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Abstract

In this paper we consider a class of isospectral deformations of the inhomogeneous string bound-
ary value problem. The deformations considered are generalizations of the isospectral deformation
that has arisen in connection with the Camassa-Holm equation for the shallow water waves. It is
proved that these new isospectral deformations result in evolution equations on the mass density
whose form depends on how the string is tied at the endpoints. Moreover, it is shown that the
evolution equations in this class linearize on the spectral side and hence can be solved by the in-
verse spectral method. In particular, the problem involving a mass density given by a discrete finite
measure and arbitrary boundary conditions is shown to be solvable by Stieltjes’ continued fractions.
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1 Introduction

The wave equation 1
c2 fττ−∇2 f = 0 is a prototype of hyperbolic problems well studied since the time

of Euler. One of its many applications, well known to any science undergraduate student, is the one
dimensional version of this equation 1

c2 fττ− fxx = 0, 0 < x < L, describing the motion of a vibrating
string of length L with the amplitude f (x,τ) at the point x and time τ. Usually, the equation is also
equipped with boundary conditions expressing the way the endpoints of the string are behaving; the
most common types are, of course, the case of the string with both ends fixed (i.e. f (0,τ) = f (L,τ) = 0 )
or the case of the string with sliding endpoints (i.e. fx (0,τ) = fx (L,τ) = 0). The two cases are sometimes
referred to as the Dirichlet and the Neumann strings respectively. The coefficient c2 has the physical
dimension of the velocity squared but more appropriately it depends on the mass density of the
medium. In general, in the case of an inhomogeneous medium, this coefficient is position dependent.
The string counterpart of this is an inhomogeneous string equation: 1

c2(x)
fττ− fxx = 0, 0 < x < L with

the position dependent speed c2(x) = T
ρ(x) , where T is the tension and ρ the lineal mass density of the

string, which leads, after separation of variables f (x,τ) = cos(
p

zτ)v(x), to

− vxx = z

T
ρ(x)v. (1.1)

We will choose the tension T = 1 and for simplicity of presentation we will restrict our attention to the
string problem with L = 1. The general string boundary value problem then reads:

− vxx = zρ(x)v, 0 < x < 1, vx (0)−hv(0) = 0, vx (1)+H v(1) = 0, (1.2)

where, traditionally, h = 0 corresponds to the Neumann boundary condition on the left end of the
string, while h =∞ corresponds to the Dirichlet condition on the left end, and the same convention
applies to H and the right end of the string. We will subsequently refer to equation (1.2) as the string
equation, although the name of the Helmholtz equation is also associated with this very equation.

The mathematical pedigree of equation (1.2) parallels its physical significance: (1.2) impacted the
development of the Fourier methods, continued fractions, and subsequently led to the fundamental
progress associated with distributional (weak) solutions to partial differential equations. For this
paper, however, the most relevant is M.G. Krein’s pioneering work on the inverse problem for the
inhomogeneous string [11, 18, 19]. The inverse problem for the inhomogeneous string, in its simplest
formulation, amounts to the reconstruction of the mass density ρ from the spectrum of the boundary
value problem. It has been known since the time of Borg [8] that the mass density of the string is
not uniquely determined by the spectrum alone. It was M.G. Krein who shifted the emphasis to the
reconstruction of the string density from the spectral function, sometimes also called the Weyl function.
In the simplest case of the Dirichlet spectrum the corresponding Weyl function is W (z) = vx (1;z)

v(1;z) , where
v(x; z) satisfies the initial value problem: −vxx = zρ(x)v, 0 < x < 1, v(0; z) = 0, vx (0; z) = 1. The zeros of

2



the denominator of the Weyl function correspond to the spectrum of the Dirichlet boundary value
problem, while the zeros of the numerator correspond to the spectrum of the boundary value problem
with the Dirichlet condition on the left and the Neumann condition on the right. The inverse problem
for the string appears in many different areas of science and engineering such as the geophysical
inverse problems [2] or magnetotelluric inversion [15, 26], to mention just a few. The reader might
want to consult a very accessible account of inverse problems relevant to engineering in the book by
G.M.L. Gladwell [13].

Since in general the knowledge of a single spectrum does not determine the string density, a natural
question is to determine isospectral deformations of the string, i.e. changes in the density that leave
invariant the spectrum of a given boundary value problem.

Some results dealing with isospectral strings are presented in [13] and also in the works of H.P.W
Gottlieb [14] and in the references therein. Our interest lies in characterizing isospectral strings in
terms of nonlinear evolution equations on the mass density ρ. The first contribution to this line of
research, as far as we know, goes back to the series of interesting papers by P.C. Sabatier [21–23] (see
Example 2.2). Our approach, however, is more influenced by the later work on the Camassa-Holm
equation (CH) [9]:

mt = mx u +2ux m, m = u −uxx .

It was discovered in the late nineties in [4] that the CH equation can be viewed as an isospectral
deformation of the inhomogeneous string with Dirichlet boundary conditions. This led, among other
things, to the construction of a certain class of explicit solutions (peakons) in [5] by adapting an elegant
approach of Stieltjes [24]. Some of these developments are reviewed in [7].

The present paper addresses the following questions:

1. consider a general class of deformations of the boundary value problem (1.2) postulated to be
described by vt = av +bvx , where all functions depend on x, the deformation parameter t , and
the spectral parameter z appearing in equation (1.2). Can a and b be suitably chosen for the
boundary value problem (1.2) to remain isospectral?

2. which of the isospectral nonlinear evolution equations on the mass density give rise to a linear
evolution of the appropriate Weyl function?

In the body of the paper we give a definite, affirmative, answer to the first question under the
assumption that b is a rational function of z, regular at ∞ and possessing only simple poles which, for
technical reasons, we assume to be located on the positive part of the real axis.

Even though the second question is less natural from the point of view of real life applications it is
nevertheless of considerable mathematical interest because the linear evolution of the Weyl function
leads, via the spectral/inverse scattering approach, to exact formulas which can be of great benefit, for
example, in testing numerical methods. Furthermore, by constructing explicit solutions to nonlinear
partial differential equations, one frequently gets valuable insight into the expected behaviour of a
larger class of solutions after applying, for example, density arguments if such are available. The
research presented in this paper provides a partial answer to the question of linearization for the the
following reason: we rely on a particular scheme of linearization originally known from the inverse
scattering approach to the KdV equation and subsequently applied to a multitude of integrable partial
differentiable equations. This method hinges in an essential way on the linearization of dynamics
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in the asymptotic region in space, eventually leading to a linear evolution of the scattering data. In
summary, we answer the question of linearization only within the paradigm of the inverse scattering
approach.

The paper is organized as follows: in section 2 we analyze what we call the Zakharov-Shabat defor-
mations (ZS) modeled after those occurring in the theory of integrable systems (see, for example, [12]);
section 3 contains a preliminary analysis of these flows, we derive a criterion for the preservation of
boundary conditions under the deformations and provide evidence that the ZS isospectral deforma-
tions of the string arise from the class of flows analytic around z =∞; section 4 contains, in Proposition
4.1, the description of these isospectral deformations in terms of evolution equations on the spectral
data; in section 5 we prove that the deformation, rational in the spectral variable, regular at infinity,
with simple poles at positive ε1,ε2, . . . ,εM , can be chosen to render equation (1.2) not only isospectral
but also such that the evolution of the spectral data is linear; in section 6 we show explicitly how the
deformations work for discrete mass densities; finally, in Appendix 8 we provide details behind the
modifications of the formalism when the mass densities are not smooth but rather finite discrete mea-
sures, while in Appendix 9 we explain the main steps illustrating the relation of the string deformation
equations with the CH equation.

2 Inhomogeneous string and its deformations

We will make the general assumption that ρ is a positive measure and h, H ≥ 0 to ensure that the
spectrum of the boundary value problem (1.2) is positive. However, to simplify the technical aspects of
the paper, we will focus on two extreme cases:

1. ρ is in C 1([0,1]),

2. ρ is a finite, discrete measure, i.e. ρ = ∑N
j=1 m jδx j where δx j is the Dirac measure centered at

0 < x j < 1,

leaving other scenarios of the smoothness of the mass density for future work.

