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Abstract

Narrow escape problems consider the calculation of the mean first passage time (MFPT)
for a particle undergoing Brownian motion in a domain with a boundary that is everywhere
reflecting except for at finitely many small holes. Asymptotic methods for solving these
problems involve finding approximations for the MFPT and average MFPT that increase in
accuracy with decreasing hole sizes. While relatively much is known for the two-dimensional
case, the results available for general three-dimensional domains are rather limited. The
present paper addresses the problem of finding the average MFPT for a class of three-
dimensional domains bounded by the level surface of an orthogonal coordinate system. In
particular, this class includes spheroids and other solids of revolution. The primary result
presented is a two term asymptotic expansion for the average MFPT of such domains
containing an arbitrary number of holes. Steps are taken towards finding higher order
asymptotic expansions for both the average MFPT and the MFPT in these domains. The
results for the average MFPT are compared to full numerical calculations performed with
the COMSOL multiphysics FEM solver for three distinct domains - prolate and oblate
spheroids and biconcave disks. This comparison shows good agreement with the proposed
two-term expansion of the average MFPT in the three domains.

1 Introduction

Consider a bounded domain Ω ∈ Rd (d = 2, 3) whose boundary, ∂Ω, is everywhere reflecting
except at finitely many small absorbing windows, the collection of which is denoted by ∂Ωa =⋃N
j=1∂Ωεj (see Fig. 1). Narrow escape problems are concerned with determining the behaviour of

a particle undergoing Brownian motion which is enclosed within such a domain. In particular, the
quantity of interest is the mean first passage time (MFPT), v(x), which denotes the expectation
value of the time it takes for such a particle starting at x ∈ Ω to escape the enclosing domain
through one of the small absorbing windows, or traps, which are respectively characterized by
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Consider the trajectory X(t) of a Brownian particle confined in a bounded domain Ω ∈ Rd,
d = 2, 3, for which the boundary ∂Ω is almost entirely reflecting except for small windows (traps)
centered at the points xj ∈ ∂Ω, for j = 1, . . . , N , through which the particle can escape (see Fig. 1).

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) (b)

Figure 1: A Schematic of the Narrow Escape Problem in a 2-D and a 3-D domain.

The mean first passage time (MFPT) v(x) is defined as the expectation value of the time taken
for the Brownian particle starting initially from X(0) = x ∈ Ω, to become absorbed by one of the
boundary traps. It is well-known that in the continuum limit, the MFPT v(x) satisfies the mixed
Dirichlet-Neumann problem (cf. [3])

4v = − 1

D
, x ∈ Ω ; ∂nv = 0 , x ∈ ∂Ωr ,

v = 0 , x ∈ ∂Ωa =
N⋃

j=1

∂Ωεj ,
(1.1)

whereD is the constant diffusivity. For two- and three-dimensional problems with diam (Ω) = O(1),
the windows Ωεj are respectively characterized by a length |∂Ωεj | = O(ε) or an area |∂Ωεj | = O(ε2),
where ε ¿ 1 is a small parameter.
Due to the mixed nature of the boundary condition for the PDE (1.1), no exact and only a

few approximate solutions are known for an arbitrary-shaped domain. In particular, leading-order
terms for the asymptotic expansion of the MFPT in the limit ε → 0 have been recently derived
for a unit disk with one and two traps [6, 7], a two-dimensional domain with a single trap located
at a cusp of a boundary [8], a unit sphere and a general three-dimensional domain with smooth
boundary and with a single trap [9, 10]. A recent survey of the calculation of the MFPT for small
targets in the interior or on the boundary of a confining domain is given in [13].
The method of matched asymptotic expansions was used to derive new asymptotic MFPT formu-

las in the limit ε → 0 for two-dimensional [11] and three-dimensional [12] domains with an arbitrary
number of non-identical, but well-separated, boundary traps. In Section 2 we present the asymp-
totic formulas for two-dimensional and three-dimensional domains in a common general framework.
These formulas employ the Neumann Green’s function for each respective domain, and can be used
for direct computations for domains for which this Green’s function is known analytically. Such
domains include the unit square, the unit disk, or the unit sphere. Importantly, the formulas for
the average MFPT include an additional term, called the interaction energy, which depends on
the mutual positions of the traps. This leads naturally to certain discrete variational problems
whereby the average MFPT is to be minimized with respect to the trap locations. Recently, in [14]
a rigorous proof of some of the asymptotic results in [11] and [12] has been given.
Section 2 also discusses specific forms of asymptotic MFPT formulas relevant for the unit disk, the

unit square, and the unit sphere. In particular, for the case ofN identical traps on a unit sphere, the
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Figure 1: A Schematic of the narrow escape problem in a two- and a three-dimensional domain.

a length |∂Ωεj | = O(ε) (in two dimensions) or an area |∂Ωεj | = O(ε2) (in three dimensions).
Here ε� 1 is a small parameter, in terms of which, diam (Ω) = O(1).

Narrow escape problems arise in the modeling of escape kinetics in chemistry [9], as well as
in multiple cell-biological applications, such as receptor trafficking in a synaptic membrane [10],
RNA transport from the cell nucleus through the nuclear pores [8], and others. An excellent
review of applications involving narrow escape problems is provided in [1].

In a narrow escape problem, the MFPT can be expressed as the solution of the following
Poisson equation with mixed Dirichlet-Neumann boundary conditions [14]:

∆v = − 1

D
, x ∈ Ω, (1a)

v(x) = 0, x ∈ ∂Ωa, (1b)

∂nv(x) = 0, x ∈ ∂Ω \ ∂Ωa, (1c)

D being the diffusivity coefficient. An additional quantity that is of interest is the average MFPT
v̄, which describes the spatial average of the MFPT, and is given by

v̄ ≡ 1

|Ω|

ˆ
Ω

v(x) dx. (2)

For small trap sizes, the quantities v(x) and v̄ can be sought in terms of asymptotic series in
terms of the dimensionless size parameter ε. As ε→ 0, the MFPT diverges, indicating that this
problem is singularly perturbed.

