
The Canada Day Theorem
Daniel Gomez∗ Hans Lundmark† Jacek Szmigielski‡

June 16, 2012

Abstract
The Canada Day Theorem is an identity involving sums of k ×k minors

of an arbitrary n × n symmetric matrix. It was discovered as a by-product
of the work on so-called peakon solutions of an integrable nonlinear partial
differential equation proposed by V. Novikov. Here we present another
proof of this theorem, which explains the underlying mechanism in terms
of the orbits of a certain abelian group action on the set of all k-edge
matchings of the complete bipartite graph Kn,n.

1 Introduction
The “Canada Day Theorem” refers to the following curious combinatorial fact:

Theorem 1.1. Let T be the n× n matrix with entries

Tij = 1 + sgn(i− j) =


0, i < j,

1, i = j,

2, i > j,

(1.1)

and let X be an arbitrary symmetric n × n matrix. Then, for 1 ≤ k ≤ n, the
sum of the k × k principal minors of TX equals the sum of all k × k minors
of X (principal and non-principal).

This theorem arose as an unexpected byproduct in our previous paper [8]
where we studied so-called “peakon” (peaked soliton) solutions to a completely
integrable nonlinear partial differential equation discovered by V. Novikov [12];
a brief account of this can be found in the appendix. The name of the theorem
refers to its “birthday” (July 1, Canada’s national holiday, in 2008).

A k × k minor in an n × n matrix X = (xij) is determined by a choice of
k-element index sets I and J (row and column indices, respectively) from the
set [n] = {1, 2, . . . , n}. We will use the notation

([n]
k

)
for the set of all k-element

∗Department of Mathematics and Statistics, University of Saskatchewan, 106 Wiggins Road,
Saskatoon, Saskatchewan, S7N 5E6, Canada; dag857@mail.usask.ca
†Department of Mathematics, Linköping University, SE-581 83 Linköping, Sweden;

hans.lundmark@liu.se
‡Department of Mathematics and Statistics, University of Saskatchewan, 106 Wiggins Road,

Saskatoon, Saskatchewan, S7N 5E6, Canada; szmigiel@math.usask.ca

1

ar
X

iv
:1

20
6.

41
38

v2
  [

m
at

h.
C

O
] 

 5
 F

eb
 2

01
3



subsets of [n], and write minors as

|XIJ | = |Xi1...ik,j1...jk | = det

xi1j1 . . . xi1jk
...

...
xikj1 . . . xikjk

 , (1.2)

for I, J ∈
([n]
k

)
, where i1 < i2 < · · · < ik and j1 < j2 < · · · < jk are the elements

of I and J listed in increasing order. A principal minor is a minor with I = J .
The sum of the k×k principal minors of a matrix A is of course very familiar

as the coefficient of (−1)kzn−k in the characteristic polynomial det(zI−A). The
sum of all k × k minors is much less frequently encountered; one rare example
in the literature is [13], but the results there do not seem directly related to
Theorem 1.1, since they deal with arbitrary matrices where symmetry plays no
role.

Example 1.2. In the case n = 3 we have

T =

1 0 0
2 1 0
2 2 1

 , X =

a b c
b d e
c e f

 ,

and hence

TX =

 a b c
2a+ b 2b+ d 2c+ e

2a+ 2b+ c 2b+ 2d+ e 2c+ 2e+ f

 .

The sum of the principal 1× 1 minors of TX is just the trace, (a+ 2b+ 2c) +
(d+ 2e) + f , which indeed equals the sum of all entries of X (i.e., the sum of all
1× 1 minors). The sum of the principal 2× 2 minors of TX is∣∣∣∣ a b

2a+ b 2b+ d

∣∣∣∣+
∣∣∣∣ a c
2a+ 2b+ c 2c+ 2e+ f

∣∣∣∣+
∣∣∣∣ 2b+ d 2c+ e
2b+ 2d+ e 2c+ 2e+ f

∣∣∣∣ ,
which, as can be easily verified, equals the sum of all 2× 2 minors of X,∣∣∣∣a b
b d

∣∣∣∣+
∣∣∣∣a c
c f

∣∣∣∣+
∣∣∣∣d e
e f

∣∣∣∣+
∣∣∣∣a c
b e

∣∣∣∣+
∣∣∣∣b d
c e

∣∣∣∣+
∣∣∣∣b e
c f

∣∣∣∣+
∣∣∣∣a b
c e

∣∣∣∣+
∣∣∣∣b c
d e

∣∣∣∣+
∣∣∣∣b c
e f

∣∣∣∣ .
And, since detT = 1, the single 3× 3 minor of TX (which is of course principal)
equals the single 3× 3 minor of X: det(TX) = detX.