We begin by writing the string equation as a first order system:

Vx =
[

0 1
−zρ 0

]
V , where V =

[
v

vx

]
, (2.1)

and define deformations of the string equation as variations of the mass density ρ expressed as a
function of an external parameter t which, we emphasize, is not a physical time, even though we will
occasionally refer to it as time. Our goal is to describe a class of deformations which leave invariant the
spectrum of the string boundary value problem (1.2); we will refer to these deformations as isospectral
deformations and will search for them among deformations of the Zakharov-Shabat (ZS) type.

Definition 2.1 (ZS deformations).
V in equation (2.1) is postulated to depend on the deformation parameter t subject to

Vt =
[

a b
c d

]
V (2.2)
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where a,b,c,d are functions of x, t , z, chosen so as to ensure the compatibility of equations (2.1) and
(2.2).

When ρ, a,b,c,d are sufficiently smooth in x and t (for example all in C 1) the equations (2.1) and
(2.2) are compatible provided the Zero Curvature condition :[

0 1
−zρ 0

]
t
−

[
a b
c d

]
x
+ [[

0 1
−zρ 0

]
,

[
a b
c d

]]= 0, (2.3)

holds, which, upon closer inspection, implies that one can parametrize a,c,d by the function b. The
result of a simple computation is

a =−1

2
bx +β, c =−1

2
bxx − zρb, d = 1

2
bx +β, (2.4)

where β is a constant (in x), whose choice, to be discussed later, is dictated by the boundary conditions.
Then we substitute these into the equation containing ρt to get the following evolution deformation
equation

zρt = 1

2
bxxx + zρx b +2zρbx , (2.5)

which we will write as

zρt = 1

2
bxxx + zLρb

with

Lρ = ρ ∂

∂x
+ ∂

∂x
ρ (2.6)

denoting the second and third term in (2.5). In general, one cannot say much more about equation (2.5)
unless some additional structure in the spectral variable z is brought to bear. For example, assuming
the functions b, bx , etc., to have Laurent expansions in z, that is to say b =∑

bn zn , bx =∑
bn,x zn , and

bxxx =∑
bn,xxx zn , then collecting like powers of z in (2.5) gives

ρt = 1

2
b1,xxx +Lρb0,

1

2
bn,xxx +Lρbn−1 = 0, for n 6= 1. (2.7)

If one assumes b to be a rational function

b(z) = b0 +
M∑

k=1

b(k)
−1

z +εk
, εk 6= ε j , k 6= j and εk > 0 (2.8)

then the deformation equation (2.5) reads:

ρt =Lρb0, (2.9a)

b0,xxx +
M∑

k=1

b(k)
−1,xxx

εk
= 0,

1

2
b(k)
−1,xxx −εkLρb(k)

−1 = 0, k = 1. . . M . (2.9b)

Let us consider a few specific examples of deformation equations.
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Example 2.2. Taking b = zb1 +b0 one obtains

ρt = 1

2
b1,xxx +Lρb0, Lρb1 = 0, b0,xxx = 0. (2.10)

This deformation was mentioned already in [22] where this evolution equation was identified as the
Harry-Dym equation (HD).

Example 2.3. Similarly, the case b = b0 + b−1
z results in

ρt =Lρb0,
1

2
b0,xxx +Lρb−1 = 0, b−1,xxx = 0. (2.11)

The relation of this deformation to the string with Dirichlet boundary conditions was established in [5]
and, in this special case, the evolution equation (2.11) (after a Liouville transformation) corresponds to
the Camassa-Holm (CH) equation [9] mentioned earlier.

Finally we have the rational model, the main focus of this paper.

Example 2.4. We put M = 1, set ε1 = ε, b(1)
−1 = b−1 in (2.8) and rearrange equations to obtain

ρt =Lρb0,
1

2
b0,xxx +Lρb−1 = 0, εb0,xxx +b−1,xxx = 0. (2.12)

Remark 2.5. The idea behind the use of the parameter ε is that we want to have control over the
singularity of b, in particular we do not want to have a singularity at a point of the spectrum of the
string. Moreover, we plan to compute the limit ε→ 0 in the rational model. The presentation of example
2.4 suggests that, at least formally, the rational model goes over to the one discussed in example 2.3.
Finally, the relevance of the rational model, in addition to the fact that it goes in the limit ε→ 0 to other
known cases, is that it admits a natural resolution of the differential constraints in terms of products
of eigenfunctions, exemplified by Theorems 5.8, 5.13, or in the general case of rational flows (2.8), by
Theorem 5.9.

In the remainder of this section we discuss one type of non-smooth mass densities, exemplified by
ρ =∑N

j=1 m jδx j .

Away from the support of ρ we are dealing with the smooth case so our previous discussion applies.
However, on the support of ρ we need to apply distributional (in the sense of theory of distributions)
calculus. In Appendix 8, we analyze the deformation equation on the support of ρ and show that the
deformation equation will take the form of the distributional equation

zD tρ = 1

2
D3

x b + zLρb (2.13)

where D t ,Dx are distributional derivatives in t , x respectively while Lρ f = Dx (ρ f )+ρ〈 fx〉 for any
continuous piecewise smooth function f with 〈 fx〉 denoting the average function (the arithmetic
average of the right-hand and left-hand limits).
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Example 2.6. For the rational flow b = b0 + b−1
z+ε and ρ = ∑N

j=1 m jδx j the deformation equations re-
stricted to the support of ρ read:

D tρ =
N∑

j=1
ṁ jδx j −m j ẋ jδ

′
x j

,

zm j ẋ j =−1

2
[bx ](x j )− zm j b(x j ),

zṁ j = 1

2
[bxx ](x j )+ zm j 〈bx〉(x j ),

(2.14)

where [ f ](x j ) is the jump of f at x j . Writing these equations in terms of components b0 and b−1 we
obtain:

ẋ j =−b0(x j ), −ε[b0,x ](x j ) = [b−1,x ](x j ),
1

2
[b−1,x ](x j ) = εmi b−1(x j ) (2.15)

ṁ j = m j 〈b0,x〉(x j ), −ε[b0,xx ](x j ) = [b−1,xx ](x j ),
1

2
[b−1,xx ](x j ) = εm j 〈b−1,x〉(x j ), (2.16)

producing, in the formal limit ε→ 0(corresponding to b = b0 + b−1
z ), the dynamical system similar to

the one known from the CH theory:

ẋ j =−b0(x j ), ṁ j = m j 〈b0,x〉(x j ). (2.17)

These are only preliminary computations which will be fully justified once the existence of the limit for
b−1 and b0 is proved.

3 Boundary conditions

The boundary conditions (1.2) can be written as[−h 1
]

V (x = 0) = 0,
[
H 1

]
V (x = 1) = 0.

We require that these boundary conditions hold during the deformation of the string, in other words
we require [−h 1

]
Vt (x = 0) = 0,

[
H 1

]
Vt (x = 1) = 0,

or [−h 1
][

a b
c d

]
V (x = 0) = 0,

[
H 1

][
a b
c d

]
V (x = 1) = 0,

(3.1)

where a, c, and d have been determined in (2.4) in terms of the function b, thus leading to the explicit,
b-dependent, form of (3.1).

Lemma 3.1. Suppose v satisfies the string boundary value problem (1.2) at time t. Then the ZS defor-
mation leaves the boundary conditions invariant provided

1

2
bxx (0)−hbx (0)+ (h2 + zρ(0))b(0) = 0,

1

2
bxx (1)+Hbx (1)+ (H 2 + zρ(1))b(1) = 0.

(3.2)
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In particular, if there is no mass at the endpoints then

1

2
bxx (0)−hbx (0)+h2b(0) = 0,

1

2
bxx (1)+Hbx (1)+H 2b(1) = 0,

(3.3)

with the proviso that b(0) = 0 if h =∞, likewise b(1) = 0 if H =∞.

Remark 3.2. We emphasize that condition (3.2) has to hold not only in t but also in z, resulting in
conditions on the components of b. The latter leads to severe restrictions on admissible choices of b,
for example, eliminating the polynomial flows as the example below illustrates.

We briefly analyze a few special cases of Lemma 3.1.

Example 3.3 (Neumann and Dirichlet Conditions). The Neumann-Neumann boundary conditions
have h = H = 0, hence bxx (0) = bxx (1) = 0, in the case of no masses at the end points. In the Dirichlet-
Dirichlet case, regardless of the presence of masses at the endpoints, h = H =∞, hence b(0) = b(1) = 0.

We illustrate the relevance of Lemma 3.1 in highlighting the difference brought about by specific
analytic properties of b at z =∞. In particular, we would like to gauge to which extent it is possible
to impose the boundary conditions (3.2) on b without violating the differential equation (2.5). To
appreciate the task we will analyze two cases.

