, suppose you want to test whether artificial sweeteners made with a new chemical
cause cancer. You get some rats, randomly divide them into a treatment group and a control. You
inject the treatment rats with a solution of the sweetener combined with another (supposedly benign)
chemical. You leave the control rats alone. For simplicity you keep the treatment rats in one cage
and the control rats in another cage. Eventually, you find an increased risk of cancer among the
treatment rats as compared to the control rats. You can reasonably conclude that the treatments
caused the increased cancer rate. Unfortunately, you do not really know whether the sweetener or
the supposedly benign chemical or the combination of the two caused the cancer. In fact, you do
not really know that it was the chemicals that caused the cancer. Perhaps the process of injecting
the rats caused the cancer or perhaps something about the environment in the treatment rats’s cage
caused the cancer. A treatment consists of all the ways in which a group is treated differently from
other groups. It is crucially important to treat all experimental units as similarly as possible so that
(as nearly as possible) the only differences between the units are the agents that were meant to be
investigated.

Random assignment of treatments it fundamental to conducting an experiment but it does not
mean haphazard assignment of treatments to experimental units. Haphazard assignment is subject to
the (unconscious) biases of the person making the assignments. Random assignment uses a reliable
table of random numbers or a reliable computer program to generate random numbers. It then uses
these numbers to assign treatments. For example, suppose we have four experimental units labeled
u1, uz, u3, and uy and four treatments labeled A, B, C, and D. Given a program or table that provides
random numbers between O and 1 (i.e., random samples from a uniform(0,1) distribution), we as-
sociate numbers between 0 and .25 with treatment A, numbers between .25 and .50 with treatment
B, numbers between .50 and .75 with treatment C, and numbers between .75 and 1 with treatment
D. The first random number selected determines the treatment for u;. If the first number is .6321,
treatment C is assigned to u; because .50 < .6321 < .75. If the second random number is .4279,
uy gets treatment B because .25 < .4279 < .50. If the third random number is .2714, u3 would get
treatment B, but we have already assigned treatment B to u5, so we throw out the third number. If the
fourth number is .9153, u3 is assigned treatment D. Only one unit and one treatment are left, so uy
gets treatment A. Any reasonable rule (decided ahead of time) can be used to make the assignment
if a random number hits a boundary, e.g., if a random number comes up, say, .2500.

By definition, treatments must be amenable to change. As discussed earlier, things like sex and
race are not capable of change, but in addition many viable treatments cannot be randomly assigned
for social reasons. If you want to know if smoking causes cancer in humans, running an experiment
is difficult. In our society we cannot force some people to smoke a specific amount for a long period
of time and force others not to smoke at all. Nonetheless, we are very interested in whether smoking
causes cancer. What are we to do?

When experiments cannot be run, the other common method for inferring causation is the “What
else could it be?” approach. For smoking, the idea is that you measure everything else that could
possibly be causing cancer and appropriately adjust for those measurements. If, after fitting all of
those variables, smoking still has a significant effect on predicting cancer, then smoking must be
causing the cancer. The catch is that this is extremely difficult to do. How do you even identify,
much less measure, everything else that could be causing cancer? And even if you do measure
everything, how do you know that you have adjusted for those variables appropriately. The key to
this argument is independent replication of the studies! If there are many such observational studies
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with many different ideas of what other variables could be causing the effect (cancer) and many
ways of adjusting for those variables, and if the studies consistently show that smoking remains
an important predictor, at some point it would seem foolish to ignore the possibility that smoking
causes cancer.

I have long contended that one cannot infer causation from data analysis. Certainly data analysis
speaks to the relative validity of competing causal models but that is a far cry from actually deter-
mining causation. I believe that causation must be determined by some external argument. I find
randomization to be the most compelling external argument. In “What else can it be?” the external
argument is that all other variables of importance have been measured and appropriately considered.

My contention that data analysis cannot lead to causation may be wrong. I have not devoted
my life to studying causal models. And I know that people study causation by the consideration of
counterfactuals. But for now, I stand by my contention.

Although predictive ability does not imply causation, for many (perhaps most) purposes, predic-
tive ability is more important. Do you really care why the lights go on when you flip a switch? Or do
you care that your prediction comes true? You probably only care about causation when the lights
stop working. How many people really understand the workings of an automobile? How many can
successfully predict how automobiles will behave?

17.2 Technical Design Considerations

As a technical matter, the first object in designing an experiment is to construct one that allows for
a valid estimate of 62, the variance of the observations. Without a valid estimate of error, we cannot
know whether the treatment groups are exhibiting any real differences. Obtaining a valid estimate of
error requires appropriate replication of the experiment. Having one observation on each treatment
is not sufficient. All of the basic designs considered in this chapter allow for a valid estimate of the
variance.

The simplest experimental design is the completely randomized design. With four drug treat-
ments and observations on eight animals, a valid estimate of the error can be obtained by randomly
assigning each of the drugs to two animals. If the treatments are assigned completely at random to
the experimental units (animals), the design is a completely randomized design. The fact that there
are more animals than treatments provides our replication.

It is not crucial that the design be balanced, i.e., it is not crucial that we have the same number
of replications on each treatment. But it is useful to have more than one observation on each unit to
help check our assumption of equal variances.

A second important consideration is to construct a design that yields a small variance. A smaller
variance leads to sharper statistical inferences, i.e., narrower confidence intervals and more power-
ful tests. The basic idea is to examine the treatments on homogeneous experimental material. The
people of Bergen, Norway are probably more homogenous than the people of New York City. It will
be easier to find treatment effects when looking at people from Bergen. Of course the downside is
that you end up with results that apply to the people of Bergen. The results may or may not apply to
the people of New York City.

A fundamental tool for reducing variability is blocking. The people of New York City may be
more variable than the people of Bergen but we might be able to divide New Yorkers into subgroups
that are just as homogeneous as the people of Bergen. With our drugs and animals illustration, a
smaller variance for treatment comparisons is generally obtained when the eight animals consist
of two litters of four siblings and each treatment is applied to one randomly selected animal from
each litter. With each treatment applied in every litter, all comparisons among treatments can be
performed within each litter. Having at least two litters is necessary to get a valid estimate of the
variance of the comparisons. Randomized complete block designs (RCBs) : 1) identify blocks of
homogeneous experimental material (units) and 2) randomly assign each treatment to an experi-
mental unit within each block. The blocks are complete in the sense that each block contains all of
the treatments.
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The key point in blocking on litters is that, if we randomly assigned treatments to experimental
units without consideration of the litters, our measurements on the treatments would be subject
to all of the litter to litter variability. By blocking on litters, we can eliminate the litter to litter
variability so that our comparisons of treatments are subject only to the variability within litters
(which, presumably, is smaller). Blocking has completely changed the nature of the variability in
our observations.

The focus of block designs is in isolating groups of experimental units that are homogeneous:
litters, identical twins, plots of ground that are close to one another. If we have three treatments
and four animals to a litter, we can simply not use one animal. If we have five treatments and four
animals to a litter, a randomized complete block experiment becomes impossible.

A Balanced Incomplete Block (BIB) design is one in which every pair of treatments occur to-
gether in a block the same number of times. For example, if our experimental material consists of
identical twins and we have the drugs A, B, and C, we might give the first set of twins drugs A and
B, the second set B and C, and the third set C and A. Here every pair of treatments occurs together
in one of the three blocks.