Example 1.3. For n > 3, the cases k = 1 and k = n of the theorem are still
easy to verify: for k = 1 we have

tr(TX) = 1
2 tr(TX) + 1

2 tr((TX)t) = tr
( 1

2 (T + T t)X
)

=
∑
i,j

xij

since 1
2 (T + T t) is the matrix with 1 in every position, and for k = n we have

det(TX) = detX as before. However, the intermediate cases 2 ≤ k ≤ n − 1
are more involved. (The reader might want to check the case n = 4, k = 2 to
become convinced of this.)
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Of particular importance for the Canada Day Theorem are minors whose
row and column indices are interlacing, meaning that

i1 ≤ j1 ≤ i2 ≤ j2 ≤ · · · ≤ ik ≤ jk. (1.3)

We abbreviate this condition as I ≤ J . Given sets I, J ∈
([n]
k

)
, let I ′ = I \ (I ∩J)

and J ′ = J \ (I ∩ J), and denote the cardinality of I ′ and J ′ by

p = p(I, J) = card(I ′) = card(J ′) = k − card(I ∩ J). (1.4)

Note that I and J are interlacing if and only if I ′ and J ′ are strictly interlacing
(abbreviated I ′ < J ′),

i′1 < j′1 < i′2 < j′2 < · · · < i′p < j′p. (1.5)

With this notation in place, we can state the more precise version of the Canada
Day Theorem that we are actually going to prove; it says that the two sums are
both equal to a third sum involving only minors with interlacing index sets:

Theorem 1.4. Let T and X be as in Theorem 1.1, and let

S =
∑

I,J∈([n]
k )

I≤J

2p(I,J) |XIJ | . (1.6)

Then the following holds:

(a) The sum of the principal k × k minors of TX equals S.

(b) The sum of all k × k minors of X equals S.

The following is a short outline of the paper. In Section 2 we use the Cauchy–
Binet formula and the Lindström–Gessel–Viennot path-counting lemma to prove
the easier part of Theorem 1.4, namely part (a), which is true regardless of
whether X is symmetric or not. Part (b) is proved in Section 3, and here it
is crucial that X is a symmetric matrix. We introduce a group of “flips” and
study an action of it on the set of all k-edge matchings of the complete bipartite
graph Kn,n. The main technical point is dealt with in Lemma 3.8, and this
leads to the characterization of the orbit structure of the group action presented
in Lemma 3.9, Corollary 3.10 and Corollary 3.11. From these results it then
follows that when expanding each k × k minor according to the definition of
the determinant and adding everything up, terms corresponding to orbits of a
certain type (“non-interlacing”) cancel out, while the other orbits (“interlacing”)
give contributions adding up to the sum S.

It is fair to say that the proof given in the present paper is not entirely
different from the one in [8]. The central concept of (open) clusters introduced in
Section 3 has its counterpart, namely linked pairs, in the original proof. However,
the organization of the proof, in particular the identification of the group action
on the set of all k-edge matchings as the main underpinning for the Canada Day
Theorem, is novel.
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2 The sum of the principal k × k minors of TX

In this section we prove part (a) of Theorem 1.4. Recall the Cauchy–Binet
formula for the minors of a matrix product [6, Ch. I, § 2]:

|(TX)AB | =
∑

I∈([1,n]
k )
|TAI | |XIB | , for A,B ∈

([1,n]
k

)
. (2.1)

Applying this with A = B = J we can rewrite the sum of the principal k × k
minors of TX as ∑

J∈([n]
k )
|(TX)JJ | =

∑
I,J∈([n]

k )
|TJI | |XIJ | . (2.2)

Next, we need to compute the minors |TJI |. Here the notion of interlacing index
sets (as defined in the Introduction) enters.

Lemma 2.1. Let T be defined as in Theorem 1.1. Then, for I, J ∈
([1,n]
k

)
,

|TJI | =
{

2p(I,J), if I ≤ J,
0, otherwise,

(2.3)

where p(I, J) = k − card(I ∩ J).