Consideration of the narrow escape problem in two-dimensional domains has yielded numer-
ous results for both the MFPT and the average MFPT. Results for the average MFPT in the
case of a single absorbing window when the two-dimensional domain is bounded by a smooth
curve, a non-smooth curve, or when the domain is a unit disk can be found in [10, 18, 15, 16].
Using a different approach the authors in [11] determined a higher order asymptotic expansion
for an arbitrary two-dimensional domain with an arbitrary number of well separated absorb-
ing windows. These asymptotic expansions are formulated in terms of the regular part of the
surface Neumann Green’s function for the domains. In the particular case of a unit disk and
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unit square, where explicit analytic expressions for the surface Neumann Green’s functions are
known, explicit asymptotic expansions can be given as in [11].

The added complexity of three-dimensional domains has restricted the generality and accu-
racy of the results for the MFPT and average MFPT. In [17], the authors considered an arbitrary
three-dimensional domain with a smooth boundary and a single circular absorbing window. By
first finding an expression for the singular part of the corresponding surface Neumann Green’s
function, and then solving an integral equation, the authors of [17] determined a two-term asymp-
totic expansion for the average MFPT. Using similar methods to those found in [11], the authors
of [4] were able to give a three-term asymptotic expansion for both the average MFPT and
the MFPT for the unit sphere with an arbitrary number of well separated non-equal absorbing
windows. A rigorous proof of some of the asymptotic results in [4] has been recently given in [2].
Applicability limits of asymptotic MFPT results for some two- and three-dimensional domains
have been numerically studied in [3].

The higher-order term of the three-term asymptotic expansion for the spherical average
MFPT is dependent on the trap sizes as well as mutual trap locations [4]. In particular, for N
equal traps, the interaction term is proportional to the “interaction energy” given by a sum of
Coulombic, logarithmic, and an additional regular pairwise interaction energies:

H(x1, . . . , xN ) =

N∑

i=1

N∑

j=i+1

(
1

|xi − xj |
− 1

2
log |xi − xj | −

1

2
log (2 + |xi − xj |)

)
. (3)

Here xi, i = 1, . . . , N , are Cartesian coordinate triples for the trap locations on the unit sphere.

A related global optimization problem arises, to minimize the average MFPT by optimizing
boundary trap locations. This problem is a generalization of the famous Thomson problem for
electrons on the unit sphere, interacting with a Coulomb potential. Except for special sym-
metric cases, exact optimal configurations of N particles on the surface of a unit sphere or any
other three-dimensional domain are not known; finding them numerically presents a significant
computational challenge due to the existence of numerous local minima. Extensive literature
on the subject exists; see, e.g., [13, 6] and references therein. A number of putative optimal
configurations of N equal traps minimizing the MFPT on the unit sphere have been computed
in [4]. An asymptotic expression for the trap “interaction energy” for a unit sphere with N
small traps of a common radius and N large traps of a common radius has been computed and
numerically optimized in [3].

When the number of traps is large, N � 1, a dilute trap limit of homogenization theory can
be used to replace the strongly heterogeneous Dirichlet-Neumann problem (1) with a spherically
symmetric Robin problem for which an exact solution is readily found. The Robin problem
boundary condition parameters for the case of the unit sphere have been asymptotically calcu-
lated in [5].

The primary objective of this paper is to extend the results of [17] and [4] to a wider class of
three-dimensional domains, in particular, domains bounded by smooth surfaces that are coordi-
nate surfaces of one of the coordinates of a general orthogonal coordinate set in three dimensions.
Local stretched coordinates in the vicinity of a boundary point are considered in Section 2, and
asymptotic expressions for the Laplacian and the surface Neumann Green’s function are derived.
These are used in the method of matched asymptotic expansions to compute the first two terms
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of the average MFPT v̄ for an arbitrary domain within the considered class (Principal Result
2.1). This is a direct generalization of the results of [17] onto the case of N > 1 traps, and the
results of [4] onto non-spherical domains.

In Section 3, we compare the derived two-term asymptotic average MFPT for non-spherical
domains with numerical results obtained using the COMSOL Multiphysics finite element solver.
Comparisons are performed for several three-dimensional domains, and show good agreement
for small trap sizes.

In Section 4, using certain assumptions for the far-field behaviour of one of the components
of the asymptotic expansion, we show that the form of the higher-order asymptotic MFPT v(x)
within a domain in the considered class is similar to that of the unit sphere, in particular,
it involves a higher-order term depending on mutual trap locations and the Green’s function
matrix. For the unit sphere, the MFPT formula reduces to the one known from [4].

A discussion of results and open problems is presented in Section 5.

2 Asymptotic Analysis of the MFPT Problem

We now wish to calculate an asymptotic MFPT expression for the narrow escape problem (1)
for a class of three-dimensional domains Ω specified below. The smooth domain boundary ∂Ω
will contains N ≥ 1 small well-separated traps centered at xj , j = 1, ..., N . We will assume that
each trap has a circular projection onto the tangent plane to ∂Ω at xj , and has a radius εaj ,
with ε� 1, aj = O(1). For the domain itself, it is assumed that diam Ω = O(1).

To perform the calculations, the method of matched asymptotic expansions will be applied,
extending the work of [4] to the case of a non-spherical domain. We will derive and use ex-
plicit asymptotic expressions for the Laplacian and surface Neumann Green’s function in local
stretched coordinates near a boundary trap.

2.1 A General Class of Three-Dimensional Domains

Let (µ, ν, ω) be an orthogonal coordinate system in R3. In addition suppose that fixing µ and
varying the remaining two coordinates in some specified range leads to a smooth closed bounded
surface in R3. It is the interior of such a surface to which we will restrict Ω in our considerations.
In particular, we will be considering Ω defined by

Ω ≡ {(µ, ν, ω) | 0 ≤ µ ≤ µ0, 0 ≤ ν ≤ ν0, 0 ≤ ω ≤ ω0},
∂Ω ≡ {(µ, ν, ω) |µ = µ0, 0 ≤ ν ≤ ν0, 0 ≤ ω ≤ ω0}.

The restriction of domains Ω to this particular form allows the unit normal to the surface
∂Ω to be written as n̂ = µ̂ so that the normal derivative becomes ∂n|∂Ω = ∂µ|µ=µ0

, where we
have assumed that µ̂ is normalized. A general point in the domain Ω or on its surface ∂Ω will
be denoted x = (µ, ν, ω).