Polynomial flows: b = b1z+b0

The differential equations (2.10) yield solutions of the form

b0(x) = Ax2 +B x +C , b1(x) = D

ρ(x, t )1/2
. (3.4)

Suppose we impose Dirichlet-Dirichlet boundary conditions. Then Lemma 3.1 implies b0(0) =
b0(1) = 0 and b1(0) = b1(1) = 0, hence b0(x) = Ax(1−x) while by the second condition either D = 0 or

b1(0) = b1(1) = D

ρ(0, t )1/2
= D

ρ(1, t )1/2
= 0.

Thus the polynomial flow does not preserve Dirichlet-Dirichlet boundary conditions unless the density
is singular at the endpoints. Consequently, for general densities, D = 0, hence b1(x) = 0, and the only
polynomial flow preserving Dirichlet-Dirichlet boundary conditions will be linear: ρt = Lρb0, b0 =
Ax(1−x). To deal with boundary conditions other than Dirichlet-Dirichlet boundary conditions we
observe that by inspection equation (3.2) implies 1

2 bi ,xx (0)−hbi ,x (0)+h2bi (0)+ρ(0)bi−1(0) = 0. So,
in the case of i = 2, if there is a mass at the left endpoint, b1(0) = 0 which implies D = 0 unless the
density is singular at x = 0. Thus in the regular case again b1(x) = 0 and we conclude that for the general
boundary conditions and general mass densities the linear flow above is the only flow preserving
these boundary conditions. This argument can easily be generalized to the case of polynomial flows∑N

n=0 bn zn . We conclude this example by pointing out that because of the form of b1 which involves
both taking the root and inverting of ρ, one does not expect the situation to improve for ρ given by
discrete measures.

Next, we illustrate how the behaviour of b at z =∞ impacts analysis.
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Flows polynomial in 1/z: b = b0 + b−1
z

For simplicity we will only analyze the case of vanishing mass density at the endpoints. Recall the
system of differential equations for the case b = b0 + b−1

z (equation (2.11)):

ρt =Lρb0,
1

2
b0,xxx +Lρb−1 = 0,

1

2
b−1,xxx = 0.

The last equation gives b−1(x) = 1
2α1x2+α2x+α3. The boundary conditions on b−1 given by equations

(3.3) imply: [ 1
2 −h h2

1
2 +H + 1

2 H 2 H +H 2 H 2

]α1

α2

α3

=
[

0
0

]
. (3.5)

These equations, by virtue of representing two planes going through the origin, will always have a
solution.

Now, as to b0 we observe that one can write b0 in terms of ρ and b−1 by integrating

b0,xx =−2
∫
ρx b−1d x −4

∫
ρb−1,x d x +C1 =−2ρb−1 −2

∫
ρb−1,x d x +C1,

b0,x =−2
∫ (

ρb−1 +
∫
ρb−1,x d x

)
d x +C1x +C2 := f (x)+C1x +C2,

b0 =
∫

f (x)d x + 1

2
C1x2 +C2x +C3.

(3.6)

Observe that we can always choose f (x) above in such a way that b0(0) =C3, b0,x (0) =C2, b0,xx (0) =C1

and then set b0(x) = ∫ x
0 f (ξ)dξ+ 1

2C1x2 +C2x +C3 Then the boundary conditions on b0 given by
equations (3.3) imply: [ 1

2 −h h2

1
2 +H + 1

2 H 2 H +H 2 H 2

]C1

C2

C3

=
[

0
C

]
, (3.7)

where C = ∫ 1
0 ρ(x)b−1,x (x)d x −H f (1)−H 2

∫ 1
0 f (x)d x. This system of equations describes two planes,

one of which goes through the origin. These planes will always intersect unless they are parallel, in
which case the normal vectors are proportional. For this to happen[ 1

2 −h h2
]= k

[ 1
2 +H + 1

2 H 2 H +H 2 H 2
]

,

for some constant k. Since 0 ≤ h, H we see that the only case when this occurs is the case h = H = 0.
However, if h = H = 0 then equation (3.5) implies that b−1 is a linear function in x. Moreover, in this
case, for equation (3.7) to have a solution, C must vanish. Thus

∫ 1
0 ρ(x)b−1,x d x = 0 and it suffices to

choose b−1 to be a constant to satisfy (3.7). The remaining cases involving either h =∞ or H =∞
or h = H = ∞ can be analyzed in the same way. In summary, for all 0 ≤ h, H ≤ ∞ one can satisfy
conditions (3.3). Finally, in the case of Neumann-Neumann conditions (h = H = 0) one recovers the
Hunter-Saxton equation [6, 16]. We will continue this analysis in later sections, in particular we will
give a uniform construction of b valid for all boundary conditions (see theorem 5.19).
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4 Isospectrality for general boundary conditions

In this section we check directly that the b flows, subject to (3.3), are isospectral for the boundary value
problem (1.2). To simplify analysis, and also guided by the inverse scattering technique, we will make
the following assumption.

Assumption

From this point onwards we will be assuming that there is no mass in some open neighborhoods I0, I1

of the left endpoint, right endpoint, respectively.

Our starting point is again (2.5). We assume in this section that conditions (3.2) hold to ensure that
the ZS deformations leave the boundary conditions invariant by Lemma 3.1. The assumption on the
absence of masses around the endpoints is in force.

On I0

v(x) =
{

hx +1 if 0 ≤ h <∞,

x + 1
h if 0 < h ≤∞,

(4.1)

satisfies equation (1.2). Moreover, since there is no mass on I0, bxxx = 0 by equation (2.5). Hence b is
quadratic in x on I0. Evaluating the deformation vt = (β− 1

2 bx )v +bvx for v satisfying equations (4.1)
and (3.2) yields:

β=
{

1
2 bx (0)−hb(0) if 0 ≤ h <∞,

− 1
2 bx (0)+ 1

2h bxx (0) if 0 < h ≤∞.
(4.2)

Now we turn to analyzing the behaviour on I1, finding from (1.2) that

v(x) = A1(t , z)(x −1)+B1(t , z), (4.3)

implying that the spectrum, determined by the roots of vx (1)+H v(1) = 0 will be defined by the roots
of A1(t , z)+ HB1(t , z) = 0 or 1

H A1(t , z)+B1(t , z) = 0 according to whether 0 ≤ H < ∞ or 0 < H ≤ ∞
respectively. As on I0 we similarly find that on I1

b = 1

2
bxx (1)(x −1)2 +bx (1)(x −1)+b(1);

suppressing the dependence of coefficients on t and z to avoid a cluttered notation. Collecting like
powers of (x −1) in the deformation vt = (β− 1

2 bx )v +bvx as well as using equation (3.3) gives

Ȧ1 = (β+ 1

2
bx (1))A1 − 1

2
bxx (1)B1 = (β+ 1

2
bx (1))A1 +H(bx (1)+Hb(1))B1, (4.4)

Ḃ1 = (β− 1

2
bx (1))B1 +b(1)A1 = (β− 1

2
bx (1))B1 − 1

H 2 (Hbx (1)+ 1

2
bxx (1))A1. (4.5)

Hence when 0 ≤ H <∞
Ȧ1 +HḂ1 =

(
β+ 1

2
bx (1)+Hb(1)

)(
A1 +HB1

)
,

or when 0 < H ≤∞
1

H
Ȧ1 + Ḃ1 =

(
β− 1

2
bx (1)− 1

2H
bxx (1)

)( 1

H
A1 +B1

)
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holds. Thus under the deformation, vx (1)+H v(1) = 0 will persist, hence the ZS deformation is indeed
isospectral. However, the extent to which the evolution of the spectral data encoded in (4.4), (4.5) is
simpler than the original evolution equation on ρ is far from certain, for example the coefficient β will
in general depend (nonlocally) on ρ and, in principle, could even depend on the deformation time
t . The remainder of the paper is devoted to the goal of linearizing the evolution on the spectral side.
Towards this end we will rephrase equations (4.4) and (4.5) by differently grouping terms on the right
hand side of respective equations.