Proof. The matrix T is the path matrix of a planar directed graph of the form
illustrated below in the case n = 4 (i.e., the entry Tab counts the number of
paths – zero, one, or two – from source vertex number a on the left to sink vertex
number b on the right):

1

2

3

4

1

2

3

4

By the Lindström–Gessel–Viennot lemma [10, 11, 7, 1], the minor |TJI | equals
the number of vertex-disjoint path families from sources indexed by J to sinks
indexed by I.

Consider a vertex-disjoint path family from the source set J = {1 ≤ j1 <
j2 < ... < jk ≤ n} to the sink set I = {1 ≤ i1 < i2 < ... < ik ≤ n}. The
planarity of of the graph allows only paths jm → im. Clearly im ≤ jm, since no
path can go upwards, and moreover jm ≤ im+1, since otherwise both the path
jm → im and the path jm+1 → im+1 would have to pass through the vertex
immediately to the left of sink vertex im+1. Hence, if the interlacing condition
I ≤ J is not satisfied, then there are no vertex-disjoint path families from J to I,
and therefore |TJI | = 0 in this case.

Suppose now that I ≤ J . For each m = 1, . . . , k we draw a rectangular
window over the graph, with its upper left corner at source vertex jm and its
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lower right corner at sink vertex im. Imagine trying to construct a vertex-disjoint
path family from J to I. There will be only one possible path jm → im if the
mth window has its height jm− im equal to zero, or if it shares its top edge with
another window; otherwise there will be two possible paths jm → im. Indeed,
when the height is zero there is only one way to start and finish on the same
level. When the top edge is shared, there is again only one path, since the path
corresponding to the window directly above must use the vertex immediately
to the left of sink vertex im+1 (which is on the same level as source vertex jm).
Therefore, if we remove all windows which are of height zero or share their top
edge with another window, then the number of possible vertex-disjoint path
systems will be given by 2 to the power of the number of remaining windows, in
other words 2card(I′) where I ′ = I \ (I ∩ J).

Now, inserting the value of |TJI | from this lemma into equation (2.2), we
obtain ∑

J∈([n]
k )
|(TX)JJ | =

∑
I,J∈([n]

k )
I≤J

2p(I,J) |XIJ | = S, (2.4)

which finishes the proof of part (a) of Theorem 1.4.

Remark 2.2. There are several ways to compute the minors |TJI |; see [8] for
another argument using induction on n. Note that the proof above is implicitly
taking advantage of the factorization

T =



1 0 0 · · · 0
1 1 0 · · · 0

0 1 1
. . .

...
...

. . . . . . . . . 0
0 · · · 0 1 1





1 0 0 · · · 0
1 1 0 · · · 0

1 1 1
. . .

...
...

. . . . . . . . . 0
1 · · · 1 1 1

 . (2.5)

3 The sum of all k × k minors of X

In this section we prove part (b) of Theorem 1.4.

3.1 Minors and matchings
By the definition of the determinant, we have

|XIJ | = det

xi1j1 . . . xi1jk
...

...
xikj1 . . . xikjk

 =
∑
π∈Sk

sgn(π)xi1jπ(1) · · ·xikjπ(k) , (3.1)

where Sk is the symmetric group of permutations on k elements (i.e., bijections
π : [k]→ [k]). A less index-heavy notation is obtained by using that (for given I
and J) each permutation π : [k]→ [k] corresponds to a unique bijection τ : I → J
via τ(ik) = jπ(k). Setting sgn(τ) = sgn(π) and X(τ) =

∏
i∈I xiτ(i), we simply get

|XIJ | =
∑

τ : I→J
sgn(τ)X(τ) (3.2)
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where the sum runs over all bijections from I to J . We visualize such a bijection τ
as a bipartite graph; for example, with n = 5, the bijection τ : {2, 3, 4} → {1, 3, 5}
given by τ(2) = 3, τ(3) = 5, τ(4) = 1 is drawn as

1

i1 = 2

i2 = 3

i3 = 4

5

1 = j1

2

3 = j2

4

5 = j3

and it corresponds (for the given sets I and J) to the permutation π ∈ S3
represented by the graph

1 1

2 2

3 3

The sign of τ (and π) is +1 or −1 depending on whether the crossing number of
the graph is even or odd. In this example there are two crossings, so sgn(τ)X(τ) =
+x23x35x41 (and this is one of the six terms in the 3× 3 minor |X234,135|).

Note that when composing two bijections τ1 : I → L and τ2 : L → J , the
signs obey the same rule as for the corresponding permutations:

sgn(τ2 ◦ τ1) = sgn(τ2) sgn(τ1).