Next, denoting the scale factors by hµ(x), hν(x), hω(x) we define

hµj
= hµ(xj), hνj = hν(xj), hωj

= hω(xj),
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where xj = (µj , νj , ωj) ∈ ∂Ω, j = 1, ..., N , denote the centers of the boundary traps. Finally, we
introduce the local stretched coordinates (centered at the jth trap) which are defined by

η = −hµj

µ− µj
ε

, s1 = hνj
ν − νj
ε

, s2 = hωj

ω − ωj
ε

. (4)

In (4), the coordinate η is chosen to increase towards the inside of the domain.

The above-described class of three-dimensional domains includes spheres, ellipsoids, spheroids,
and in general, all axially symmetric domains.

2.2 The Laplacian in Local Stretched Coordinates

We recall that for an orthonormal coordinate system (µ, ν, ω), the Laplacian is given by

∆Ψ =
1

hµhνhω

[
∂

∂µ

(
hνhω
hµ

∂Ψ

∂µ

)
+

∂

∂ν

(
hµhω
hν

∂Ψ

∂ν

)
+

∂

∂ω

(
hµhν
hω

∂Ψ

∂ω

)]
.

Converting to the local stretched coordinates defined in (4) and then expanding the Laplacian
in terms of ε, one gets

∆ =
1

ε2
∆(η,s1,s2) +

1

ε
L∆ +O(1), (5)

where

∆(η,s1,s2) ≡
∂2

∂η2
+

∂2

∂s2
1

+
∂2

∂s2
2

,

and

L∆ ≡ Λη
∂2

∂η2
+ Λs1

∂2

∂s2
1

+ Λs2
∂2

∂s2
2

+ λη
∂

∂η
+ λs1

∂

∂s1
+ λs2

∂

∂s2
.

A somewhat lengthy calculation involving the series expansion about ε = 0 shows that the λ
coefficients are given by

λη = − 1

hνjhωj

∂

∂µ

(
hνhω
hµ

)∣∣∣∣
xj

, λs1 = − 1

hµj
hωj

∂

∂ν

(
hµhω
hν

)∣∣∣∣
xj

,

λs2 = − 1

hµjhνj

∂

∂ω

(
hµhν
hω

)∣∣∣∣
xj

.

Similarly we find that each of the Λ coefficients can be expressed as a linear combination of η,
s1, and s2. Explicitly, each of these coefficients can be written as

Λα = Ληαη + Λs1α s1 + Λs2α s2, α = η, s1, s2,

where

Ληη =
2

h2
µj

∂hµ
∂µ

∣∣∣∣
xj

, Λs1η = − 2

hµj
hνj

∂hµ
∂ν

∣∣∣∣
xj

, Λs2η = − 2

hµj
hωj

∂hµ
∂ω

∣∣∣∣
xj

,

Ληs1 =
2

hµjhνj

∂hν
∂µ

∣∣∣∣
xj

, Λs1s1 = − 2

h2
νj

∂hν
∂ν

∣∣∣∣
xj

, Λs2s1 = − 2

hνjhωj

∂hν
∂ω

∣∣∣∣
xj

,

Ληs2 =
2

hµj
hωj

∂hω
∂µ

∣∣∣∣
xj

, Λs1s2 = − 2

hνjhωj

∂hω
∂ν

∣∣∣∣
xj

, Λs2s2 = − 2

h2
ωj

∂hω
∂ω

∣∣∣∣
xj

.
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2.3 The Surface Neumann Green’s Function

The surface Neumann Green’s function plays a critical role in the method of matched asymptotic
expansions, which is used in the bulk of the upcoming analysis. The surface Neumann Green’s
function is defined for each trap ∂Ωεj as the solution of the problem

∆Gs(x;xj) =
1

|Ω| , x ∈ Ω,

∂nGs(x;xj) = δs(x− xj), x ∈ ∂Ω,ˆ
Ω

Gdx = 0.

(6)

Explicit analytic solutions to the problem (6) are not known for arbitrary domains Ω. However
in the case of a unit sphere an explicit expression for the surface Neumann Green’s function is
available (see, e.g., [4]). It has the form

Gs(x;xj) =
1

2π|x− xj |
+

1

8π

(
|x|2 + 1

)
+

1

4π
log

(
2

1− |x| cos γ + |x− xj |

)
− 7

10π
, (7)

where γ is the angle between the vectors x ∈ Ω and xj ∈ ∂Ω, defined by |x| cos γ = x · xj ,
|xj | = 1.

For more general domains, the authors of [17] determined that the surface Neumann Green’s
function takes the form

Gs(x;xj) =
1

2π|x− xj |
− H(xj)

4π
log |x− xj |+ vs(x;xj), (8)

where H(xj) is the mean curvature of ∂Ω at xj , and vs(x;xj) is a bounded (but not necessarily
regular) function of x and xj in Ω.

In a similar procedure to that used for finding the approximate Laplacian in local stretched
coordinated, we can obtain an asymptotic expression for the surface Neumann Green’s function
in local stretched coordinates. To do this, first observe that expansions about ε = 0 yield

1

|x− xj |
=

1

ερ
+ YD(η, s1, s2) +O(ε),

log |x− xj | = log ε+
1

2
log ρ+O(ε),

(9)

where ρ =
√
η2 + s2

1 + s2
2. A lengthy calculation, based on the orthogonality of the coordinates

(µ, ν, ω), shows that

YD(η, s1, s2) =
1

4ρ3

[
Ληη

2 + Λs1s
2
1 + Λs2s

2
2 + γD

]
,

with γD a constant defined by

γD = 12

∂x
∂µ · ∂2x

∂ν∂ω

hµjhνjhωj

∣∣∣∣
xj

= 12

∂x
∂ν · ∂2x

∂µ∂ω

hµjhνjhωj

∣∣∣∣
xj

= 12

∂x
∂ω · ∂

2x
∂µ∂ν

hµjhνjhωj

∣∣∣∣
xj

.
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It remains to put these expansions together with the expansion of the bounded unknown
function vs. Based on the boundedness of vs(x;xj) for x and xj in Ω as well as the coordinate
transformations given in (4), and the known result for the unit sphere, we pose the following
asymptotic expansion for vs:

vs(x;xj) = b0(η, s1, s2) + g1(η, s1, s2)ε log
ε

2
+O(ε).