Proposition 4.1. Let v satisfy the string boundary value problem (1.2) for the mass density ρ with mass
gaps around the endpoints, 0 ≤ h, H ≤∞ and let the ZS deformation satisfy the deformation equation
(2.5) with b subject to (3.3). Let us define a function K by

Kβ=
{

1
2 bx (1)+Hb(1) if 0 ≤ H <∞,

− 1
2 bx (1)− 1

2H bxx (1) if 0 < H ≤∞,
(4.6)

where β is given by (4.2). Then the deformation yields the following evolution equations of the spectral
data A1,B1:

1. For 0 < H <∞:

Ȧ1 +HḂ1 = (K +1)β[A1 +HB1], (4.7a)

Ȧ1 −HḂ1 = (1−K )β[A1 −HB1]+bx (1)[A1 +HB1], (4.7b)

2. For H = 0:

Ȧ1 = (1+K )βA1, (4.8a)

Ḃ1 = (1−K )βB1 +b(1)A1, (4.8b)

3. For H =∞:

Ȧ1 = (1−K )βA1 − 1

2
bxx (1)B1, (4.9a)

Ḃ1 = (1+K )βB1. (4.9b)

Remark 4.2. The objective of the next section is to show that one can choose the field b, without
violating (3.3), in such a way that K = −1 and β is invariant under t , thereby making it computable
from ρ(t = 0).

5 Isospectrality and linearization for rational flows and general bound-
ary conditions

As we observed in section 3 polynomial ZS flows are not suitable deformations of a string boundary
value problem for mass densities regular at the endpoints, and also for those for which the mass density
has zeros (see (3.4)). On the other hand, the flow of the CH type, namely b = b0 + b−1

z , works fine in

11



either case. So the most natural first step towards a generalization is simply to try b = b0 +∑
j=1

b− j

z j . As
stated earlier, (see (2.7)) one then obtains

ρt =Lρb0,
1

2
b0,xxx +Lρb−1 = 0,

1

2
b−n,xxx +Lρb−(n+1) = 0, 1 ≤ n.

The truncation at n = 2, which amounts to setting b−n = 0 starting with n = 2, produces the CH type
system, with two interacting components b0 and b−1. There is however another scenario in which
one solves the constraints 1

2 b−n,xxx +Lρb−(n+1) = 0, 1 ≤ n, not by truncation but by a sort of “quasi-
periodicity", positing b−(n+1) = wb−n , 2 ≤ n, for some proportionality constant w (taken to be −ε in
the remainder of this paper). Then out of the infinite set of equations one needs only two, namely,

1

2
b0,xxx +Lρb−1 = 0,

1

2
b−1,xxx +wLρb−1 = 0,

and the theory remains described by two fields only. This is one of the motivations for studying the
rational model.

We will argue now that the rational flows are free of the deficiencies present for polynomials flows
described above; in particular the vanishing of ρ is no longer an issue. To this end we will analyze the
simplest rational flow with one pole. Thus b = b0+ b−1

z+ε , ε> 0 (equation (2.8)), For convenience we recall
the differential equations (2.12) in the special case of one pole, writing them in a form convenient for
further analysis:

ρt =Lρb0, (5.1a)

b0,xxx +
b−1,xxx

ε
= 0,

1

2
b−1,xxx −εLρb−1 = 0. (5.1b)

We begin our analysis by formulating three auxiliary lemma, the first of which can be found for
example in [1], and is discussed in [3], [25].

Lemma 5.1. Let λ ∈C, ρ ∈C 1([0,1]) and suppose φ and ψ are solutions of fxx −λρ f = 0. Then φ2, φψ,
and ψ2 are solutions of 1

2 gxxx −λLρg = 0. If, in addition, φ and ψ are linearly independent, then φ2,
φψ, and ψ2 span the solution space of 1

2 gxxx −λLρg = 0.

Proof. By direct computation we have

(φψ)xxx −λ(2ρxφψ+4ρ(φψ)x )

=φxxxψ+3φxxψx +3φxψxx +φψxxx −λ(4ρφxψ+4ρφψx +2ρxφψ)

= (φxx −λρφ)xψ+ (ψxx −λρψ)xφ+3(φxx −λρφ)ψx +3(ψxx −λρψ)φx = 0,

and also
W (φ2,φψ,ψ2) = 2W (φ,ψ)3,

where W denotes the Wronskian. The first computation shows that these indeed form solutions of the
third order problem, while the second computation shows they span its solution space provided φ,ψ
are linearly independent.

12



Lemma 5.2. Let λ ∈C, ρ ∈C 1([0,1]) and suppose ρ(0) = ρ(1) = 0. Moreover, let ω=φψ where φ and ψ
satisfy

φxx =λρφ, φx (0)−hφ(0) = 0,

ψxx =λρψ, ψx (1)+Hψ(1) = 0.

Then ω satisfies
1

2
ωxxx −λLρω= 0, (5.2)

with the boundary conditions (3.3):

1

2
ωxx (0)−hωx (0)+h2ω(0) = 0,

1

2
ωxx (1)+Hωx (1)+H 2ω(1) = 0.

Proof. That such a ω satisfies the third order differential equation is guaranteed by Lemma 5.1. To
check the boundary conditions we calculate them explicitly. In particular, ωxx = 2φxψx at x = 0,1
because ρ = 0 at x = 0,1. Then at x = 0 (3.3) becomes

(φxψx −hφxψ−hφψx +h2φψ)|x=0 = (ψx −hψ)(φx −hφ)|x=0 = 0,

and similarly at x = 1

(φxψx +Hφxψ+Hφψx +H 2φψ)|x=1 = (φx +Hφ)(ψx +Hφ)|x=1 = 0.

Our attention will now turn to the determination of β (see (4.2)) and, subsequently, K from Proposi-
tion 4.1.

First we recall the definition of the bilinear concomitant ( [17], p.125) associated with the third
order differential equation y ′′′ = 0.

Definition 5.3. Let f , g ∈C 3 then the bilinear concomitant is

B( f , g )(x) = fxx g − fx gx + f gxx .

The second pertinent fact is the skew-symmetry of the operator Lρ relative to the natural inner

product ( f , g ) = ∫ 1
0 f g d x. Indeed, whenever ρ(0) = ρ(1) = 0 as one easily checks using integration by

parts:
( f ,Lρg ) =−(Lρ f , g )

holds.

To proceed further we establish two important lemmas.
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Lemma 5.4. Let λ ∈C, ρ ∈C 1([0,1]) and suppose ρ(0) = ρ(1) = 0. If ω satisfies 1
2ωxxx −λLρω= 0 with

boundary conditions (3.3) then(1

2
ωx (0)−hω(0)

)2
=

(1

2
ωx (0)− 1

2h
ωxx (0)

)2

=
(1

2
ωx (1)+Hω(1)

)2
=

(1

2
ωx (1)+ 1

2H
ωxx (1)

)2
,

(5.3)

where the first and the third equalities are displayed in order to deal with the cases of h =∞, H =∞
respectively.

Proof. Since ω satisfies 1
2ωxxx = λLρω we easily obtain, using the skew-symmetry of Lρ , that 0 =

(ω,ωxxx ) = 1
2 B(ω,ω)|10 which is equivalent to

1

2
ω2

x (1)−ω(1)ωxx (1) = 1

2
ω2

x (0)−ω(0)ωxx (0). (5.4)

Next we solve (3.3) for ω( j ) or ωxx ( j ), with j = 0,1, depending on whether we want to consider finite or
infinite h or H , subsequently obtaining

ω(0) = 1

h
ωx (0)− 1

2h2ωxx (0), ωxx (0) = 2hωx (0)−2h2ω(0),

and likewise at x = 1 with h replaced by −H . The result follows upon substituting these expressions
back into (5.4) and simplifying.

Lemma 5.5. Let ω be given as in Lemma 5.2 and suppose λ> 0. Then

(1) 1
2ωx (0)−hω(0) 6= 0, for 0 ≤ h <∞ or 1

2ωx (0)− 1
2hωxx (0) 6= 0, for 0 < h ≤∞;

(2) 1
2ωx (1)+Hω(1) 6= 0, for 0 ≤ H <∞ or 1

2ωx (1)+ 1
2H ωxx (1) 6= 0, for 0 < H ≤∞.

If λ= 0 inequalities (1) and (2) hold with the exception of Neumann-Neumann boundary conditions
H = h = 0 in which case ωx (0) =ωx (1) = 0.

Proof. First, let us consider the second statement of item (1). Since by Lemma 5.2 ω=φψ we can write

1

2
ωx (0)− 1

2h
ωxx (0) =

(
1

2
φxψ+ 1

2
φψx − 1

h
φxψx

)
|x=0

=
(
φx

2

(
ψ− 1

h
ψx

)
+ ψx

2

(
φ− 1

h
φx

))
|x=0 =

(
φx

2

(
ψ− 1

h
ψx

))
|x=0.