BIBs do not provide balanced data in our usual sense of the word “balanced” but they do have a
relatively simple analysis. RCBs are balanced in the usual sense. Unfortunately, losing any observa-
tions from either design destroys the balance that they display. Our focus is in analyzing unbalanced
data, so we use techniques for analyzing block designs that do not depend on any form of balance.

The important ideas here are replication and blocking. RCBs and BIBs make very efficient
designs but keeping their balance is not crucial. In olden days, before good computing, the simplicity
of their analyses was important. But simplicity of analysis was never more than a side effect of the
good experimental designs.

Latin squares use two forms of blocking at once. For example, if we suspect that birth order
within the litter might also have an important effect on our results, we continue to take observations
on each treatment within every litter, but we also want to have each treatment observed in every
birth order. This is accomplished by having four litters with treatments arranged in a Latin square
design. Here we are simultaneously blocking on litter and birth order.

Another method for reducing variability is incorporating covariates into the analysis. This topic
is discussed in Section 8.

Ideas of blocking can also be useful in observational studies. While one cannot really create
blocks in observational studies, one can adjust for important groupings.

EXAMPLE 17.2.1. If we wish to run an experiment on whether cocaine users are more paranoid
than other people, we may decide that it is important to block on socioeconomic status. This is
appropriate if the underlying level of paranoia in the population differs by socioeconomic status.
Conducting an experiment in this setting is difficult. Given groups of people of various socioeco-
nomic statuses, it is a rare researcher who has the luxury of deciding which subjects will ingest
cocaine and which will not. O

The seminal work on experimental design was written by Fisher (1935). It is still well worth
reading. My favorite source on the ideas of experimentation is Cox (1958). The books by Cochran
and Cox (1957) and Kempthorne (1952) are classics. Cochran and Cox is more applied. Kempthorne
is more theoretical. Kempthorne has been supplanted by Hinkleman and Kempthorne (2008, 2005).
There is a huge literature in both journal articles and books on the general subject of designing ex-
periments. The article by Coleman and Montgomery (1993) is interesting in that it tries to formalize
many aspects of planning experiments that are often poorly specified. Two other useful books are
Cox and Reid (2000) and Casella (2008).
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17.3 Completely randomized designs

In a completely randomized design, a group of experimental units are available and the experimenter
randomly assigns treatments to the experimental units. The data consist of a group of observations
on each treatment. Typically, these groups of observations are subjected to a one-way analysis of
variance.

EXAMPLE 17.3.1. In Example 12.4.1, we considered data from Mandel (1972) on the elasticity
measurements of natural rubber made by 7 laboratories. While Mandel did not discuss how the data
were obtained, it could well have been the result of a completely randomized design. For a CRD,
we would need 28 pieces of the type of rubber involved. These should be randomly divided into
7 groups (using a table of random numbers or random numbers generated by a reliable computer
program). The first group of samples is then sent to the first lab, the second group to the second lab,
etc. For a CRD, it is important that a sample is not sent to a lab because the sample somehow seems
appropriate for that particular lab.

Personally, I would also be inclined to send the four samples to a given lab at different times. If
the four samples are sent at the same time, they might be analyzed by the same person, on the same
machines, at the same time. Samples sent at different times might be treated differently. If samples
are treated differently at different times, this additional source of variation should be included in
any predictive conclusions we wish to make about the labs.

When samples sent at different times are treated differently, sending a batch of four samples at
the same time constitutes subsampling. There are two sources of variation to deal with: variation
from time to time and variation within a given time. The values from four samples at a given time
collectively help reduce the effect on treatment comparisons due to variability at a given time, but
samples analyzed at different times are still required if we are to obtain a valid estimate of the
error. In fact, with subsampling, a perfectly valid analysis can be based on the means of the four
subsamples. In our example, such an analysis gives only one ‘observation’ at each time, so the need
for sending samples at more than one time is obvious. If the four samples were sent at the same
time, there would be no replication, hence no estimate of error. Subsection 19.4.1 and Christensen
(2011, Section 9.4) discuss subsampling in more detail. O

EXAMPLE 17.3.2. In Chapter 12, we considered the suicide ages. A designed experiment would
require that we take a group of people who we know will commit suicide and randomly assign one
of the ethnic groups to the people. Obviously a difficult task. O

17.4 Randomized complete block designs

In a randomized complete block design the experimenter obtains (constructs) blocks of homoge-
neous material that contain as many experimental units as there are treatments. The experimenter
then randomly assigns a different treatment to each of the units in the block. The random assign-
ments are performed independently for each block. The advantage of this procedure is that treatment
comparisons are subject only to the variability within the blocks. Block to block variation is elimi-
nated in the analysis. In a completely randomized design applied to the same experimental material,
the treatment comparisons would be subject to both the within block and the between block vari-
ability.

The key to a good blocking design is in obtaining blocks that have little within block variability.
Often this requires that the blocks be relatively small. A difficulty with RCB designs is that the
blocks must be large enough to allow all the treatments to be applied within each block. This can
be a serious problem if there is a substantial number of treatments or if maintaining homogeneity
within blocks requires the blocks to be very small. If the treatments cannot all be fitted into each
block, we need some sort of incomplete block design.
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Table 17.1: Spectrometer data

Block
Treatment 1 2 3
New-clean 0.9331 0.8664 0.8711
New-soiled  0.9214 0.8729  0.8627
Used-clean 0.8472  0.7948  0.7810
Used-soiled  0.8417  0.8035

Table 17.2: Analysis of variance for spectrometer data

Source df SS MS F P
Block 2 0.0063366  0.0031683 6291  0.000
Treatments 3 0.0166713  0.0055571  110.34  0.000
Error 5 0.0002518  0.0000504

Total 10 0.0232598

The typical analysis of a randomized complete block design is a two-way ANOVA without
replication or interaction. Except for the experimental design considerations, the analysis is like
that of the Hopper Data from Example 15.3.1. A similar analysis is illustrated below. As with the
Hopper data, block by treatment interaction is properly considered to be error. If the treatment
effects are not large enough to be detected above any interaction, then they are not large enough to
be interesting.

EXAMPLE 17.4.1. Inman, Ledolter, Lenth, and Niemi (1992) studied the performance of an
optical emission spectrometer. Table 17.1 gives some of their data on the percentage of manganese
(Mn) in a sample. The data were collected using a sharp counterelectrode tip with the sample to
be analyzed partially covered by a boron nitride disk. Data were collected under three temperature
conditions. Upon fixing a temperature, the sample percentage of Mn was measured using 1) a new
boron nitride disk with light passing through a clean window (new-clean), 2) a new boron nitride
disk with light passing through a soiled window (new-soiled), 3) a used boron nitride disk with light
passing through a clean window (used-clean), and 4) a used boron nitride disk with light passing
through a soiled window (used-soiled). The four conditions, new-clean, new-soiled, used-clean,
used-soiled are the treatments. The temperature was then changed and data were again collected for
each of the four treatments. A block is always made up of experimental units that are homogeneous.
The temperature conditions were held constant while observations were taken on the four treatments
so the temperature levels identify blocks. Presumably, the treatments were considered in random
order. Christensen (1996) analyzed these data including the data point for Block 3 and Used-soiled.