With this, the surface Neumann Green’s function becomes

Gs(η, s1, s2) =
1

2πρ

1

ε
− H(xj)

4π
log

ε

2
+ g0(η, s1, s2)

+ g1(η, s1, s2)ε log
ε

2
+O(ε),

(10)

where

g0(η, s1, s2) =
1

2π
YD(η, s1, s2) +

H(xj)

8π
log

ρ

4
+ b0(η, s1, s2).

It is worthwhile to note that for the unit sphere the results in [4] indicate that

g0 =
1

4π

[
η(s2

1 + s2
2)

ρ3
− s2

1s2 cot θj
ρ3

]
− 1

4π
log(ρ+ η)− 9

20π
,

g1 = 0,

where θj is the spherical polar angle of the trap position xj .

2.4 Matched Asymptotic Expansion Solution of the MFPT Problem

The method of matched asymptotic expansions is now used to compute an approximation for
the solution v(x) of the narrow escape problem (1) in domains Ω specified in Section 2.1.

Consider N small traps centered at the points xj on the domain boundary, j = 1, ..., N . For a
point x ∈ Ω far from each of the boundary traps xj , |x−xj | = O(1), define the outer asymptotic
expansion for the MFPT v(x):

v ∼ 1

ε
v0 + v1 + ε log

ε

2
v2 + εv3 + · · · . (11)

Substitution of (11) into the problem (1) yields

∆vk = − 1

D
δk1, x ∈ Ω; ∂nvk = 0, x ∈ ∂Ω \ {x1, ..., xN}, (12)

where k = 0, 1, 2, . . ., and δij denotes the Kronecker delta symbol. In a similar way, when x ∈ Ω
is close to a trap xj , we pose the inner asymptotic MFPT expansion

v(x) = w(η, s1, s2) ∼ 1

ε
w0 + log

ε

2
w1 + w2 + · · · , (13)
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using the local stretched coordinates (η, s1, s2). Substituting this expression into (1) and this
time using the local form of the Laplacian given by (5), we obtain for k = 0, 1, 2, . . .,

∆(η,s1,s2)wk = −δk2L∆w0, η ≥ 0, s1, s2 ∈ R,

∂ηwk = 0, η = 0, s2
1 + s2

2 ≥ a2
j ,

wk = 0, η = 0, s2
1 + s2

2 ≤ a2
j .

(14)

The inner expansion (13) is matched with the outer expansion (11) by imposing the matching
condition v ∼ w, or explicitly,

1

ε
v0 + v1 + ε log

ε

2
v2 + εv3 + · · · ∼ 1

ε
w0 + log

ε

2
w1 + w2 + · · · . (15)

where the left- and right-hand sides must agree as x→ xj and as ρ =
√
η2 + s2

1 + s2
2 →∞.

The leading order matching condition is w0 ∼ v0 as ρ→∞; this is satisfied by the form

w0 = v0(1− wc),

(see [4] for details), where wc is the solution to the electrified disk problem

∆(η,s1,s2)wc = 0, η ≥ 0, s1, s2 ∈ R

∂ηwc = 0, η = 0, s2
1 + s2

2 ≥ a2
j ,

wc = 1, η = 0, s2
1 + s2

2 ≤ a2
j .

The solution to this problem is explicitly known to be given by

wc =
2

π
sin−1

(
aj
L

)
, (16)

where

L(η, σ) ≡ 1

2

(
[(σ + aj)

2 + η2]1/2 + [(σ − aj)2 + η2]1/2
)
, σ ≡ (s2

1 + s2
2)1/2.

Expanding as ρ→∞, we obtain the far-field behaviour of wc as ρ→∞:

wc ∼
2aj
π

(
1

ρ
+
a2
j

6

(
1

ρ3
− 3η2

ρ5

)
+ · · ·

)
.

For convenience, define the trap ‘capacitance’ cj ≡ 2aj/π. The far-field behaviour of w0 as
ρ→∞ is consequently given by

w0 ∼ v0

(
1− cj

ρ
+O(ρ−3)

)
.
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Substituting this result into (15), we have

1

ε
v0 + v1 + ε log

ε

2
v2 + εv3 + · · · ∼ 1

ε
v0

(
1− cj

ρ
+O(ρ−3)

)
+ log

ε

2
w1 + w2 + · · · .

Using (9), we find that the ρ−1 terms contribute ε/|x − xj |, so that the next leading order
matching condition above gives v1 ∼ −v0cj/|x − xj | as x → xj (j = 1, ..., N). This singular
behaviour of v1 near each xj can be expressed as

∆v1 = − 1

D
, x ∈ Ω; ∂µ|µ0

v1 = −2πv0

N∑

i=1

ci
hνihωi

δ(ν − νi)δ(ω − ωi).

Applying the divergence theorem to ∇v1, we obtain

−|Ω|
D

=

˚
Ω

∇ · (∇v1) dV =

‹
∂Ω

∂nv1 dA = −2πv0

N∑

i=1

ci,

and hence

v0 =
|Ω|

2πDNc̄
. (17)

In (17), c̄ =
∑N
i=1 ci is the average trap capacitance.

Further, with reference to (6), one observes that v1 can be expressed as a superposition of
surface Neumann Green’s functions as

v1 = −2πv0

N∑

i=1

ciGs(x;xi) + χ, (18)

where χ is an unknown integration constant. Using the local form of the Green’s function (10),
the behaviour of v1 near xj is determined to be given by

v1 ∼ −
cjv0

ρ

1

ε
+
cjH(xj)v0

2
log

ε

2
− 2πv0cjg0

− 2πv0cjg1ε log
ε

2
+Bj + χ,

where Bj = −2πv0

∑
i6=j ciGs(xj ;xi). With this near field expansion, the matching condition

(15) near xj now reads

1

ε
v0

(
1− cj

ρ

)
+
v0cjH(xj)

2
log

ε

2
− 2πv0cjg0 +Bj + χ

+(v2 − 2πv0cjg1)ε log
ε

2
+ εv3 ∼

1

ε
v0

(
1− cj

ρ
+O(ρ−3)

)
+ w1 log

ε

2
+ w2 + · · · ,

(19)

from which we deduce the far field behaviour for w1 as ρ→∞ to be

w1 ∼
v0cjH(xj)

2
.
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Up to the multiplicative factor of H(xj), the above far-field behaviour is identical to that en-
countered in [4] for the unit sphere, where the mean curvature at each trap center H(xj) ≡ 1.
Parallel to [4], such an expansion leads to a problem in v2 with no solutions. This can be fixed
by inserting a constant term of order O(log ε) between v0 and v1 in the outer expansion (11), as
follows:

χ = χ0 log
ε

2
+ χ1,

where χ0, χ1 are unknown constants independent of ε. This leads to the far-field behaviour

w1 ∼
v0cjH(xj)

2
+ χ0

as ρ→∞.