(5.5)

Thus it remains to show that both φx (0) 6= 0 and ψ(0)− 1
hψx (0) 6= 0. Indeed, φx (0) 6= 0 since φ(0)−

1
hφx (0) = 0, and h > 0 means that if φx (0) = 0 then also φ(0) = 0 which would yield only trivial solutions.

Now to showψ(0)− 1
hψx (0) 6= 0 we multiply the corresponding second order problem byψ and integrate

from 0 to 1 ∫ 1

0
ψψxx d x =λ

∫ 1

0
ρψ2d x ⇐⇒ψψx |10 −

∫ 1

0
ψ2

x d x =λ
∫ 1

0
ρψ2d x.
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Solving for λ and substituting in the boundary condition on the right gives

λ=−Hψ(1)2 +ψ(0)ψx (0)+∫ 1
0 ψ

2
x d x∫ 1

0 ρψ
2d x

,

from which we see that if ψ(0)− 1
hψx (0) = 0 then

λ=−Hψ(1)2 + 1
hψx (0)2 +∫ 1

0 ψ
2
x d x∫ 1

0 ρψ
2d x

≤ 0,

contradicting our our assumption 0 <λ.

For the first statement of item (1), we begin by computing

1

2
ωx (0)−hω(0) = φ(0)

2

(
ψx (0)−hψ(0)

)
, (5.6)

and then proceed in a similar way to the argument in support of the second statement of item (1).

For item (2) we find that

1

2
ωx (1)+ 1

2H
ωxx (1) = ψx (1)

2

(
φ(1)+ 1

H
φx (1)

)
,

1

2
ωx (1)+Hω(1) = ψ(1)

2

(
φx (1)+Hφ(1)

)
,

(5.7)

from which the same conclusions as in the last two cases can be made by similar arguments. Finally
the case λ= 0 can be checked by direct computation using φ(x) = hx +1,ψ(x) = H(1−x)+1.

Lemma 5.6. Let ω=ω(x;λ) be given as in Lemma 5.2. Then

1. ω is entire in λ of order 1
2 ;

2. the following equalities hold (whenever they make sense)(1

2
ωx (0)− 1

2h
ωxx (0)

)
=−

(1

2
ωx (0)−hω(0)

)
=−

(1

2
ωx (1)+ 1

2H
ωxx (1)

)
=

(1

2
ωx (1)+Hω(1)

)
.

(5.8)

Proof. (1) By Lemma 5.2 it suffices to show that the solution to φxx −λρφ= 0 with φx (0)−hφ(0) = 0
or φx (1)+Hφ(1) = 0 is analytic in λ. This part is well known but we will need some intermediate
formulas so, for completeness, we proceed with the proof, referring to the monograph [20] for
details. We begin by writing φ as a power series in λ:

φ(x;λ) = c0(x)+
∞∑

n=1
λncn(x),

which when substituted into the second order differential equation yields the system

c0,xx = 0, cn,xx − cn−1ρ = 0 (n ≥ 1).
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Since the argument proceeds in the same way regardless of whether we use the left or right initial
condition we concentrate now on the left initial condition.

We immediately see that c0 will be linear in x with two unknowns which can be chosen to satisfy
the initial condition on the left. Then we choose cn so that cn(0) = cn,x (0) = 0, holds for n ≥ 1,
ensuring that φ satisfies the left initial condition. Once this is accomplished we must show that
the power series converges.

To determine cn (n ≥ 1) we simply integrate the cn relation from 0 to x. Then by recursion we
find that

cn(x) =
∫

0≤ξ1≤ξ2≤···≤ξn+1=x

[
n∏

j=1
(ξ j+1 −ξ j )ρ(ξ j )

]
c0(ξ1)dξ1dξ2 . . .dξn (5.9)

To show that the power series converges it suffices to observe that

|cn(x)| ≤C xn
∫

0≤ξ1≤ξ2≤···≤ξn+1=x

[
n∏

j=1
ρ(ξ j )

]
dξ1dξ2 . . .dξn

≤C
xn

n!

(∫
[0,x]

ρ(ξ)dξ

)n
def= C

xn

n!
(M(x))n ,

(5.10)

where |c0(x)| <C and M(x) is the total mass on the interval [0, x]. Hence, the power series φ(x;λ)
converges uniformly on compact sets in λ ∈C. One can improve on (5.10) by estimating more
accurately the term (x −ξn)

∏n−1
j=1 (ξ j+1 −ξ j ) in the region {0 ≤ ξ1 ≤ ξ2 ≤ . . .ξn ≤ x}. For example,

one can check by induction that

(x −ξn)
n−1∏
j=1

(ξ j+1 −ξ j ) ≤
( x

n

)n

and, upon replacing xn in (5.10) with this more accurate estimate, we obtain

|cn |(x) ≤C
(xM(x))n

n!nn .

Moreover, since 2nnnn! > (2n)!, one easily obtains

|φ(x;λ)| ≤C cosh
(√

2xM(x)|λ|
)

,

implying that φ(x;λ) is an entire function of order not exceeding 1
2 . That the order is exactly 1

2
requires more subtle analysis, for example of the growth of zeros of φ, which can be found in
M.G. Krein’s work [19] and citations therein.

Since the computation for ψ(x;λ) is similar we record only the main steps:

ψ(x;λ) = ĉ0(x)+ ∑
n=1

λn ĉn(x)

ĉ0,xx = 0, ĉn,xx = ρĉn−1, ĉ0,x (1)+Hĉ0(1) = 0, ĉn,x (1) = ĉn(1) = 0

ĉn =
∫

0≤ξn+1=x≤ξn≤···≤ξ1≤1

[
n∏

j=1
(ξ j −ξ j+1)ρ(ξ j )

]
ĉ0(ξ1)dξ1dξ2 . . .dξn .

(5.11)
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Finally the growth estimate reads:

|ĉn |(x) ≤ Ĉ
((1−x)M̂(x))n

n!nn ,

where Ĉ , M̂(x) denote the bound on ĉ0, the mass of [x,1] respectively. Thus ψ is also entire of
order not exceeding 1

2 , hence so is the product of φ and ψ.

(2) Except for the special case h = H = 0 (i.e. Neumann-Neumann boundary conditions) (see
Lemma 5.5) we proceed by showing first that the equalities hold when λ= 0 and extend them by
continuity to a neighbourhood of λ= 0. Then the result for λ> 0 follows by using Lemmas 5.4,
5.5 and analyticity of b as a function of λ proved in item (1).

Indeed, for λ = 0 and we can take c0 = hx + 1, ĉ0 = H(1− x)+ 1,ω = c0ĉ0, and use equations
(5.6), (5.7) to verify the equalities. For boundary conditions other than Neumann-Neumann
all quantities in brackets involving b are nonzero so we can form ratios. By Lemma 5.4 all
these ratios squared are 1 for any λ. Since these ratios are −1 for λ = 0 they have to stay −1
in a neighbourhood of λ= 0 by continuity. Thus equations (5.8) hold in the whole domain of
analyticity (C) by the Identity Theorem.

For the special case h = H = 0 it suffices to check that the equalities hold in a neighbourhood of
λ= 0 by examining ω up to the first order in λ. Since in this case c0 = ĉ0 = 1 we obtain

ω= 1+ (c1 + ĉ1)λ+O (λ2) = 1+
(∫ x

0
(x −ξ)ρ(ξ)dξ+

∫ 1

x
(ξ−x)ρ(ξ)dξ

)
λ+O (λ2),

ωx =
(∫ x

0
ρ(ξ)dξ−

∫ 1

x
ρ(ξ)dξ

)
λ+O (λ2),

which, when evaluated, give ωx (0) =−(
∫ 1

0 ρ(ξ)dξ)λ+O (λ2),ωx (1) = (
∫ 1

0 ρ(ξ)dξ)λ+O (λ2), hence
proving (5.8) for h = 0 = H .

Recall that the eigenvalues of the original boundary value problem (1.2) are roots of vx (1; z)+
H v(1; z)

def= D(z) which we can write either in terms of φ or ψ, after adjusting the overall multiplier,
for example by agreeing that v(x; z) = hx +1 = c0 on the massless portion to the right of 0. Taking into
account Lemma 5.1 we easily obtain:

D(−λ) =φx (1;λ)+Hφ(1;λ) =−(
ψx (0;λ)−hψ(0;λ)

)
.