The two-factor additive effects model for these data is
yij = M+ Bi+nj+&j,

i=1i,2,3, j =1,2,3,4, however the i = 3, j = 4 observation is missing. Here 3; denotes a block
effect and 1; a treatment effect. As usual, we assume the errors are independent and N (0, o?).
Unlike the analysis in Chapter 14, in blocking experiments we always examine the treatments

after the blocks. We constructed the blocks, so we know they should have effects. The only relevant
ANOVA table is given as Table 17.2.

For now, we just perform all pairwise comparisons of the treatments.



17.4 RANDOMIZED COMPLETE BLOCK DESIGNS 401

Residual—Fitted plot

1.0
|

0.0
|
0

Standardized residuals
-05
|
0

-15
|
0

0.78 0.80 0.82 0.84 0.86 0.88 0.90 0.92

Fitted

Figure 17.1: Plot of residuals versus predicted values, spectrometer data.

Bonferroni
Parameter Est SE(E'st) t P
m—m —0.00453  0.005794  —0.78 1.0000
3 —M —0.08253 0.005794 —14.24 0.0002
N4 — M1 —0.07906 0.006691 —11.82 0.0005
nm—1 —0.07800 0.005794 —13.46 0.0002
Na—1M —0.07452 0.006691 —11.14 0.0006

Na—13 0.003478 0.006691  0.5198 1.000
The one missing observation is from treatment 4 so the standard errors that involve treatment 4 are
larger. Although we have different standard errors, the results can be summarized as follows.
i P 4 13
0 —0.00453 —0.07906 —0.08253

The new disk treatments are significantly different from the used disk treatments but the new disk
treatments are not significantly different from each other nor are the used disk treatments signifi-
cantly different from each other. The structure of the treatments suggests an approach to analyzing
the data that will be exploited in the next chapter. Here we used a side condition of 171 = 0 because
it made the estimates readily agree with the table of pairwise comparisons.

Table 17.2 contains an F test for blocks. In a true blocking experiment, there is not much interest
in testing whether block means are different. After all, one chooses the blocks so that they have
different means. Nonetheless, the F statistic MSBlks/MSE is of some interest because it indicates
how effective the blocking was, i.e., it indicates how much the variability was reduced by blocking.
For this example, MSBlks is 63 times larger than MSE, indicating that blocking was definitely
worthwhile. In our model for block designs, there is no reason not to test for blocks, but some
models used for block designs do not allow a test for blocks.

Residual plots for the data are given in Figures 17.1 through 17.4. Figure 17.1 is a plot of
the residuals versus the predicted values. Figure 17.2 plots the residuals versus indicators of the
treatments. While the plot looks something like a bow tie, I am not overly concerned. Figure 17.3
contains a plot of the residuals versus indicators of blocks. The residuals look pretty good. From
Figure 17.4, the residuals look reasonably normal. In the normal plot there are 11 residuals but the
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Figure 17.2: Plot of residuals versus treatment groups, spectrometer data.
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Figure 17.3: Plot of residuals versus blocks, spectrometer data.

analysis has only 5 degrees of freedom for error. If you want to do a W’ test for normality, you might
use a sample size of 11 and compare the value W’ = 0.966 to W' (o, 11), but it may be appropriate
to use the d fE as the sample size for the test and use W' (¢, 5).

The leverages (not shown) are all reasonable. The largest ¢ residual is —3.39 for Block 2, Treat-
ment 1 which gives a Bonferonni adjusted P value of 0.088. O
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Figure 17.4: Normal plot of residuals, spectrometer data, W' = 0.966.

Minitab commands

The following Minitab commands generate the analysis of variance. Column c1 contains the spec-
trometer data, while column c2 contains integers 1 through 4 indicating the appropriate treatment,
and c3 contains integers 1 through 3 that indicate the block. The predicted values are given by the
“fits’ subcommand.

MTB > names cl ’y’ c2 ’Trts’ c3 ’Blks’
MIB > glm cl = c3 c2;

SUBC> Pairwise Treatment;

SUBC> Bonferroni;

SUBC> sresid c10;

SUBC> fits «ci1.

17.4.1 Paired comparisons

An interesting special case of complete block data is paired comparison data as discussed in Sec-
tion 4.1. In paired comparison data, there are two treatments to contrast and each pair constitutes a
complete block.

EXAMPLE 17.4.2.  Shewhart’s hardness data.

In Section 4.1, we examined Shewhart’s data on hardness of two items that were welded together. In
this case, it is impossible to group arbitrary formless pairs of parts and then randomly assign a part
to be either part 1 or part 2, so the data do not actually come from an RCB experiment. Nonetheless,
the two-way ANOVA model remains reasonable with pairs playing the role of blocks.

The data were given in Section 4.1 along with the means for each of the two parts. The two-
way ANOVA analysis also requires the mean for each pair of parts. The analysis of variance table
for the blocking analysis is given in Table 17.3. In comparing the blocking analysis to the paired
comparison analysis given earlier, allowance for round-off errors must be made. The MSE is exactly
half the value of sfl = 17.77165 given in Section 4.1. The Table of Coefficients (from Minitab) gives
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Table 17.3: Analysis of variance for hardness data

Source df SS MS F P
Pairs(Blocks) 26 634.94 24.42 275 0.006
Parts(Trts) 1 216473 216473  243.62  0.000
Error 26 231.03 8.89

Total 53 3030.71

Table 17.4: Mangold root data

Columns

Rows 1 2 3 4 5

1 D(@376) E@371) C(@355) B(356) A(335)
2 B(316) D(338) E(336) A@B356) C(332)
3 C(326) A(326) B(335) D(343) E(330)
4

5

E(317) B(343) A(330) C(327) D(336)
A(321) C(332) D@317) E@318) B(306)

a test for no Part effects of
tops = ———— = 15.61.

This is exactly the same 7 statistic as obtained in Section 4.1. The reference distribution is #(26),
again exactly the same. The analysis of variance F' statistic is just the square of the 7,,, and gives
equivalent results for two-sided tests. Confidence intervals for the difference in means are also
exactly the same in the blocking analysis and the paired comparison analysis. The one real difference
between this analysis and the analysis of Section 4.1 is that this analysis provides an indication of
whether pairing was worthwhile. O

17.5 Latin square designs

Latin square designs involve two simultaneous but distinct definitions of blocks. The treatments are
arranged so that every treatment is observed in every block for both kinds of blocks.

EXAMPLE 17.5.1. Mercer and Hall (1911) and Fisher (1925, section 49) consider data on the
weights of mangold roots. They used a Latin square design with 5 rows, columns, and treatments.
The rectangular field on which the experiment was run was divided into five rows and five columns.
This created 25 plots, arranged in a square, on which to apply the treatments A, B, C, D, and E.
Each row of the square was viewed as a block, so every treatment was applied in every row. The
unique feature of Latin square designs is that there is a second set of blocks. Every column was
also considered a block, so every treatment was also applied in every column. The data are given in
Table 17.4, arranged by rows and columns with the treatment given in the appropriate place and the
observed root weight given in parentheses.

Table 17.5 contains the analysis of variance table including the analysis of variance F test for the
null hypothesis that the effects are the same for every treatment. The F statistic MSTrts/MSE is very
small, 0.56, so there is no evidence that the treatments behave differently. Blocking on columns was
not very effective as evidenced by the F' statistic of 1.20, but blocking on rows was very effective,
F =17.25.

Many experimenters are less than thrilled when told that there is no evidence for their treatments
having any differential effects. Inspection of the table of coefficients (not given) leads to an obvious
conclusion that most of the treatment differences are due to the fact that treatment D has a much
larger effect than the others, so we look at this a bit more.