The next step is to express w1 in terms of the solution to the electrified disk problem wc, as
it was done for w0:

w1 =

(
χ0 +

v0cjH(xj)

2

)
(1− wc).

Thus the far-field behaviour of wc yields the far field behaviour of w1:

w1 ∼
(
χ0 +

v0cjH(xj)

2

)(
1− cj

ρ
+O(ρ−3)

)
.

The ρ−1 term gives an ε term with coefficient of 1/|x− xj |, which yields an ε log ε
2 term in the

right hand side of the matching condition. With reference to the latest result in the matching
condition above, this yields the following condition on v2 as x→ xj :

v2 − 2πv0cjg1 ∼ −
(
χ0 +

v0cjH(xj)

2

)
cj

|x− xj |
.

To proceed with the analysis, more information about g1(η, s1, s2) is needed. As discussed earlier,
for the sphere it was observed in [4] that there is no ε log ε

2 term in the near-field expansion of
the surface Neumann-Green’s function (i.e. g1 ≡ 0). This leads us make the following key
assumption.

Key Assumption 1 : The g1 term in the local expansion of the surface Neumann Green’s function
is identically zero.

The above assumption is motivated by the explicit form of the surface Neumann Green’s function
for the unit sphere, and is supported by the numerical results in Section 3.

Using the above expansion, we can rewrite the problem for v2 in distributional form as

∆v2 = 0, x ∈ Ω;

∂µ|µ0
v2 = −2π

∑N
i=1

(
χ0 +

v0ciH(xi)

2

)
ci

hν1hωi

δ(ν − νi)δ(ω − ωi).

Applying the divergence theorem to ∇v2 we find that

χ0 = − v0

2Nc̄

N∑

i=1

c2iH(xi). (20)
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The solution v2 can then be expressed as a superposition of the surface Neumann Green’s function
as

v2 = −2π

N∑

i=1

ci

(
χ0 +

v0ciH(xi)

2

)
Gs(x;xi) + χ2,

where χ2 is an unknown constant.

Noting that the average value of each Green’s function Gs(x;xj) is zero, it follows from
averaging the outer expansion (11) that the leading terms of the average asymptotic MFPT are
given by

v̄ ∼ v0

ε
+ χ0 log

ε

2
,

with v0, χ0 given by (17) and (20), respectively. With this, we have obtained the following result.

Principal Result 2.1. In the limit ε→ 0, the asymptotic approximation to the average MFPT
is given in the outer region |x− xj | � O(ε) by

v̄ =
|Ω|

2πDNc̄ε

(
1− 1

2Nc̄

N∑

i=1

c2iH(xi)ε log
ε

2
+O(ε)

)
, (21)

where H(xi) is the mean curvature of the domain boundary ∂Ω at the center of the ith trap.

3 Comparison of Numerical and Asymptotic Solutions

We now check the validity of the average MFPT expression (21), using the COMSOL Multi-
physics 4.3b finite element solver to obtain numerical results for the average MFPT for three
distinct geometries, with N = 3 and N = 5 traps. The three domains considered are an oblate
spheroid, a prolate spheroid, and a biconcave disk – a blood cell-shaped axially symmetric do-
main. The comparison is made by considering the relative error given by

R.E. = 100%× |v̄numerical − v̄asymptotic|/v̄numerical (22)

for various values of ε. In this expression, v̄numerical refers to the results obtained using COMSOL,
while v̄asymptotic is given by (21).

We start from a discussion of the meshing, followed by a section outlining the geometry and
results for each of the three domain geometries.

3.1 Mesh Refinement

COMSOL Multiphysics 4.3b contains predefined mesh preferences varying from extremely coarse
to extremely fine. These preferences vary the maximum element size, minimum element size,
maximum element growth rate, resolution of curvature, as well as resolution of curvature. For
the numerical simulation we used a free tetrahedral mesh which was etremely fine in a cylinder
of radius 0.25 and depth between 0.14 and 0.125 centered at each trap, and fine mesh in the
other regions. This mesh refinement strategy is illustrated in Figure 2.

11



(a) (b)

Figure 2: Illustration of extremely fine and fine mesh regions.

3.2 Oblate Spheroid

As our first numerical example we consider the oblate spheroidal coordinates

x = ρ cosh ξ cos ν cosφ, y = ρ cosh ξ cos ν sinφ, z = ρ sinh ξ sin ν, (23)

where ξ ∈ [0,∞), ν ∈ [−π/2, π/2], and φ ∈ [0, 2π). The orthogonality of such a coordinate
system is easily verified. Furthermore the level sets ξ = ξ0 generate oblate spheroids with a
minor-axis of length ρ sinh ξ0 along the z-axis and a major-axis of length ρ cosh ξ0 on the xy-
plane. The volume enclosed within ξ ≤ ξ0 therefore falls into our class of three-dimensional
domains.