One useful way of computing D is by using the expansion in terms of iterates cn (see equation (5.9).

Lemma 5.7. Let ρ ∈C 1([0,1]) and let W ( f , g ) = f g ′− f ′g denote the Wronskian of two functions f , g .
Suppose that h +H > 0 and let the eigenvalues of the string problem (1.2) be denoted by 0 < z1 < z2 < . . . ,
then D admits the additive representation

D(−λ) =W (ĉ0,c0)+ ∑
n=1

λn
∫

0≤ξ1≤ξ2···ξn≤1
ĉ0(ξn)ρ(ξn)

(
n−1∏
j=1

(ξ j+1 −ξ j )ρ(ξ j )

)
c0(ξ1)dξ1dξ2 . . .dξn , (5.12)
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and the product representation

D(−λ) =W (ĉ0,c0)
∞∏

j=1

(
1+ λ

z j

)
. (5.13)

Proof. The additive formula follows from the definitions (5.9), (5.11) of cn , ĉn , respectively. The multi-
plicative formula is well known and it follows immediately from two facts: φ is an entire function of
order 1

2 and zn
n2 =O (1), n →∞, and it therefore admits Hadamard’s product formula.

Now we are ready to give a complete construction of b−1 and b0 appearing in equation (5.1).
The notation in the Theorem below highlights the dependence on the parameter ε; for more details
regarding this notation we refer to the proof of Lemma 5.6.

Theorem 5.8. Let ρ ∈C 1([0,1]), β,K be defined as in Proposition 4.1, using equations (4.2), (4.6) respec-
tively, and let ω be given as in Lemma 5.2. Let

b−1(x;ε) =ω(x;ε),

b0(x;ε) =
[
ω(x;0)−ω(x;ε)

]
ε

,

then b−1 and b0 so defined satisfy (5.1b).

Moreover, for this choice of b−1,b0,

1. β(z;ε) = 1
2 [ (D(−ε)−D(0))

ε − D(−ε)
z+ε ],

2. K =−1,

3. β(z;ε) is deformation invariant (β̇= 0).

Proof. The formula for b−1 follows from Lemma 5.2 for λ= ε to conform with equations (5.1). Likewise,
the formula for b0 is a solution of the second equation in (5.1). The additional term involving c0ĉ0 is
added to ensure the existence of the limit ε→ 0. To prove the formula for β one needs to consider all
individual cases.

1. 0 ≤ h <∞: we use the formula (5.6) which we recall for the sake of clarity, explicitly displaying
the ε dependence 1

2 b−1,x (0;ε)−hb−1(0;ε) = 1
2φ(0;ε)

(
ψx (0;ε)−hψ(0;ε)

) = − 1
2 D(−ε) where we

used that φ(0;ε) = 1 by construction. For b0, using linearity, we obtain 1
2 b0,x (0;ε)−hb0(0;ε) =

1
2ε (D(−ε)−D(0))

2. 0 < h ≤∞: to compute β in this case we use the second formula in equation 4.2 as well as (5.5)
to obtain − 1

2 b−1,x (0;ε)+ 1
2h b−1,xx (0;ε) = − 1

2 D(−ε), recalling that for this range of h,c0 = x + 1
h ;

similar argument to the one used in the first item works for b0.

The computation of β follows now from the definition (4.2). The statement that β is constant under the
deformation, in other words β is a constant of "motion", is an automatic consequence of isospectrality
which implies that Ḋ(λ) = 0; in principle there could be an overall time-dependent factor but by
construction the coefficient of λ0 in D(λ) is (c0,x +Hc0)(1) which is constant in t . Finally, K =−1 (see
(4.6) ) follows from (5.8).
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We conclude this section with an appropriate modification of Theorem 5.8 for the rational flows
(2.8). The proof is a straightforward generalization of the previous proof, taking into account that the
fields b0 and bk in equation (2.9b) can be rescaled.

Theorem 5.9. Let ρ ∈C 1([0,1]), β,K be defined as in Proposition 4.1 using equations (4.2), (4.6) respec-
tively, and let ω be given as in Lemma 5.2. Given M distinct positive numbers εk ,1 ≤ k ≤ M , and M +1
functions of ε= (ε1, . . . ,εM ), denoted µ0,µ1, . . . ,µM , let

b(k)
−1 (x) =µkω(x;εk ), 1 ≤ k ≤ M

b0(x) =
M∑

k=1

[
µ0ω(x;0)−µkω(x;εk )

]
εk

.

Then b(k)
−1 and b0 so defined satisfy

b0,xxx +
M∑

k=1

b(k)
−1,xxx

εk
= 0,

1

2
b(k)
−1,xxx −εkLρb(k)

−1 = 0, k = 1. . . M ,

(see (2.9b)). Moreover, for this choice of b(k)
−1 ,b0, setting b = b0 +∑M

k=1
b(k)
−1

z+εk
, one obtains

1.

β(z;ε) = 1

2

M∑
k=1

[ (
µk D(−εk )−µ0D(0)

)
εk

−µk
D(−εk )

z +εk

]
, (5.14)

2. K =−1,

3. β(z;ε) is deformation invariant.

5.1 Discrete mass density

In this short section we will discuss necessary modifications of the formalism for the non-smooth case
of

ρ =
N∑

j=1
m jδx j , 0 < x1 < ·· · < xN < 1, (5.15)

with weights (point masses) m j > 0. We will leave the details of a general non-smooth case to future
work; our goal is to argue that the formalism is valid for the case of discrete positive measures with
only minor modifications. We start with the discussion of the boundary value problem (1.2). The only
modification needed to deal with discrete measures is to take derivatives as distributional derivatives.
Thus the boundary value problem simply reads:

−D2
x v = zρ(x)v, 0 < x < 1, vx (0)−hv(0) = 0, vx (1)+H v(1) = 0, (5.16)

implying that in the case of the discrete ρ, v will be continuous and piecewise differentiable, with jumps
on the support of ρ. For such functions the distributional derivatives can be conveniently computed
from

Dx f = fx +
N∑

j=1
[ f ](x j )δx j , (5.17)

19



and its higher order extensions; in the formula (5.17) fx denotes the classical derivative, [ f ](x j ) means
the jump of f at x j . Thus, away from the support of ρ, the equation reads: −vxx = 0, while on the
support of ρ we obtain:

−[vx ](x j ) = zm j v(x j ).

We will also need to extend the action of Lρ to continuous, piecewise differentiable functions f :

Lρ f
def= Dx ( f ρ)+〈 fx〉ρ = Dx ( f ρ)+

N∑
j=1

〈 fx〉(x j )m jδx j (5.18)

where 〈 f 〉 is an everywhere defined average function of pointwise right-hand and left-hand limits.

We will now examine appropriate modifications of Lemmas 5.2, 5.1 which are critical for the whole
formalism.

Lemma 5.10. Let λ ∈ C,ρ be a discrete measure given by (5.15) and suppose φ and ψ are solutions
of the distributional equation D2

x f −λρ f = 0. Then φψ is a solution of the distributional equation
1
2 D3

x g −λLρg = 0.

Proof. We observe that both φ and ψ are continuous and piecewise differentiable; in fact piecewise
linear. Away from the support of ρ the claim holds by the original Lemma 5.1. On the support, that is at
the points x j , one needs to compute the contributions of distributional derivatives. One can localize
the problem by choosing test functions to be supported only in the neighbourhood of individual points
of the support. Hence, we can perform computations as if ρ were ρ = m1δx1 , thereby dropping the sum
from the computation, only to reinstate it in the final answer. We compute now D3

x (φψ):

D3
x (φψ) = D2

x ((φψ)x ) = Dx
(
(φψ)xx + [(φψ)x ](x1)δx1

)=
(φψ)xxx + [(φψ)x ](x1)δ′x1

+ [(φψ)xx ](x1)δx1 = [(φψ)x ](x1)δ′x1
+ [(φψ)xx ](x1)δx1 ,

where we used that φ,ψ are piecewise linear (in x) continuous functions. We recall that [φx ](x1) =
λm1φ(x1), [ψx ](x1) =λm1ψ(x1), which implies

[(φψ)x ](x1)δ′x1
= 2λφ(x1)ψ(x1)m1δ

′
x1

= 2λDx ((φψ)ρ).