We created a new factor variable called “Contrast” that has the same code for all of treatments
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Table 17.5: Analysis of variance for mangold root data

Source df SS MS F P
Columns 4 701.8 1755 120 .360
Rows 4 42402 1060.1 7.25 .003
Trts 4 330.2 82.6 056 .696
Error 12 17543 146.2

Total 24 7026.6

Table 17.6: Analysis of variance for mangold root data

Source df SS MS F P
Columns 4 42402 1060.1 8.89  0.001
Rows 4 701.8 175.5 147 0.260
Contrast 1 295.8 2958 248 0.136
Error 15 1788.7 119.2

Total 24 7026.6

A, B, C, E but a different code for D. Fitting a model with Columns and Rows but Contrast in lieu
of Treatments gives the ANOVA table in Table 17.6. The ANOVA table F statistic for Contrast is
295.8/119.2 = 2.48 with a P value of 0.136. It provides a test of whether treatment D is different
from the other treatments, when the other treatments are taken to have identical effects. Using our
best practice, we would actually compute the F statistic with the MSE from Table 17.5 in the
denominator giving F,,; = 295.8/146.2 = 2.02 which looks even less significant. This contrast was
chosen by looking at the data so as to appear as significant as possible and yet it still has a large
P value. Testing the two models against each other by using Tables 17.5 and 17.6 provides a test
of whether there are any differences among treatments A, B, C, and E. The F statistic of 0.08 is
so small that it would be suspiciously small if it had not been chosen, by looking at the data, to be
small.

The standard residual plots were given in Christensen (1996). They look quite good.

If these data were unbalanced, i.e., if we lost some observations, it would be important to look
at an ANOVA table that fits Treatments after both Columns and Rows. Fitted in the current order,
the F test for Rows indicates that blocking on rows after blocking on Columns was worthwhile but
the F' test for Columns indicates that blocking on Columns alone would have been a waste of time.
In an unbalanced experiment, if we cared enough, we might fit Columns after Rows to see whether
blocking on Columns was a complete waste of time. Because the data are balanced, the two tests
for Columns are the same and we can safely say from Table 17.5 that blocking on Columns was a
waste of time.

O

Computing techniques

The following Minitab commands will give the sums of squares, means, and residuals necessary
for the analysis. Here c1 is a column containing the mangold root yields, c2 has values from 1 to 5
indicating the row, c¢3 has values from 1 to 5 indicating the column, and c4 has values from 1 to 5
indicating the treatment.

MTB > names cl ’y’ c2 ’Rows’ c3 ’Cols’ c4 ’Trts’
MTB > glm cl = c2 c3 c4;
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Latin square models

The model for an r x r Latin square design is a three-way analysis of variance,
Vijk =M+ K+pj+T+Ej, &jesindependent N(0, 0'2). (17.5.1)

The parameter u is viewed as a grand mean, k; is an effect for the ith column, p; is an effect for the
Jjth row, and 7 is an effect for the kth treatment. The subscripting for this model is peculiar. All of
the subscripts run from 1 to 7 but not freely. If you specify a row and a column, the design tells you
the treatment. Thus, if you know j and i, the design tells you k. If you specify a row and a treatment,
the design tells you the column, so j and k dictate i. In fact, if you know any two of the subscripts,
the design tells you the third.

Discussion of Latin squares

The idea of simultaneously having two distinct sets of complete blocks is quite useful. For example,
suppose you wish to compare the performance of four machines in producing something. Produc-
tivity is notorious for depending on the day of the week, with Mondays and Fridays often having
low productivity; thus we may wish to block on days. The productivity of the machine is also likely
to depend on who is operating the machine, so we may wish to block on operators. Thus we may
decide to run the experiment on Monday through Thursday with four machine operators and using
each operator on a different machine each day. One possible design is

Operator
Day |1 2 3 4
Mon | A B C D
Tue |B C D A
Wed |C D A B
Thu | D A B C

where the numbers 1 through 4 are randomly assigned to the four people who will operate the
machines and the letters A through D are randomly assigned to the machines to be examined. More-
over, the days of the week should actually be randomly assigned to the rows of the Latin square. In
general, the rows, columns, and treatments should all be randomized in a Latin square.

Another distinct Latin square design for this situation is

Operator
Day | 1 2 3 4
Mon |A B C D
Tue | B A D C
Wed | C D B A
Thu | D C A B

This square cannot be obtained from the first one by any interchange of rows, columns, and treat-
ments. Typically, one would randomly choose a possible Latin square design from a list of such
squares (see, for example, Cochran and Cox, 1957) in addition to randomly assigning the numbers,
letters, and rows to the operators, machines, and days.

The use of Latin square designs can be extended in numerous ways. One modification is the
incorporation of a third kind of block; such designs are called Graeco-Latin squares. The use of
Graeco-Latin squares is explored in the exercises for this chapter. A problem with Latin squares is
that small squares give poor variance estimates because they provide few degrees of freedom for
error. For example, a 3 x 3 Latin square gives only 2 degrees of freedom for error. In such cases, the
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Latin square experiment is often performed several times, giving additional replications that provide
improved variance estimation. Section 18.6 presents an example in which several Latin squares are
used.

17.6 Balanced incomplete block designs

Balanced incomplete block (BIB) designs are not balanced in the same way that balanced ANOVAs
are balanced. Balanced incomplete block designs are balanced in the sense that every pair of treat-
ments occurs together in the same block some fixed number of times, say, A. In a BIB the analysis of
blocks is conducted ignoring treatments and the analysis of treatments is conducted after adjusting
for blocks. This is the only order of fitting models that we need to consider. Blocks are designed to
have effects and these effects are of no intrinsic interest, so there is no reason to worry about fitting
treatments first and then examining blocks after adjusting for treatments. Blocks are nothing more
than an adjustment factor.

The analysis being discussed here is known as the infrablock analysis of a BIB; it is appropriate
when the block effects are viewed as fixed effects. If the block effects are viewed as random effects
with mean 0, there is an alternative analysis that is known as the recovery of interblock information.
Cochran and Cox (1957) and Christensen (2011, Section 12.11) discuss this analysis; we will not.

EXAMPLE 17.6.1. A simple balanced incomplete block design is given below for four treatments
A, B, C, D in four blocks of three units each.

Block | Treatments
1 A B C
2 B C D
3 C D A
4 D A B

Note that every pair of treatments occurs together in the same block exactly A = 2 times. Thus,
for example, the pair A, B occurs in blocks 1 and 4. There are b = 4 blocks each containing k = 3
experimental units. There are ¢t = 4 treatments and each treatment is observed r = 3 times. O

There are two relationships that must be satisfied by the numbers of blocks, b, units per block, k,
treatments, ¢, replications per treatment, r, and A. Recall that A is the number of times two treatments
occur together in a block. First, the total number of observations is the number of blocks times the
number of units per block, but the total number of observations is also the number of treatments
times the number of replications per treatment, thus

bk =rt.

The other key relationship in balanced incomplete block designs involves the number of compar-
isons that can be made between a given treatment and the other treatments within the same block.
Again, there are two ways to count this. The number of comparisons is the number of other treat-
ments, ¢ — 1, multiplied by the number of times each other treatment is in the same block as the
given treatment, A. Alternatively, the number of comparisons within blocks is the number of other
treatments within each block, k — 1, times the number of blocks in which the given treatment occurs,
r. Thus we have

(t— DA =r(k—1).