With ξ0 = tanh−1(0.5) and ρ = (cosh ξ0)−1 the level surface ξ = ξ0 becomes an oblate
spheroid with major-axis of length 1 and minor-axis of length 0.5. Explicitly, the surface is
parametrized by

x = cos ν cosφ, y = cos ν sinφ, z = 0.5 · sin ν. (24)

The volume of this oblate spheroid is |Ω| = 2.0944 and its mean curvature is given by

H(ν) = 0.5
8− 3 cos2 ν

(4− 3 cos2 ν)3/2
. (25)

The trap configurations and relative radii for both N = 3 and N = 5 are shown in Table
1. The comparisons between the COMSOL numerical average MFPT and the asymptotic two-
term formula (21) are shown in Figures 3 and 4 for the three- and the five-trap configurations,
respectively. In addition to these plots, Figures 5a and 5b show the fully numerical calculation
of the MFPT done in COMSOL to demonstrate the trap arrangements, as well as the MFPT
behaviour on the boundary of the domain.
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Number of Traps a ν φ

1 −3π/8 0

N = 3 2 0 π

4 π/2 0

1 0 π/2

2 π/4 0

N = 5 2 −π/2 0

3 −π/4 π/4

4 π/4 π

Table 1: Trap locations and relative radii for in sample MFPT computations for oblate and
prolate spheroids.
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Figure 3: Plots of (a) comparison of numerical (circles) and two-term asymptotic expression for
average MFPT, and (b) relative error (see (22)) for an oblate spheroid with N = 3.
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Figure 4: Plots of (a) comparison of numerical (circles) and two-term asymptotic expression for
average MFPT, and (b) relative error (see (22)) for an oblate spheroid with N = 5.
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Figure 5: Three-dimensional (transparent) plots of the numerical MFPT for the oblate spheroid
at ε = 0.02 with (a) N = 3 and (b) N = 5 traps. The trap parameters are given in Table 1.
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Figure 6: Plots of (a) comparison of numerical (circles) and two-term asymptotic expression for
average MFPT, and (b) relative error (see (22)) for a prolate spheroid with N = 3.

3.3 Prolate Spheroid

In a similar fashion to the oblate spheroid we can consider the prolate spheroidal coordiantes

x = ρ sinh ξ cos ν cosφ, y = ρ sinh ξ cos ν sinφ, z = ρ cosh ξ sin ν, (26)

where ξ ∈ [0,∞), ν ∈ [−π/2, π/2], and φ ∈ [0, 2π). As with the oblate spheroidal coordinates,
the volume enclosed by ξ ≤ ξ0 falls within our class of three-dimensional domains.

With ξ0 = tanh−1(1/1.5) and ρ = (sinh ξ0)−1 the level surface ξ = ξ0 becomes a prolate
spheroid with major-axis of length 1.5 and minor axis of length 1. The surface is parametrized
by

x = cos ν cosφ, y = cos ν sinφ, z = 1.5 · sin ν. (27)

Finally it has a volume of |Ω| = 6.2832 and a mean curvature given by

H(ν) = 1.5
8 + 5 cos ν2

(4 + 5 cos ν2)3/2
. (28)

The trap configurations and relative radii for both N = 3 and N = 5 are shown in Table 1.
The comparisons between the COMSOL numerical average MFPT and the asymptotic two-term
formula (21) are shown in Figures 6 and 7 for the N = 3 and N = 5 configurations respectively.
Additionally, Figures 8a and 8b show the fully numerical calculation of the MFPT perfomed in
COMSOL.
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Figure 7: Plots of (a) comparison of numerical (circles) and two-term asymptotic expression for
average MFPT, and (b) relative error (see (22)) for a prolate spheroid with N = 5.
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Figure 8: Three-dimensional (transparent) plots of the numerically calculated MFPT (in seconds)
for the prolate spheroid at ε = 0.02 with (a) N = 3 and (b) N = 5 traps.
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Figure 9: Biconcave disk cross-sectional view.

3.4 Biconcave Disk (Blood Cell)

The final example to be considered is the biconcave disk, which models the shape of blood cells,
as discussed, for example, in [12]. This shape is obtained by rotating the curve

x = aα sinχ, z = a
α

2
(b+ c sin2 χ− d sin4 χ) cosχ, (29)

about the z axis. Here χ ∈ [0, π] with χ = 0, π/2, π corresponding to the north pole, the equator,
and the south pole of the biconcave disk respectively (see Figure 9).

In general, an axially symmetric domain with a smooth boundary can be viewed as a coor-
dinate level set in an orthogonal curvilinear coordinate system. One of the coordinates of that
system is the azimuthal angle φ. If the desired domain boundary is given by F (r, z) = ξ0 in
cylindrical coordinates, with a necessary number of derivatives of F by r vanishing at r = 0,
the three orthogonal coordinates are (ξ, φ, η), where ξ, η are defined in the (r, z) plane and
are given by ξ = F (r, z) and η = G(r, z). The latter satisfies a linear homogeneous equation
∇F (r, z) ·∇G(r, z) = FrGr +FzGz = 0. Setting ξ ≤ ξ0 generates the axially symmetric domain
Ω.

Including the rotation about the z axis, the surface parametrization of the biconcave disk is
given by

x = aα sinχ cosφ, y = aα sinχ sinφ, z = a
α

2
(b+ c sin2 χ− d sin4 χ) cosχ, (30)

where φ ∈ [0, 2π). Keeping the conventions of [12], we pick the parameters appearing in (29) to
be

a = 1, α = 1.38581994, b = 0.207, c = 2.003, d = 1.123.

The locations of each of the traps as well as their relative radii are given in Table 2. The

17



Number of Traps a χ φ

1 0 0

N = 3 2 3π/4 0

4 π/2 π

1 0 0

2 3π/4 0

N = 5 2 π 0

2 π/2 π/2

4 π/2 π

Table 2: Trap locations and relative radii for biconcave disk (blood cell).

volume of the biconcave disk is readily calculated using (29); it is found to be

4π

(
1

6
a3α3b+

1

15
ca3α3 − 4

105
da3α3

)
.

The mean curvature calculation is simple but technical; it is accomplished using the parametriza-
tion (30). The comparisons between the COMSOL numerical average MFPT and that given by
the two-term asymptotic expansion (21) are shown in Figures 10 and 11 for N = 3 and N = 5,
respectively. Figures 12a and 12b show the fully numerical calculation of the MFPT with COM-
SOL, demonstrating the trap arrangements as well as the MFPT behaviour.

4 Towards Higher-Order Asymptotics

To obtain a third-order asymptotic expansion for the MFPT and the average MFPT, we need to
determine the value of χ1. Substituting the updated χ values into the matching condition (19),
we find that w2 has the far-field behaviour

w2 ∼ −2πv0cjg0 +Bj + χ1.

The problem for w2 is further formulated in Appendix A. For the unit sphere, in [4], it is solved
using

w2 = (Bj + χ1)(1− wc) + w̃2, (31)

where w̃2 is assumed to have the far-field behaviour

w̃2 ∼
v0bj
ρ
. (32)

Under the same assumption, in a similar way as it was done for w1 and v2, the matching condition
(15) yields

v3 ∼ −
cj(Bj + χ1)− v0bj

|x− xj |
as x→ xj , j = 1, . . . , N.