Likewise, for the second singular term we obtain:

[(φψ)xx ](x1)δx1 = 2[φxψx ](x1)δx1 = 2
(
[φx ](x1)〈ψx〉(x1)+ [ψx ](x1)〈φx〉(x1)

)
δx1 =

2
(
λm1φ(x1)〈ψx〉(x1)+λm1ψ(x1)〈φx〉(x1)

)
δx1 = 2λ〈(φψ)x〉ρ,

which, in conjuncture with the first calculation and in view of equation (5.18), implies

1

2
D3

x (φψ) =λLρ(φψ),

which completes the proof.
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Lemma 5.11. Let λ ∈C and ρ be the discrete measure defined by (5.15). Moreover, let ω=φψ where φ
and ψ satisfy

D2
xφ=λρφ, φx (0)−hφ(0) = 0,

D2
xψ=λρψ, ψx (1)+Hψ(1) = 0.

Then ω satisfies
1

2
D3

xω−λLρω= 0, (5.19)

with the boundary conditions (3.3):

1

2
ωxx (0)−hωx (0)+h2ω(0) = 0,

1

2
ωxx (1)+Hωx (1)+H 2ω(1) = 0.

Proof. The only thing to check are the boundary conditions. However, the support of ρ is away from
the end points so the computation takes place in the smooth sector and, as a consequence, the
computation done previously applies.

Finally, we present appropriate analogs of Lemma 5.7 and Theorem 5.8. We recall that the function
defining the spectrum of the boundary value problem (1.2) is given, in our notation, by D(−λ) =
φx (1;λ)+Hφ(1;λ),0 ≤ H , where the eigenvalue z in the original problem is taken to be −λ. We also
recall (see (5.9), (5.11) ) that c0(x) =φ(x;0), ĉ0(x) =ψ(x;0).

Lemma 5.12. Let ρ be the discrete measure defined by (5.15) and let W ( f , g ) denote the Wronskian of
two functions f , g . Suppose that h +H > 0 and let the eigenvalues of the string problem (1.2) be denoted
by 0 < z1 < z2 < ·· · < zN , then D admits the additive representation

D(−λ) =W (ĉ0,c0)+
N∑

n=1
λn

∑
1≤i1<i2<...in≤N

mi1 mi2 . . .min (xin−xin−1 )(xin−1−xin−2 ) . . . (xi2−xi1 )c0(xi1 )ĉ0(xin ),

(5.20)
and the product representation

D(−λ) =W (ĉ0,c0)
N∏

j=1

(
1+ λ

z j

)
. (5.21)

Proof. The additive formula follows from the definitions (5.9), (5.11) of cn , ĉn , respectively. The multi-
plicative formula is well known and it follows immediately from Hadmard’s product formula and the
fact that the spectrum is finite because m is a finite discrete measure.

Theorem 5.13. Let ρ be the discrete measure given by (5.15), β,K be defined as in Proposition 4.1, using
equations (4.2), (4.6) respectively, and let ω be given as in Lemma 5.11. Then

1. φ,ψ defined in Lemma 5.11 are polynomials of degree N ;

2. D(−λ) =φx (1;λ)+Hφ(1;λ) =−(
ψx (0;λ)−hψ(0;λ)

)
;
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3. b−1,b0 defined by
b−1(x;ε) =ω(x;ε),

b0(x;ε) =
[
ω(x;0)−ω(x;ε)

]
ε

,

,

(5.22)

satisfy equation (5.1b) with Lρ defined by (5.18).

4.

β(z;ε) = 1

2

[D(−ε)−D(0)

ε
− D(−ε)

z +ε
]
,

5. K =−1, and β(z;ε) is deformation invariant (β̇= 0).

6. Moreover, if h + H > 0 and 0 < z1 < z2 < ·· · < zN denotes the spectrum of the boundary value
problem (1.2) then

D(−ε) =W (ĉ0,c0)
N∏

j=1

(
1+ ε

z j

)
. (5.23)

Proof. The assertions of the theorem follow from the fact that cn and ĉn defined by equations (5.9) and
(5.11) are valid if ρ is any positive measure, in particular if ρ is finite and discrete. The series (inλ) which
define φ and ψ (see the proof of Lemma 5.6) terminate at n = N as can be easily verified. For example:
the term

∏n
j=1(ξ j+1 − ξ j )ρ(ξ j ) will vanish identically on the domain 0 ≤ ξ1 ≤ ξ2 ≤ ·· · ≤ ξn+1 = x if

n > N . In particular D(z) =φx (1;−z)+Hφ(1;−z) is a polynomial of degree N and D(z) =−(ψx (0;−z)−
hψ(0;−z)) by either directly inspecting iterates cn and ĉn or by observing that φx (1;λ)+Hφ(1;λ) and
ψx (0;λ)−hψ(0;λ) can only differ by a constant multiplier, independent of λ, which can easily be
verified to be −1 for λ= 0. The statements about β and K then follow from equations (5.5), (5.6), (5.7).
Finally, the invariance of the spectrum implies that β is constant in t .

We recall the deformation equation (2.13)

zD tρ = 1

2
D3

x b + zLρb.

Evaluating this equation on the support of ρ with the help of the previous theorem and the definition
of Lρ given by (5.18) we obtain the following explicit form of the evolution equation, which we state
for simplicity in the simplest case of a single pole rational flow.

Corollary 5.14. Let the ZS deformation be given by b = b0 + b−1
z+ε , ρ =∑N

j=1 m jδx j , 0 < x1 < ·· · < xN < 1,

and let b0 and b(k)
−1 be given by equations (5.22). Then the positions x j and masses m j evolve according

to:

ẋ j =−b0(x j ), ṁ j = m j 〈b0,x〉(x j ), 1 ≤ j ≤ N .

The sums

I1 =
N∑

i=1
mi c0(xi )ĉ0(xi ),
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and

In = ∑
1≤i1<i2<...in≤N

mi1 mi2 . . .min (xin −xin−1 )(xin−1 −xin−2 ) . . . (xi2 −xi1 )c0(xi1 )ĉ0(xin ), 2 ≤ n ≤ N

are invariants of the ZS deformation (constants of motion).

It is worth mentioning that the deformation parameter t has no direct physical meaning, and as
such it can be chosen arbitrarily. Since the constraints on the fields b−1,b0 are homogenous, one can
rescale both fields by a common, x-independent factor. The rescaling by the Wronskian W (c0, ĉ0) is
particularly natural as it allows one to formulate equations in terms of Green’s functions.

Corollary 5.15. Let the ZS deformation be given by b = b0 + b−1
z+ε with ρ =∑N

j=1 m jδx j , where 0 < x1 <
·· · < xN < 1, and let h +H > 0 in the boundary value problem (1.2). Let G(x, y ;λ) be Green’s function of
D2

x −λρ to boundary conditions Gx (0, y)−hG(0, y) = 0, Gx (1, y)+HG(1, y) = 0 and define new b0 and
b−1 by:

b−1(x;ε)
def= G(x, x;ε), b0(x;ε)

def= 1

ε
(G(x, x;0)−G(x, x;ε)) .

Then the positions x j and masses m j evolve with respect to the rescaled time t̃ =W (c0, ĉ0)t according to:

ẋ j =−b0(x j ), ṁ j = m j 〈b0,x〉(x j ), 1 ≤ j ≤ N ,

and the sums

I1 =
N∑

i=1
mi G(xi , xi ;0),

and

In = ∑
1≤i1<i2<...in≤N

mi1 mi2 . . .min (xin −xin−1 )(xin−1 −xin−2 ) . . . (xi2 −xi1 )G(xi1 , xin ;0), 2 ≤ n ≤ N

are invariants of the ZS deformation (constants of motion).

5.2 Linearization of the spectral data

Using the expression for β from Theorems 5.8, 5.13 along with Proposition 4.1, in particular equation
(4.6), we find that the following statements can be made for general boundary conditions. For brevity we
will use the abbreviations D,N ,M for Dirichlet, Neumann, or mixed boundary conditions respectively
as well we will suppress, till further notice, the dependence on x, z and ε.