In Example 17.6.1, these relationships reduce to

and
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Table 17.7: Balanced incomplete block design investigating detergents; data are numbers of dishes washed

Block Treatment, Observation
1 A, 19 B, 17 C, 11
2 D, 6 E, 26 F 23
3 G, 21 H, 19 J,28
4 A, 20 D, 7 G, 20
5 B, 17 E, 26 H, 19
6 C, 15 F, 23 1,31
7 A, 20 E, 26 J, 31
8 B, 16 F, 23 G, 21
9 C, 13 D, 7 H, 20
10 A, 20 F, 24 H, 19
11 B, 17 D, 6 J,29
12 C, 14 E, 24 G, 21

Table 17.8: Analysis of variance for a BIB

Source  df Seq SS MS F P
Blocks 11 412.750 37.523 45.54  0.000
Trts 8 1086.815 135852 164.85 0.000

Error 16 13.185 0.824
Total 35 1512.750

The nice thing about balanced incomplete block designs is that the theory behind them works
out so simply that the computations can all be done on a hand calculator. I know, I did it once, see
Christensen (2011, Section 9.4). But once was enough for this lifetime! We will rely on a computer
program to provide the computations. We illustrate the techniques with an example.

EXAMPLE 17.6.2.  John (1961) reported data on the number of dishes washed prior to losing
the suds in the wash basin. Dishes were soiled in a standard way and washed one at a time. Three
operators and three basins were available for the experiment, so at any one time only three treatments
could be applied. Operators worked at the same speed, so no effect for operators was necessary nor
should there be any effect due to basins. Nine detergent treatments were evaluated in a balanced
incomplete block design. The treatments and numbers of dishes washed are given in Table 17.7.
There were b = 12 blocks with k = 3 units in each block. Each of the r =9 treatments was replicated
r = 4 times. Each pair of treatments occurred together A = 1 time. The three treatments assigned
to a block were randomly assigned to basins as were the operators. The blocks were run in random
order.

The analysis of variance is given in Table 17.8. The F test for treatment effects is clearly signif-
icant. We now need to examine contrasts in the treatments.

The treatments were constructed with a structure that leads to interesting effects. Treatments
A, B, C, and D all consisted of detergent I using, respectively, 3, 2, 1, and 0 doses of an additive.
Similarly, treatments E, F, G, and H used detergent II with 3, 2, 1, and 0 doses of the additive.
Treatment J was a control. We return to this example for a more detailed analysis of the treatments
in the next chapter.

As always, we need to evaluate our assumptions. The normal plot looks less than thrilling but
is not too bad. The fifth percentile of W’ for 36 observations is .940, whereas the observed value is
.953. Alternatively, the residuals have only 16 degrees of freedom and W'(.95,16) = .886. The data
are counts, so a square root or log transformation might be appropriate, but we continue with the
current analysis. A plot of standardized residuals versus predicted values looks good.

Table 17.9 contains diagnostic statistics for the example. Note that the leverages are all identical
for the BIB design. Some of the standardized deleted residuals (¢s) are near 2 but none are so large
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Table 17.9: Diagnostics for the detergent data

Block  Trt. y y Leverage r t C
1 A 19 187 0.56 0.49 048 0.01
1 B 17 16.1 0.56 1.41 146 0.12
1 C 11 121 0.56 —1.90 —2.09 022
2 D 6 6.6 0.56 —098 —0.98 0.06
2 E 26 254 0.56 1.04 1.04 0.07
2 F 23 230 0.56 —0.06 —0.06 0.00
3 G 21 205 0.56 0.86 0.85 0.05
3 H 19 18.6 0.56 0.67 0.66 0.03
3 J 28 289 0.56 —-153 —1.60 0.15
4 A 20 19.6 0.56 0.61 0.60 0.02
4 D 7 6.4 0.56 0.98 0.98 0.06
4 G 20 21.0 0.56 —-159 —1.68 0.16
5 B 17 173 0.56 —-049 —-048 0.01
5 E 26 254 0.56 0.98 0.98  0.06
5 F 19 193 0.56 —-049 —-0.48 0.01
6 C 15 143 0.56 1.16 1.18  0.08
6 F 23 241 0.56 —-1.77  —-192 020
6 J 31 30.6 0.56 0.61 0.60 0.02
7 A 20 20.6 0.56 —-092 —-091 0.05
7 E 26 206.1 0.56 —-0.18 —0.18 0.00
7 J 31 303 0.56 1.10 1.11  0.08
8 B 16  16.8 0.56 -129 —-131 0.10
8 F 23 226 0.56 0.73 0.72  0.03
8 G 21 207 0.56 0.55 0.54 0.02
9 C 13 13.6 0.56 —-092 —-091 0.05
9 D 7 6.9 0.56 0.18 0.18  0.00
9 H 20 19.6 0.56 0.73 0.72  0.03
10 A 20 20.1 0.56 —-0.18 —0.18 0.00
10 F 24 233 0.56 1.10 1.11  0.08
10 H 19 19.6 0.56 —-092 —-091 0.05
11 B 17 16.8 0.56 0.37 0.36  0.01
11 D [§ 6.1 0.56 —-0.18 —0.18 0.00
11 J 29 29.1 0.56 —-0.18 —0.18 0.00
12 C 14 13.0 0.56 1.65 1.76 ~ 0.17
12 E 24 251 0.56 —1.84 —2.00 021
12 G 21 209 0.56 0.18 0.18  0.00

as to indicate an outlier. The Cook’s distances bring to one’s attention exactly the same points as the
standardized residuals and the 7s. O

17.6.1 Special cases

Balanced lattice designs are BIBs with t = k%, r = k+ 1, and b = k(k + 1). Table 17.10 gives an
example for k = 3. These designs can be viewed as k 4 1 squares in which each treatment occurs
once. Each row of a square is a block, each block contains & units, there are k rows in a square, so
all of the ¢ = k? treatments can appear in each square. To achieve a BIB, k + 1 squares are required,
so there are » = k+ 1 replications of each treatment. With k + 1 squares and k blocks (rows) per
square, there are b = k(k + 1) blocks. The analysis follows the standard form for a BIB. In fact, the
design in Example 17.6.2 is a balanced lattice with k = 3.

Youden squares are a generalization of BIBs that allows a second form of blocking and a very
similar analysis. These designs are discussed in the next section.
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Table 17.10: Balanced lattice design for 9 treatments

Block Block
1 A B C 7 A H F
2 D E F 8 D B 1
3 G H I 9 G E C
4 A D G 10 A E 1
5 B E H 11 G B F
6 C F 1 12 D H C

Table 17.11: Mangold root data

Columns

Row 1 2 3 4
D@376) E@371) C(@355) B(356)
B(316) D(338) E(336) A(356)
C(326) A(326) B(335) D(343)
E(317) B(343) A(330) C(327)
A(321) C(332) D@317) E@318)

[ R N

17.7 Youden squares

Consider the data on mangold roots in Table 17.11. There are five rows, four columns, and five
treatments. If we ignore the columns, the rows and the treatments form a balanced incomplete block
design, every pair of treatments occurs together three times. The key feature of Youden squares is
that additionally the treatments are also set up in such a way that every treatment occurs once in
each column. Since every row also occurs once in each column, the analysis for columns can be
conducted independently of the analysis for rows and treatments. Columns are balanced relative to
both treatments and rows.