18



0 0.01 0.02 0.03 0.04 0.05
0

20

40

60

80

100

120

140

160



A
v
e

ra
g

e
 M

F
P

T
 [

s
]

(a)

0 0.01 0.02 0.03 0.04 0.05
0

5

10

15

20

25


R

e
la

ti
ve

 E
rr

o
r 

(%
)

(b)

Figure 10: Plots of (a) comparison of numerical (circles) and two-term asymptotic expression
for average MFPT, and (b) relative error (see (22)) for a biconcave disk with N = 3.
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Figure 11: Plots of (a) comparison of numerical (circles) and two-term asymptotic expression
for average MFPT, and (b) relative error (see (22)) for a biconcave disk with N = 5.
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Figure 12: Three-dimensional (transparent) plots of the numerically calculated MFPT (in sec-
onds) for the biconcave disk (blood cell) at ε = 0.02 with (a) N = 3 and (b) N = 5 traps.

In distributional form, this leads to the problem

∆v3 = 0, x ∈ Ω; ∂µv3|µ0 = −2π

N∑

j=1

[
cj(Bj + χ1)− v0bj

]
1

hνjhωj

δ(ν − νj)δ(ω − ωj).

Applying the divergence theorem to ∇v3, one has

χ1 =
1

Nc̄

(
v0

N∑

j=1

bj −
N∑

j=1

cjBj

)
.

Putting together the results for v0 and v1, we arrive at the following conjectured results.

Conjecture 4.1. In the outer region |x − xj | � O(ε), the MFPT and the average MFPT for
the problem (1) have the following asymptotic expressions:

v(x) =
|Ω|

2πεDNc̄

[
1− 1

2Nc̄

N∑

j=1

c2jH(xj)ε log
ε

2
− 2πε

N∑

j=1

cjGs(x;xj)

+
ε

Nc̄

N∑

j=1

bj +
2πε

Nc̄

N∑

j=1

∑

i 6=j

cjciGs(xj ;xi) +O(ε2 log ε)

]
,

(33)

and

v̄ =
|Ω|

2πεDNc̄

[
1− 1

2Nc̄

N∑

j=1

c2jH(xj)ε log
ε

2
+

ε

Nc̄

( N∑

j=1

bj+2π

N∑

j=1

∑

i6=j

cjciGs(xj ;xi)

)
+O(ε2 log ε)

]

(34)

The above expressions are in rather similar to the ones for the unit sphere obtained in [4].
In particular, the “interaction energy”

pc(x1, . . . , xN ) ≡
N∑

j=1

∑

i 6=j

cjciGs(xj ;xi) (35)
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is the lowest-order term in v(x) and v̄ dependent on the mutual trap positions. The MFPT
minimization problem therefore can be studied, involving finding the globally optimal configu-
ration of the N traps x1, . . . , xN ∈ ∂Ω. For the spherical domain, the constants bj = −cjκj can
be computed explicitly [4]. For the unit sphere with N equal traps, the “interaction energy” is
given by (3).

Formulas (33) and (34) are useful for providing insights into the asymptotic expansion struc-
ture of the MFPT and the average MFPT. In order to employ these higher-order formulas for
MFPT computation for a specific non-spherical domain, one additionally needs to derive exact
or approximate explicit expressions for the Green’s functions Gs(x;xj) and the constants bj . Im-
portantly, the lower-order two-term approximation (21) is ready to use in practical computations,
since it only involves known quantities.

5 Discussion and Conclusions

The current paper aims to widen the body of results for the narrow escape problem (1) in three
dimensions, by considering a general class of three-dimensional domains with N non-equal small
well-separated boundary traps. This class of domains is described as the volume enclosed in
a curvilinear coordinate level set of an orthogonal coordinate system, as discussed in Section
2.1. Using the method of matched asymptotic expansions, and utilizing the expansion of the
surface Neumann Green’s function of [17], in Section 2, we determined the two-term asymptotic
expansion for the average mean first passage time for this class of domains. The average MFPT
is given by formula (21); it involves the mean curvature of the domain boundary computed at
the centers of the small ith trap, and directly generalizes the results of [17] on the case of several
traps, as well as the results of [4] for the unit sphere onto non-spherical domains. The derivation
assumes the absence of the term of order ε log ε

2 in the asymptotic expansion of the surface
Neumann Green’s function. While this assumption obviously holds for the unit sphere, and the
comparison with a full numerical simulation suggests that this is the case for some non-spherical
domains, it remains an open problem to present a rigorous argument to support or refute the
above assumption for particular domain classes. In the cases where the assumption would not
hold, the procedure developed in the current paper may be adjusted to accommodate for the
non-zero ε log ε

2 term.

In order to verify the two-term asymptotic expansion of the average MFPT, in Section 3, we
performed several full finite-element numerical calculations of the average MFPT using COMSOL
Multiphysics. These numerical calculations were done for three distinct domains – an oblate
spheroid, a prolate spheroid, and a biconcave disk. For each such domain we considered an
arrangements of N = 3 and N = 5 traps of different relative radii. The two-term asymptotic
expansion of the average MFPT was found to be in close agreement with the full numerical
calculations for small values of ε in each domain.

The form of a higher-order asymptotic expansion of the MFPT v(x) (33) and the average
MFPT v̄ (34), parallel to that for the unit sphere, were computed for the considered class of
domains in Section 4, assuming the far-field behaviour (31), (32). The higher-order terms involve
a “trap interaction energy” term depending on mutual trap locations and the Green’s function
matrix. It is another open problem to solve the BVP for the w2 term outlined in Appendix A,
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in order to determine the unknown constants bj in the formulas (33), (34).

When the trap interaction term for non-spherical domains is better understood, it would
be a natural future work direction to study the global optimization of the average MFPT with
respect to locations of a prescribed set of traps.
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A The w2 Problem

To continue the analysis we must consider the problem for w2. We begin by observing that the
terms appearing in the near-field expansion of v2 do not contribute any O(1) terms because of
the log ε

2 term. Thus the far-field behaviour of w2 can be determined by the O(1) terms already
appearing in the matching condition (19). We find that w2 must have the far field behaviour

w2 ∼ −2πv0cjg0 +Bj + χ1.