Choosing k-element sets I and J together with a bijection τ : I → J is
equivalent to choosing a k-edge matching of the complete bipartite graph Kn,n:

1 1

2 2

3 3

4 4

5 5

1 1

2 2

3 3

4 4

5 5

(Recall that a matching of a graph X = (V,E) with vertex set V and edge set E
is a subset F ⊆ E such that no two edges in F share a common vertex. One may
equivalently think of the matching as being the subgraph (V, F ). This habit of
not distinguishing a graph from its edge set, when the underlying vertex set is
understood, will be used quite frequently.)

Fix n and k, and letM =Mn,k denote the set of k-edge matchings of Kn,n.
We will use the same symbol τ both for such a matching and for the corresponding
bijection, and slightly abuse the language by speaking about matchings τ : I → J .
If τ(i) = j holds for the bijection τ , then we say that the matching τ contains an
edge i→ j. (The graph Kn,n is undirected, but the arrow notation is convenient
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for distinguishing the left nodes labelled 1, . . . , n from the right nodes also
labelled 1, . . . , n.)

When summing all k × k minors of an n× n matrix X and expanding each
minor, the whole sum turns into an alternating sum over all k-edge matchings
of Kn,n:∑

I,J∈([n]
k )
|XIJ | =

∑
I,J∈([n]

k )

∑
τ : I→J

sgn(τ)X(τ) =
∑
τ∈M

sgn(τ)X(τ). (3.3)

In order to prove that this equals∑
I≤J

2p(I,J) |XIJ | =
∑
I≤J

∑
τ : I→J

2p(I,J) sgn(τ)X(τ)

when X is symmetric, as claimed in Theorem 1.4, we will introduce a certain
abelian group G which acts onM in a way which preserves the weights X(τ) but
may change the signs sgn(τ). Then we compute the sum

∑
τ∈M by adding the

terms for each group orbit separately and then summing over all orbits. As we
will see, each orbit containing a matching τ : I → J with interlacing index sets
I ≤ J contributes 2p(I,J) terms which all have the same sign, while the other
orbits contain equally many positive and negative terms and therefore cancel
out.

3.2 Clusters of a matching
Fix a matching τ : I → J (viewed as a bipartite graph). Temporarily add auxiliary
horizontal edges r → r for all r ∈ I ∩ J . Split the resulting (multi)graph τ̃ into
connected components, and then remove the auxiliary edges. The remnants of
the components of τ̃ form a partition of the edges of τ into what we will call
clusters.

Since τ is a matching, no vertex in τ̃ can have degree greater than two, and
therefore the components of τ̃ are paths. A cluster is either called closed or open,
depending on whether the corresponding component of τ̃ is a closed or an open
path. The endpoints of an open path will also be said to be the endpoints of
that open cluster.

Example 3.1. Let n = 8 and k = 7. Here is a matching τ : I → J , where I =
{1, 2, 3, 4, 5, 6, 8} and J = {1, 2, 4, 6, 7, 8}, together with its companion τ̃ obtained
by adding auxiliary horizontal edges r → r for r = I ∩ J = {1, 2, 4, 5, 6, 8}:
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1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

τ

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

τ̃

There are three connected components in τ̃ (one open path with endpoints 3 ∈ I
and 7 ∈ J , and two closed paths):

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

Removing the auxiliary edges, we obtain the three clusters of the matching τ
(one open and two closed):

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

C1

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

C2

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

C3
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Definition 3.2 (Endpoint separation). Let τ : I → J be a matching and C one
of its open clusters. Consider the list consisting of all numbers in I ∪ J , sorted
in ascending order. (If im = jm′ for some m and m′, then include that number
twice in the list.) Let the endpoint separation sep(C) of the cluster C be the
number of entries in this sorted list lying strictly between the numbers labelling
the two endpoints of C. For closed clusters C, we set sep(C) = 0.

Remark 3.3. Observe that the endpoint separation is a property of both the
matching and the cluster, and not just of the cluster itself.

Example 3.4. The open cluster C1 in Example 3.1, with endpoints labelled 3
and 7, has endpoint separation sep(C1) = 6, since there are six numbers (4, 4,
5, 5, 6, 6) strictly between the 3 and 7 in the list (1, 1, 2, 2, 3, 4, 4, 5, 5, 6, 6, 7, 8, 8).
For the closed clusters, we have sep(C2) = sep(C3) = 0 by definition.