Table 17.12 contains the analysis of variance for these data. Rows need to be fitted before Treat-
ments. As long as balance is maintained, it does not matter where Columns are fitted. If the data
become unbalanced, Treatments need to be fitted last. From the ANOVA table, there is no evidence
for a difference between treatments.

Evaluation of assumptions is carried out as in all unbalanced ANOVAs. Diagnostic statistics are
given in Table 17.13. The diagnostic statistics look reasonably good.

A normal plot looks very reasonable. A predicted value plot may indicate increasing variability
as predicted values increase. One could attempt to find a transformation that would improve the plot
but there is so little evidence of any difference between treatments that it hardly seems worth the
bother.

The reader may note that the data in this section consist of the first four columns of the Latin
square examined in Example 17.5.1. Dropping one column (or row) from a Latin square is a simple
way to produce a Youden square. As Youden square designs do not give a square array of numbers
(our example had 4 columns and 5 rows), one presumes that the name Youden square derives from

Table 17.12: Analysis of variance

Source df  SeqSS MS F P
Rows 4 42472 1061.8  6.87

Column 3 367.0 122.3  0.79

Trts 4 224.1 56.0 036 0.829
Error 8  1236.7 154.6

Total 19  6075.0
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Table 17.13: Diagnostics

Row Col Trt y ¥ Leverage r t C
1 1 D | 376 3645 0.6 1.46 1.59  0.27
2 1 B 316 326.8 0.6 —137 —147 0.24
3 1 C 326 3239 0.6 0.27 0.25 0.01
4 1 E 317 3220 0.6 —0.64 —0.61 0.05
5 1 A | 321 3188 0.6 0.28 0.26  0.01
1 2 E 371 367.7 0.6 0.42 040 0.02
2 2 D | 338 3459 0.6 —-1.01 -1.01 0.13
3 2 A | 326 3403 0.6 —1.81 =221 041
4 2 B 343 332.1 0.6 1.38 148 0.24
5 2 C 332 3240 0.6 1.02 1.02  0.13
1 3 C 355 360.8 0.6 —0.74 —0.71 0.07
2 3 E 336 3309 0.6 0.65 0.63  0.05
3 3 B 335 326.1 0.6 1.14 1.16  0.16
4 3 A | 330 3315 0.6 -0.19 —0.18 0.00
5 3 D | 317 3237 0.6 —0.86 —0.84 0.09
1 4 B 356 365.0 0.6 —-1.14 —-1.17 0.16
2 4 A | 356 3424 0.6 1.73 2.04 037
3 4 D | 343 3398 0.6 0.41 0.38 0.02
4 4 C 327 3313 0.6 —0.55 —0.53 0.04
5 4 E 318 3215 0.6 —044 —042 0.02

Table 17.14: Mangold root data: column(observation)

Treatments
Row A B C D E
1 4(356) 3(355) 1(376) 2(371)
2 4(356) 1(316) 2(338)  3(336)
3 2(326)  3(335) 1(326) 4(343)
4 3(330) 2(343) 4(327) 1(317)
5 1(321) 2(332) 3(317) 4(318)

this relationship to Latin squares. Table 17.14 presents an alternative method of presenting the data
in Table 17.11 that is often used. O

Minitab commands

The Minitab commands for the mangold root analysis are given below.

MTB > names cl ’y’ c2 ’Rows’ c3 ’Cols’ c4 ’Trts’
MIB > glm cl = c2 c3 c4;

SUBC> means c4;

SUBC> fits cl1;

SUBC> sresids c12;

SUBC> tresids c13;

SUBC> hi ci14;

SUBC> cookd c15.

Balanced lattice squares

The key idea in balanced lattice square designs is that if you look at every row as a block, the
treatments form a balanced incomplete block design and simultaneously if every column is viewed
as a block, the treatments again form a balanced incomplete block design. In other words, each
pair of treatments occurs together in the same row or column the same number of times. Of course
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Table 17.15: Balanced lattice square design for 9 treatments

Column Column
Row 1 2 3 Row 4 5 6
1 A B C 4 A F H
2 D E F 5 I B D
3 G H I 6 E G C

every row appears with every column and vice versa. Balanced lattice square designs are similar to
balanced lattices in that the number of treatments is # = k%> and that the treatments are arranged in
k x k squares. Table 17.15 gives an example for k = 3. If k is odd, one can typically get by with
(k+1)/2 squares. If k is even, k + 1 squares are generally needed.

17.8 Analysis of covariance in designed experiments

In Section 2 we discussed blocking as a method of variance reduction. Blocks where then incorpo-
rated as a factor variable into an additive effects model with blocks and treatments, cf. Chapter 14.
An alternative method of variance reduction is to incorporate a properly defined covariate into an
additive ACOVA model with treatments and the covariate, cf. Chapter 15. This section focuses on
choosing proper covariates.

In designing an experiment to investigate a group of treatments, concomitant observations can
be used to reduce the error of treatment comparisons. One way to use the concomitant observations
is to define blocks based on them. For example, income, 1Q, and heights can all be used to collect
people into similar groups for a block design. In fact, any construction of blocks must be based on
information not otherwise incorporated into the ANOVA model, so any experiment with blocking
uses concomitant information. In analysis of covariance we use the concomitant observations more
directly, as regression variables in the statistical model.

Obviously, for a covariate to help our analysis it must be related to the dependent variable. Un-
fortunately, improper use of concomitant observations can invalidate, or at least alter, comparisons
among the treatments. In the example of Section 15.1, the original ANOVA demonstrated an effect
on heart weights due to sex but after adjusting for body weights, there was little evidence for a
sex difference. The very nature of what we were comparing changed when we adjusted for body
weights. Originally, we investigated whether heart weights were different for females and males.
The analysis of covariance examined whether there were differences between female heart weights
and male heart weights beyond what could be accounted for by the regression on body weights.
These are very different interpretations. In a designed experiment, we want to investigate the effects
of the treatments and not the treatments adjusted for some covariates. To this end, in a designed
experiment we require that the covariates be logically independent of the treatments. In particular,
we require that

the concomitant observations be made before assigning the treatments to the experimental units,

the concomitant observations be made after assigning treatments to experimental units but before
the effect of the treatments has developed, or

the concomitant observations be such that they are unaffected by treatment differences.

For example, suppose the treatments are five diets for cows and we wish to investigate milk
production. Milk production is related to the size of the cow, so we might pick height of the cow as
a covariate. For immature cows over a long period of time, diet may well affect both height and milk
production. Thus to use height as a covariate we should measure heights before treatments begin or
we could measure heights, say, two days after treatments begin. Two days on any reasonable diet
should not affect a cow’s height. Alternatively, if we use only mature cows their heights should be
unaffected by diet and thus the heights of mature cows could be measured at any time during the
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experiment. Typically, one should be very careful when claiming that a covariate measured near
the end of an experiment is unaffected by treatments.