On the other hand, w2 must satisfy the problem

∆(η,s1,s2)w2 = v0L∆wc, η ≥ 0, s1, s2 ∈ R

∂ηw2 = 0, η = 0, s2
1 + s2

2 ≥ a2
j ,

w2 = 0, η = 0, s2
1 + s2

2 ≤ a2
j .

(36)

We decompose w2 as
w2 = (Bj + χ1)(1− wc) + w2p + w2h,

where wc is given by the solution to the electrified disk problem, w2p satisfies the inhomogeneous
PDE

∆(η,s1,s2)w2p = v0L∆wc,

and w2h satisfies

∆(η,s1,s2)w2h = 0, η ≥ 0, s1, s2 ∈ R

∂ηw2h = −∂ηw2p, η = 0, s2
1 + s2

2 ≥ a2
j ,

w2h = −w2p, η = 0, s2
1 + s2

2 ≤ a2
j .

(37)

Theorem A.1. The solution w2p to the inhomogeneous problem is given by

w2p =
v0

4

{[
(2λη + Ληs1 + Ληs2 − Ληη)η + (2λs1 + Λs1η + Λs1s2 − Λs1s1)s1 + (2λs2 + Λs2η + Λs2s1 − Λs2s2)s2

]
wc

+

[
Ληηη

2 + 2Λs1η ηs1 + 2Λs2η ηs2 − Ληs1s
2
1 − Ληs2s

2
2

]
∂wc
∂η

+

[
Λs1s1s

2
1 + 2Ληs1ηs1 + 2Λs2s1s1s2 − Λs1η η

2 − Λs1s2s
2
2

]
∂wc
∂s1

+

[
Λs2s2s

2
2 + 2Ληs2ηs2 + 2Λs1s2s1s2 − Λs2η η

2 − Λs2s1s
2
1

]
∂wc
∂s2

}

(38)
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Proof. We begin by defining the three functions with unknown constant coefficients

ΦηA = Aη1η
2 ∂wc
∂η

+Aη2ηwc, ΦηB = Bη1η
2 ∂wc
∂s1

+Bη2ηs1
∂wc
∂η

, ΦηC = Cη1 η
2 ∂wc
∂s2

+Cη2 ηs2
∂wc
∂η

.

A straightforward calculation using the fact that
∂2wc
∂η2

= −∂
2wc
∂s2

1

− ∂2wc
∂s2

2

results in

∆(η,s1,s2)Φ
η
A = 4Aη1η

∂2wc
∂η2

+ 2(Aη1 +Aη2)
∂wc
∂η

∆(η,s1,s2)Φ
η
B = 2Bη2s1

∂2wc
∂η2

+ (4Bη1 + 2Bη2 )η
∂2wc
∂η∂s1

+ 2Bη1
∂wc
∂s1

,

∆(η,s1,s2)Φ
η
C = 2Cη2 s2

∂2wc
∂η2

+ (4Cη1 + 2Cη2 )η
∂2wc
∂η∂s2

+ 2Cη1
∂wc
∂s2

.

Setting Aη1 =
v0Ληη

4
, Bη2 =

v0Λs1η
2

, Cη2 =
v0Λs2η

2
, as well as Bη1 = −1

2
Bη2 and Cη1 = −1

2
Cη2 we find

that

∆(η,s1,s2)(Φ
η
A + ΦηB + ΦηC) = v0

[
Λη
∂2wc
∂η2

+
1

2
(Ληη + 4Aη2)

∂wc
∂η
− 1

2
Λs1η

∂wc
∂s1
− 1

2
Λs2η

∂wc
∂s2

]
.

Using the same argument but this time permuting η, s1, and s2 we find that

∆(η,s1,s2)(Φ
s1
A + Φs1B + Φs1C ) = v0

[
Λs1

∂2wc
∂s2

1

+
1

2
(Λs1s1 + 4As12 )

∂wc
∂s1
− 1

2
Ληs1

∂wc
∂η
− 1

2
Λs2s1

∂wc
∂s2

]
,

∆(η,s1,s2)(Φ
s2
A + Φs2B + Φs2C ) = v0

[
Λs2

∂2wc
∂s2

2

+
1

2
(Λs2s2 + 4As22 )

∂wc
∂s2
− 1

2
Ληs2

∂wc
∂η
− 1

2
Λs1s2

∂wc
∂s1

]
.

With w2p = ΦηA + ΦηB + ΦηC + Φs1A + Φs1B + Φs1C + Φs2A + Φs2B + Φs2C we find that

∆(η,s1,s2)w2p = v0

[
Λη
∂2wc
∂η2

+ Λs1
∂2wc
∂s2

1

+ Λs2
∂2wc
∂s2

2

+
1

2
(Ληη + 4Aη2 − Ληs1 − Ληs2)

∂wc
∂η

+
1

2
(Λs1s1 + 4As12 − Λs1η − Λs1s2)

∂wc
∂s1

+
1

2
(Λs2s2 + 4As22 − Λs2η − Λs2s1)

∂wc
∂s2

]
.

Finally the coefficients of
∂wc
∂η

,
∂wc
∂s1

, and
∂wc
∂s2

are set to zero by choosing Aη2 , As12 , and As22

accordingly which yields the desired result (38).

With the result for w2p above, we can explicitly write out the boundary conditions for w2h

as

w2h|η=0 = −v0

4

[
(2λs1 +Λs1η +Λs1s2−Λs1s1)s1+(2λs2 +Λs2η +Λs2s1−Λs2s2)s2−(Λs1η s

2
1+Λs2η s

2
2)
∂wc
∂η
|η=0

]

for s2
1 + s2

2 < a2
j , and

∂ηw2h|η=0 = −v0

4

[
(2λη+Ληs1+Ληs2−Ληη)wc|η=0−(Ληs1s

2
1+Ληs2s

2
2)
∂2wc
∂η2
|η=0+2Ληs1s1

∂wc
∂s1
|η=0+

v0

2
Ληs2s2

∂wc
∂s2
|η=0

]

for s2
1 + s2

2 > a2
j . It may be possible to express the solution to the problem for w2h in terms of

the Green’s functions obtained using the Sommerfeld method, as outlined in [7].

25