3.3 The group of flips
Given n, let G = Gn be the abelian group obtained by taking the direct sum of(
n
2
)
copies of the two-element group Z/(2) (one copy for each pair (i, j) with

1 ≤ i < j ≤ n). We define an action of G on the set M of k-edge matchings
of Kn,n as follows:

• Let fij = (0, . . . , 0, 1, 0, . . . , 0) ∈ G, where the 1 is in the (i, j)th copy of
Z/(2). The elements {fij}i<j generate G, so it is enough to define how
they act.

• If there is an open cluster C in the matching τ ∈M containing one of the
edges i → j and j → i (note that an open cluster cannot contain both),
then let fij • τ be the matching obtained by flipping the whole cluster C,
i.e., replacing each edge a→ b in C by b→ a (and leaving all other edges
in τ as they are).

• Otherwise, let fij do nothing: fij • τ = τ .

It is straightforward to verify that this really defines a group action as claimed,
since flips commute and flipping the same cluster twice is the identity trans-
formation. Note that it is the flipping of a whole cluster (rather than just an
individual edge) that ensures that fij • τ is still a matching.

Example 3.5. When f28 acts on the matching τ of Example 3.1, the open
cluster C1 (here drawn dotted) is flipped, since it is open (with endpoints 3
and 7) and contains the edge 2→ 8:

9



1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

τ

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

f28 • τ

Lemma 3.6. If the matrix X is symmetric, then X(g • τ) = X(τ) for all flips
g ∈ G and all matchings τ ∈M.

Proof. This is immediate, since replacing the edge a→ b by the edge b→ a in
the matching τ : I → J corresponds to replacing the matrix entry Xab by Xba

in the product X(τ) =
∏
i∈I Xiτ(i).

Example 3.7. The flip in Example 3.5 corresponds to changing

X(τ) = X16X28X34X42X55X61X87

into
X(f28 • τ) = X16X82X43X24X55X61X78.

A less trivial aspect of the group action is the relation between sgn(g • τ)
and sgn(τ), and this is where the endpoint separation and the interlacing
condition I ≤ J will be of importance.

Lemma 3.8. If the cluster C is flipped when fij acts on τ , then

sgn(fij • τ) = (−1)sep(C) sgn(τ). (3.4)

Proof. As remarked in Section 3.1, the composition of matchings τ1 : I → L and
τ2 : L→ J (thought of as functions) satisfies sgn(τ2 ◦ τ1) = sgn(τ2) sgn(τ1). We
will split τ : I → J into such a composition where τ1 deals with the edges in the
cluster and τ2 with the remaining edges.

Consider an open cluster C in τ with endpoints a ∈ I ′ = I \ (I ∩ J) and b ∈
J ′ = J \ (I ∩ J):

τ(a) = c1, τ(c1) = c2, τ(c2) = c3, . . . , τ(cm−1) = cm, τ(cm) = b.

We letK = {c1, c2, . . . , cm} ⊂ I∩J and define τ1 : I → I+b−a and τ2 : I+b−a→
J by

τ1(x) =
{
τ(x), if x ∈ K + a,

x, if x ∈ I \ (K + a),
τ2(x) =

{
x, if x ∈ K + b,

τ(x), if x ∈ I \ (K + b).
(3.5)
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(For readability, we have written I + b− a instead of (I ∪ {b}) \ {a} and K + a
instead of K ∪ {a}.) These definitions imply that τ = τ2 ◦ τ1. Schematically,
with dashed arrows indicating the mapping x 7→ x and solid arrows indicating
x 7→ τ(x):

I ′

I ∩ J

a

K

b
J ′

I ∩ J

τ1 τ2

The result of flipping the cluster C is fij • τ = τ3 ◦ τ−1
1 , where τ3 : I → J + a− b

differs from τ2 in having the edge a→ a instead of the edge b→ b:

I ′ − a

I ∩ J

b

K

J ′ − b

I ∩ J

a

τ−1
1 τ3

We have sgn(τ3) = (−1)sep(C) sgn(τ2), since if we imagine detaching the edge
b → b from its vertices and continuously sliding it to the position a → a, the
crossing number of the matching changes by one each time either the left or the
right end of of that edge moves past a matched vertex, and by the definition
of endpoint separation there are exactly sep(C) matched vertices on the levels
strictly between a and b. Together with sgn(τ−1

1 ) = sgn(τ1), this proves (3.4).