The requirements listed above on the nature of covariates in a designed experiment are imposed
so that the treatment effects do not depend on the presence or absence of covariates in the analysis.
The treatment effects are logically identical regardless of whether covariates are actually measured
or incorporated into the analysis. Recall that in the observational study of Section 15.1, the nature
of the group (sex) effects changed depending on whether covariates were incorporated in the model.
(Intuitively, the covariate body weight depends on the sex “treatment”.) The role of the covariates
in the analysis of a designed experiment is solely to reduce the error. In particular, using good
covariates should reduce both the variance of the observations 62 and its estimate, the MSE. On
the other hand, one pays a price for using covariates. Variances of treatment comparisons are G~
times a constant. With covariates in the model, the constant is larger than when they are not present.
However, with well chosen covariates the appropriate value of 62 should be sufficiently smaller
that the reduction in MSE overwhelms the increase in the multiplier. Nonetheless, in designing
an experiment we need to play off these aspects against one another. We need covariates whose
reduction in MSE more than makes up for the increase in the constant.

The requirements imposed on the nature of the covariates in a designed experiment have little
affect on the analysis illustrated in Section 15.1. The analysis focuses on a model such as (15.1.2). In
Section 15.1, we also considered model (15.1.3) that has different slope parameters for the different
treatments (sexes). The requirements on the covariates in a designed experiment imply that the
relationship between the dependent variable y and the covariate z cannot depend on the treatments.
Thus with covariates chosen for a designed experiment it is inappropriate to have slope parameters
that depend on the treatment. There is one slope that is valid for the entire analysis and the treatment
effects do not depend on the presence or absence of the covariates. If a model such as (15.1.3) fits
better than (15.1.2) when the covariate has been chosen appropriately, it suggests that the effects of
treatments may differ from experimental unit to experimental unit. In such cases a treatment cannot
really be said to have an effect, it has a variety of effects depending on which units it is applied to.
A suitable transformation of the dependent variable may alleviate the problem.

17.9 Discussion of experimental design

Data are frequently collected with the intention of evaluating a change in the current system of
doing things. If you really want to know the effect of a change in the system, you have to execute
the change. It is not enough to look at conditions in the past that were similar to the proposed change
because, along with the past similarities, there were dissimilarities. For example, suppose you think
that instituting a good sex education program in schools will decrease teenage pregnancies. To
evaluate this, it is not enough to compare schools that currently have such programs with schools
that do not, because along with the differences in sex education programs there are other differences
in the schools that affect teen pregnancy rates. Such differences may include parents’ average socio-
economic status and education. While adjustments can be made for any such differences that can
be identified, there is no assurance that all important differences can be found. Moreover, initiating
the proposed program involves making a change and the very act of change can affect the results.
For example, current programs may exist and be effective because of the enthusiasm of the school
staff that initiated them. Such enthusiasm is not likely to be duplicated when the new program is
mandated from above.

To establish the effect of instituting a sex education program in a population of schools, you
really need to (randomly) choose schools and actually institute the program. The schools at which
the program is instituted should be chosen randomly, so no (unconscious) bias creeps in due to
the selection of schools. For example, the people conducting the investigation are likely to favor
or oppose the project. They could (perhaps unconsciously) choose the schools in such a way that
makes the evaluation likely to reflect their prior attitudes. Unconscious bias occurs frequently and
should always be assumed. Other schools without the program should be monitored to establish a
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base of comparison. These other schools should be treated as similarly as possible to the schools
with the new program. For example, if the district school administration or the news media pay a lot
of attention to the schools with the new program but ignore the other schools, we will be unable to
distinguish the effect of the program from the effect of the attention. In addition, blocking similar
schools together can improve the precision of the experimental results.

One of the great difficulties in learning about human populations is that obtaining the best data
often requires morally unacceptable behavior. We object to having our lives randomly changed for
the benefit of experimental science and typically the more important the issue under study, the more
we object to such changes. Thus we find that in studying humans, the best data available are often
historical. In our example we might have to accept that the best data available will be an historical
record of schools with and without sex education programs. We must then try to identify and adjust
for all differences in the schools that could potentially affect our conclusions. It is the extreme
difficulty of doing this that leads to the relative unreliability of many studies in the social sciences.
On the other hand, it would be foolish to give up the study of interesting and important phenomena
just because they are difficult to study.

17.10 Analytic and enumerative studies

In one-sample, two-sample, and one-way ANOVA problems, we assume that we have random sam-
ples from various populations. In more sophisticated models we continue to assume that at least the
errors are a random sample from a N(0, ) population. The statistical inferences we draw are valid
for the populations that were sampled. Often it is not clear what the sampled populations are. What
are the populations from which the Albuquerque suicide ages were sampled? Presumably, our data
were all of the suicides reported in 1978 for these ethnic groups.

When we analyze data, we assume that the measurements are subject to errors and that the
errors are consistent with our models. However, the populations from which these samples are taken
may be nothing more than mental constructs. In such cases, it requires extrastatistical reasoning to
justify applying the statistical conclusions to whatever issues we really wish to address. Moreover,
the desire to predict the future underlies virtually all studies and, unfortunately, one can never be
sure that data collected now will apply to the conditions of the future. So what can you do? Only
your best. You can try to make your data as relevant as possible to your anticipation of future
conditions. You can try to collect data for which the assumptions will be reasonably true. You can
try to validate your assumptions. Studies in which it is not clear that the data are random samples
from the population of immediate interest are often called analytic studies.

About the only time one can be really sure that statistical conclusions apply directly to the
population of interest is when one has control of the population of interest. If we have a list of all
the elements in the population, we can choose a random sample from the population. Of course,
choosing a random sample is still very different from obtaining a random sample of observations.
Without control or total cooperation, we may not be able to take measurements on the sample.
(Even when you can find people that you want for a sample, many will not submit to a measurement
process.) Studies in which one can arrange to have the assumptions met are often called enumerative
studies. See Hahn and Meeker (1993) and Deming (1986) for additional discussion of these issues.

17.11 Exercises

EXERCISE 17.11.1.  Garner (1956) presented data on the tensile strength of fabrics. Here we
consider a subset of the data. The complete data and a more extensive discussion of the experimental
procedure are given in Exercise 11.5.2. The experiment involved testing fabric strengths on four
different machines. Eight homogeneous strips of cloth were divided into four samples. Each sample
was tested on one of four machines. The data are given in Table 17.16.
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Table 17.16: Tensile strength of uniform twill

Fabric Machines

strips m my m3  my
S1 18 7 5 9
52 9 11 12 3
53 7 11 11 1
S4 6 4 10 8
S5 10 8 6 10
S6 7 12 3 15
87 13 5 15 16
S8 1 11 8 12

Table 17.17: Dead adult flies

Units of active
ingredient
Medium 0 4 8 16
A 423 445 414 247
B 326 113 127 147
C 246 122 206 138
D 141 227 78 148
E 208 132 172 356
F 303 31 45 29
G 256 177 103 63

(a) Identify the design for this experiment and give an appropriate model. List all of the assumptions
made in the model.

(b) Analyze the data. Give an appropriate analysis of variance table. Examine appropriate contrasts
using Bonferroni’s method with o = .05

(c) Check the assumptions of the model and adjust the analysis appropriately.

EXERCISE 17.11.2.  Snedecor (1945b) presented data on a spray for killing adult flies as they
emerged from a breeding medium. The data were numbers of adults found in cages that were set
over the medium containers. The treatments were different levels of the spray’s active ingredient,
namely 0, 4, 8, and 16 units. (Actually, it is not clear whether a spray with 0 units was actually
applied or whether no spray was applied. The former might be preferable.) Seven different sources
for the breeding mediums were used and each spray was applied on each distinct breeding medium.
The data are presented in Table 17.17.