Let us call a matching τ : I → J interlacing if the sets I and J are interlacing,
I ≤ J (cf. (1.3)). The orbits of the interlacing matchings (under the action of the
flip group G) will be called interlacing orbits, and all other orbits non-interlacing.

Lemma 3.9. A matching σ belongs to an interlacing orbit if and only if every
cluster C in σ has even endpoint separation sep(C).

Proof. It is clear from the definitions that flipping a cluster does not change
its endpoint separation. Closed clusters always have even endpoint separation

11



by definition (namely, zero). If C is an open cluster in an interlacing match-
ing τ : I → J , with endpoints is ∈ I ′ = I \ (I ∩ J) and jt ∈ J ′ = J \ (I ∩ J),
then in the case is < jt we find from the interlacing condition that

· · · ≤ js−1 < is < js ≤ · · · ≤ it︸ ︷︷ ︸
2(t− s) elements

< jt < it+1 ≤ · · · ,

so that sep(C) = 2(t− s) is even, and the case is > jt is similar. It follows that
if σ belongs to the orbit of an interlacing matching, then every cluster in σ has
even endpoint separation sep(C).

Conversely, given a matching σ : A → B all of whose clusters have even
endpoint separation, we form interlacing sets I ≤ J by sorting the list of
numbers (a1, . . . , ak, b1, . . . , bk) in ascending order and labelling the elements of
the sorted list as (i1, j1, i2, j2, . . . , ik, jk) (note that I ∩ J = A ∩ B). If a ∈ A
and b ∈ B are the endpoints of an open cluster C in σ, then (a, b) ∈ I × J or
J × I (rather than I× I or J ×J) because of the assumption that sep(C) is even.
Flipping those open clusters in σ whose endpoints belong to J × I produces an
interlacing matching τ : I → J whose orbit σ belongs to.

Corollary 3.10. All matchings in a given interlacing orbit have the same sign.

Proof. Combine Lemmas 3.8 and 3.9.

Corollary 3.11. In a non-interlacing orbit, there are equally many matchings
of each sign.

Proof. By Lemma 3.9, each matching in a non-interlacing orbit has at least
one open cluster with odd endpoint separation; among those clusters we single
out the unique one with the property that its lowest-numbered node is smaller
than that of the other ones. The operation of flipping that cluster is a sign-
reversing involution pairing up the matchings in the orbit. (It’s sign-reversing
by Lemma 3.8, and it’s an involution since the lowest-numbered node will still
be the lowest-numbered node after the flip.)

Lemma 3.12. (a) The orbit G • τ of a matching τ : I → J contains 2p(I,J)

elements. (b) Each interlacing orbit contains exacly one interlacing matching.

Proof. Recall that p(I, J) = card(I ′) = card(J ′) where I ′ = I \ (I ∩ J) and
J ′ = J \ (I ∩ J). Each element of I ′ is the endpoint of an open cluster whose
other endpoint belongs to J ′ (by the definition of an open cluster), while all
other clusters are closed. Thus there are exactly as many open clusters in τ as
there are elements in I ′ and J ′, and each of these p(I, J) open clusters can be
flipped independently of the others. This proves part (a). To prove part (b) we
consider two cases. If an interlacing matching τ has only closed clusters then
by (a) card(G • τ) = 1, hence (b) holds. If, on the other hand, an interlacing
matching τ has at least one open cluster then flipping any open cluster destroys
the interlacing property. This follows from the fact that I ∪ J and I ∩ J are
invariant under flipping, and that there is only one way of constructing interlacing
sets with given union and intersection.

Now we only have to put the pieces together:
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x

t
u(x, t)

Figure 1: A three-peakon solution of the Camassa–Holm equation.

Proof of part (b) of Theorem 1.4. LetM∗ ⊂M denote the union of the inter-
lacing orbits. Then, referring in brackets to the relevant Lemmas and Corollaries
above, we have∑

I,J

|XIJ | =
∑
I,J

∑
τ : I→J

sgn(τ)X(τ) (def. of determinant)

=
∑
τ∈M

sgn(τ)X(τ)

=
∑
τ∈M∗

sgn(τ)X(τ) +
∑
τ /∈M∗

sgn(τ)X(τ)

=
∑
I≤J

∑
τ : I→J

∑
σ∈G • τ

sgn(σ)X(σ) (def. ofM∗, 3.12b)

+ 0 (3.6, 3.11)

=
∑
I≤J

∑
τ : I→J

2p(I,J) sgn(τ)X(τ) (3.6, 3.10, 3.12a)

=
∑
I≤J

2p(I,J)

( ∑
τ : I→J

sgn(τ)X(τ)

)
=
∑
I≤J

2p(I,J) |XIJ | (def. of determinant).
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A Appendix
The Canada Day Theorem first arose in the context of nonlinear partial differ-
ential equations in [8]. In this appendix we describe briefly the subject of that
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paper and how it resulted in the formulation of the theorem. The nonlinear
partial differential equation

ut − uxxt + 4u2ux = 3uuxuxx + u2uxxx, (A.1)

where u = u(x, t), ux = ∂u
∂x (x, t), ut = ∂u

∂t (x, t), etc., was derived by V. Novikov
[12] as part of a classification of generalized Camassa–Holm-type equations
possessing infinite hierarchies of higher symmetries. The Camassa–Holm equation

ut − uxxt + 3uux = 2uxuxx + uuxxx, (A.2)

which was formulated by Camassa and Holm in [5] as an integrable shallow
water equation (with u denoting a horizontal velocity component), admits a
particularly interesting class of explicit weak solutions which capture phenomena
such as the collision and breakdown of waves. Miraculously, many of these
features turn out to be intrinsically connected to classical problems in analysis,
like Stieltjes continued fractions [3], or the moment problem [4]. These weak
explicit solutions are called peakons (short for peaked solitons) because of the
characteristic e−|x| shape of the waves. Multipeakon solutions are formed by the
superposition of n peakons,

u(x, t) =
n∑
i=1

mi(t) e−|x−xi(t)|, (A.3)

with a suitable time dependence in the amplitudes mi(t) and positions xi(t).
Observe that since these solutions are not differentiable everywhere they only
satisfy the PDE (A.2) in a certain weak sense. The evolution of a three-peakon
solution over time is illustrated in Figure 1. One of the objectives of [8] was
to find explicit formulas for the positions and amplitudes of the peaks for the
multipeakon solution of Novikov’s equation (A.1). After substituting the ansatz
(A.3) into (A.1), taking into account the weak nature of the solutions, one
obtains 2n ordinary differential equations which govern the time dependence of
the positions and amplitudes:

ẋk =
(

n∑
i=1

mi e
−|xk−xi|

)2

,

ṁk = mk

(
n∑
i=1

mi e
−|xk−xi|

) n∑
j=1

mj sgn(xk − xj) e−|xk−xj |
 .

(A.4)

(By definition, sgn(0) = 0 here.) These equations were already stated in [9] where
it was shown that they constitute a Hamiltonian system, and one of the main
results of [8] was that they are also Arnol′d–Liouville integrable [2], meaning
that there exist n functionally independent and Poisson commuting constants
of motion H1, . . . ,Hn. To display these constants of motion we first define the
matrices

P = diag(m1, . . . ,mn),
E = (Eij)ni,j=1, where Eij = e−|xi−xj |,

T = (Tij)ni,j=1, where Tij = 1 + sgn(i− j),
(A.5)
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where P and E depend on the variables appearing in (A.4). One can then
show that for every complex λ, the polynomial A(λ) = det(I − λTPEP ) is a
constant of motion for equations (A.4), which implies that the coefficient of
λk in the polynomial A(λ) is a constant of motion. It can also be shown that
these coefficients (for 1 ≤ k ≤ n) are in fact Poisson commuting and functionally
independent, thereby providing the desired set of n constants of motion. By
elementary linear algebra, the coefficient of λk can be computed (up to a sign)
as the sum over all k×k principal minors of the matrix TPEP . However, before
this result was found, direct computations for small values of n had indicated
that the constants of motion ought to be given by the sums over all k× k minors
of the symmetric matrix PEP . It was the attempt to reconcile these observations
that led to the formulation of Theorem 1.1, and as a result, the constants of
motion now have the following description:

Theorem A.1. The Novikov peakon ODEs (A.4) admit n constants of motion
H1, . . . ,Hn, where Hk equals the sum of all k × k minors (principal and non-
principal) of the n× n symmetric matrix PEP = (mimje

−|xi−xj |)ni,j=1.

As a final remark, let us mention that explicit expressions for the minors of
PEP can be written down easily with the help of the Lindström–Gessel–Viennot
lemma; see [8] for details.
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