(a) Identify the design for this experiment and give an appropriate model. List all the assumptions
made in the model.

(b) Analyze the data. Give an appropriate analysis of variance table. Ccompare the treatment with no
active ingredient to the average of the three treatments that contain the active ingredient. Ignoring
the treatment with no active ingredient, the other three treatments are quantitative levels of the
active ingredient. On the log scale, these levels are equally spaced.

(c) Check the assumptions of the model and adjust the analysis appropriately.

EXERCISE 17.11.3.  Cornell (1988) considered data on scaled thickness values for five formula-
tions of vinyl designed for use in automobile seat covers. Eight groups of material were prepared.
The production process was then set up and the five formulations run with the first group. The pro-
duction process was then reset and another group of five was run. In all, the production process was
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Table 17.18: Cornell’s scaled vinyl thickness values

Production setting
Formulation 1 2 3 4 5 6 7 8
1 8 7 12 10 7 8 12 11
2 6 5 9 8 7 6 10 9
3 0 11 13 12 9 10 14 12
4 4 5 6 3 5 4 6 5
5 1 10 15 11 9 7 13 9

Table 17.19: Phosphorous fertilizer data

Laboratory

Fertilizer 1 2 3 4 5
2020 1992 2091 20.65 19.94
3020  30.09 29.10 29.85 30.29
3140 3042 30.18 3134  31.11
45.88 4548 4551 4482 44.63
46.75 47.14 48.00 4637 46.63

set eight times and a group of five formulations was run with each setting. The data are displayed in
Table 17.18.

(a) From the information given, identify the design for this experiment and give an appropriate
model. List all the assumptions made in the model.

(b) Analyze the data. Give an appropriate analysis of variance table. Examine appropriate contrasts
using the Bonferroni method with an ¢ of about .05.

(c) Check the assumptions of the model and adjust the analysis appropriately.

EXERCISE 17.11.4. In data related to that of the previous problem, Cornell (1988) has scaled
thickness values for vinyl under four different process conditions. The process conditions were A,
high rate of extrusion, low drying temperature; B, low rate of extrusion, high drying temperature; C,
low rate of extrusion, low drying temperature; D, high rate of extrusion, high drying temperature.
An initial set of data with these conditions was collected and later a second set was obtained. The
data are given below.

Treatments
‘ A B C D
Repl | 78 11.0 74 110
Rep 2 ‘ 7.6 8.8 7.0 9.2

Identify the design, give the model, check the assumptions, give the analysis of variance table and
interpret the F test for treatments. The structure of the treatments suggests looking at average rates,
average temperatures, and interaction between rats and temperatures.

EXERCISE 17.11.5. Johnson (1978) and Mandel and Lashof (1987) present data on measure-
ments of P,Os (phosphorous pentoxide) in fertilizers. Table 17.19 presents data for five fertilizers,
each analyzed in five labs. Our interest is in differences among the labs. Analyze the data.

EXERCISE 17.11.6.  Table 17.20 presents data on yields of cowpea hay. Four treatments are of
interest, variety I of hay was planted 4 inches apart (I4), variety I of hay was planted 8 inches apart
(I8), variety II of hay was planted 4 inches apart (II4), and variety II of hay was planted 8 inches
apart (II8). Three blocks of land were each divided into four plots and one of the four treatments
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Table 17.20: Cowpea hay yields

Block Trt.
Treatment 1 2 3 means
14 45 43 46 44.666
I8 50 45 48 47.666
114 61 60 63 61.333
118 58 56 60 58.000
Block means | 53.50 51.00 54.25 52.916

Table 17.21: Hydrostatic pressure tests: operator, yield

A B C D
40.0 435 390 440

B A D C
40.0 42.0 405 380

C D A B
420 405 38.0 40.0

D C B A
400 365 390 385

was randomly applied to each plot. These data are actually a subset of a larger data set given by
Snedecor and Cochran (1980, p. 309) that involves three varieties and three spacings in four blocks.
Analyze the data. Check your assumptions. Examine appropriate contrasts.

EXERCISE 17.11.7. In the study of the optical emission spectrometer discussed in Exam-
ple 17.4.1 and Table 17.1, the target value for readings was .89. Subtract .89 from each observation
and repeat the analysis. What new questions are of interest? Which aspects of the analysis have
changed and which have not?

EXERCISE 17.11.8.  An experiment was conducted to examine differences among operators of
Suter hydrostatic testing machines. These machines are used to test the water repellency of squares
of fabric. One large square of fabric was available but its water repellency was thought to vary along
the length (warp) and width (fill) of the fabric. To adjust for this, the square was divided into four
equal parts along the length of the fabric and four equal parts along the width of the fabric, yielding
16 smaller pieces. These pieces were used in a Latin square design to investigate differences among
four operators: A, B, C, D. The data are given in Table 17.21. Construct an analysis of variance
table. What, if any, differences can be established among the operators? Compare the results of
using the Tukey, Newman—Keuls, and Bonferroni methods for comparing the operators.

EXERCISE 17.11.9.  Table 17.22 contains data similar to that in the previous exercise except
that in this Latin square differences among four machines: 1, 2, 3, 4, were investigated rather than
differences among operators. Machines 1 and 2 were operated with a hand lever, while machines
3 and 4 were operated with a foot lever. Construct an analysis of variance table. What, if any,
differences can be established among the machines?

EXERCISE 17.11.10. Table 17.22 is incomplete. The data were actually obtained from a Graeco-
Latin square that incorporates four different operators as well as the four different machines. The
correct design is given in Table 17.23. Note that this is a Latin square for machines when we ignore
the operators and a Latin square for operators when we ignore the machines. Moreover, every op-
erator works once with every machine. Using the four operator means, compute a sum of squares
for operators and subtract this from the error computed in Exercise 17.11.9. Give the new analysis
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Table 17.22: Hydrostatic pressure tests: machine, yield

2 4 3 1
390 390 410 410
1 3 4 2
36.5 425 405 385
4 2 1 3
400 39.0 415 415
3 1 2 4
415 395 390 440

Table 17.23: Hydrostatic pressure tests: operator, machine

B,2 A4 D,3 C,1

ALl B.,3 C4 D,2

D4 C2 B,1 A3

C3 D,1 A2 B.4
Operators are A, B, C, D.
Machines are 1, 2, 3, 4.

of variance table. How do the results on machines change? What evidence is there for differences
among operators. Was the analysis for machines given earlier incorrect or merely inefficient?

EXERCISE 17.11.11. Table 17.24 presents data given by Nelson (1993) on disk drives from a
Graeco-Latin square design (see Exercise 17.11.10). The experiment was planned to investigate
the effect of four different substrates on the drives. The dependent variable is the amplitude of a
signal read from the disk where the signal written onto the disk had a fixed amplitude. Blocks were
constructed from machines, operators, and day of production. (In Table 17.24, Days are indicated by
lower case Latin letters.) The substrata consist of A, aluminum; B, nickel plated aluminum; and two
types of glass, C and D. Analyze the data. In particular, check for differences between aluminum
and glass, between the two types of glass, and between the two types of aluminum. Check your
assumptions.

Table 17.24: Amplitudes of disk drives

Machine
Operator 1 2 3 4
I Aa8 Cd7 Db3 Bc4
I Ccll Ab5 Bd9 Da5s
I Dd 2 Ba2 Ac7 Cb9
v Bb8 Dc4 Ca9 Ad3