Theorem 5.16. Let the ZS deformation be given by b = b0+ b−1
ε+z , ε> 0 with the mass density ρ ∈C 1([0,1])

which vanishes in a neighbourhood of each endpoint, or ρ =∑N
j=1 m jδx j , 0 < x1 < ·· · < xN < 1. Then

the string boundary value problem (1.2) is isospectral with the mass density ρ evolving according to

ρt =Lρb0,

εb0,xxx +b−1,xxx = 0,

1

2
b−1,xxx −εLρb−1,x = 0,
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with b0,b1,β constructed in Theorems 5.8, 5.13 and Lρ defined by equations (2.6), (5.18). In addition,
the evolution of the spectral data A1,B1 (equation (4.3)) for general boundary conditions linearizes as
follows:

1. D−D: the spectrum is given by B1 = 0, the evolution by

Ȧ1 = 2βA1 − 1

2
bxx (1)B1, Ḃ1 = 0.

2. D−N : the spectrum is given by A1 = 0, the evolution by

Ȧ1 = 0, Ḃ1 = 2βB1 +b(1)A1.

3. N −N : the spectrum is given by A1 = 0, the evolution by

Ȧ1 = 2βA1, Ḃ1 = b(1)A1.

4. N −D: the spectrum is given by B1 = 0, the evolution by

Ȧ1 = 2βA1 − 1

2
bxx (1)B1, Ḃ1 = 0.

5. D−M : the spectrum is given by A1 +HB1 = 0, the evolution by

Ȧ1 +HḂ1 = 0, Ȧ1 −HḂ1 = 2β[A1 −HB1]+bx (1)[A1 +HB1].

6. M −D: the spectrum is given by B1 = 0, the evolution by

Ȧ1 = 2βA1 − 1

2
bxx (1)B1, Ḃ1 = 0.

7. N −M : the spectrum is given by A1 +HB1 = 0, the evolution by

Ȧ1 +HḂ1 = 0, Ȧ1 −HḂ1 = 2β[A1 −HB1]+bx (1)[A1 +HB1].

8. M −N : the spectrum is given by A1 = 0, the evolution by

Ȧ1 = 0, Ḃ1 = 2βB1 +b(1)A1.

9. M −M : the spectrum is given by A1 +HB1 = 0, the evolution by

Ȧ1 +HḂ1 = 0, Ȧ1 −HḂ1 = 2β[A1 −HB1]+bx (1)[A1 +HB1].

Remark 5.17. Observe that even though the same type of boundary conditions on the right end of the
string formally yields the same flow equations of the spectral data, the coefficient β is sensitive to the
boundary conditions on the left end of the string, and so is the field b.

Remark 5.18. Theorem 5.16 can be readily generalized to the case of multi-pole rational flows (2.8)
along the lines of Theorem 5.9.
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5.3 The limit ε→ 0

In previous sections we constructed the fields b−1(x;ε),b0(x;ε) in such a way that both are entire
functions of ε. We recall equations that ρ and b satisfy:

ρt =Lρb0, b0,xxx +
b−1,xxx

ε
= 0,

1

2
b−1,xxx −εLρb−1 = 0,

which we write as

ρt =Lρb0,
1

2
b0,xxx +Lρb−1 = 0,

1

2
b−1,xxx −εLρb−1 = 0.

We now take the limit ε→ 0. Without giving a detailed account of intermediate elementary steps we
summarize the results in the following theorem.

Theorem 5.19. Let the ZS deformation be given by b = b0+ b−1
ε+z , ε> 0 with the mass density ρ ∈C 1([0,1])

which vanishes in a neighbourhood of each endpoint, or ρ = ∑N
j=1 m jδx j , 0 < x1 < ·· · < xN < 1. Let

b−1(x;ε) and b0(x;ε) be given as in theorems 5.8 and 5.13. Then

1.
lim
ε→0

b−1(x;ε) = c0(x)ĉ0(x),

lim
ε→0

b0(x;ε) =−(c0(x)ĉ1(x)+ c1(x)ĉ0(x)),

D(0) =W (ĉ0,c0), D ′(0) =
∫ 1

0
ĉ0(ξ)ρ(ξ)c0(ξ)d ξ,

where W ( f , g ) denotes the Wronskian of f , g .

2. If in addition h +H > 0 and the fields b0 and b−1 are redefined as:

b−1(x)
def= c0(x)ĉ0(x)

W (c0, ĉ0)
,

b0(x)
def= −(c0(x)ĉ1(x)+ c1(x)ĉ0(x))

W (c0, ĉ0)
,

(5.24)

then

b−1(x) =G(x, x), b0(x) =−
∫ 1

0
|x −ξ|G(x,ξ)ρ(ξ)dξ

where G(x, y) is Green’s function of D2
x to boundary conditions Gx (0, y)−hG(0, y) = 0, Gx (1, y)+

HG(1, y) = 0 and β(z) (see Theorem 5.16) satisfies

β(z) =−1

2

(∫ 1

0
G(ξ,ξ)ρ(ξ)dξ− 1

z

)

25



3. With b0,b−1 so defined ρ undergoes an isospectral deformation governed by

ρ t̃ =Lρb0,
1

2
b0,xxx +Lρb−1 = 0, b−1,xxx = 0, where t̃ =W (c0, ĉ0)t .

Remark 5.20. Dividing by the Wronskian, which is constant, is predicated on the absence of 0 in the
spectrum of the original problem. For Neumann-Neumann boundary conditions 0 is an eigenvalue
and W (c0, ĉ0) = 0. Then one possible choice is c0 = ĉ0 = 1p

2
and b−1 = 1

2 ,b0(x) = ∫ 1
0 GT (x,ξ)ρ(ξ)dξ,

where GT (x, y) =−|x−y|
2 is the translationally invariant Green’s function of −D2

x .

We will finish this section stating explicit formulas for the evolution of positions xi and weights
mi in the case of the discrete measure ρ. These formulas are implicit in the statement of the previous
theorem and we present them only to emphasize their simplicity.

Corollary 5.21. Let the ZS deformation be given by b = b0+ b−1
z , with ρ =∑N

j=1 m jδx j , 0 < x1 < ·· · <
xN < 1 and let b0 and b−1 be given by equations (5.24). Then the positions x j and masses m j evolve with
respect to the rescaled time t̃ =W (c0, ĉ0)t according to:

ẋi =−b0(xi ), ṁi = mi 〈b0,x〉(xi ), 1 ≤ i ≤ N ,

and the sums

I1 =
N∑

i=1
mi G(xi , xi ),

and

In = ∑
1≤i1<i2<...in≤N

mi1 mi2 . . .min (xin −xin−1 )(xin−1 −xin−2 ) . . . (xi2 −xi1 )G(xi1 , xin ), 2 ≤ n ≤ N

are invariants of the ZS deformation (constants of motion).

6 Examples of isospectral deformations of a discrete string

Example 6.1. As an example of the developed formalism we consider the case of the string boundary
value problem (1.2) corresponding to the mass density ρ = ∑N

j=1 m jδx j , 0 < x1 < x2 < . . . xn < 1, with
boundary conditions of the type 0 < h <∞ and H = 0. Let

v |I j = v j = p j (x −x j )+q j , where I j = (x j , x j+1),

denote the solution to the initial value problem −vxx = zρv, vx (0)−hv(0) = 0 with the convention that
x0 = 0 and xN+1 = 1. The construction of this solution proceed as follows.

From the boundary condition at x = 0, one can take p0 = h and q0 = 1. Letting l j denote the

length of the interval I j and imposing continuity of v at x = x j+1 one finds that p j = q j+1−q j

l j
. The
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jump in the derivative of v at x = x j+1 results in p j+1 − p j = −zm j+1q j+1. On the last interval IN

vN = A1(x −1)+B1 = pN (x −xN )+qN from which one finds that A1 = pN and B1 = pN lN +qN . Let us
define the Weyl function for this problem

W (z)
def= v(1; z)

vx (1; z)
= B1

A1
.

From the construction W (z) = pN lN+qN
pN

= lN + qN
pN

. Iterating with the help of continuity and jump
conditions we obtain

W (z) = lN + 1

−zmN + 1

lN−1 +
1

. . . + 1

l0 + 1
h

.

Since the spectrum of the boundary value problem at hand is simple (only simple eigenvalues
occur) we have the following partial fraction decomposition: W (z) =W∞+∑N

i=1
ai

−z+zi
, where W∞ = lN

and

ai =− lim
z→zi

B1(z)

A1(z)
(z − zi ) =− B1(zi )

d A1
d z |z=zi

.

It can be shown that the residues ai are strictly positive. We recall that the spectrum {z j : 1 ≤ N } is deter-
mined from A1(z) = 0. Following Theorem 5.16, item (8), we get Ȧ1 = 0, and Ḃ1(zi , t ) = 2β(zi )B1(zi , t )
so that

B1(zi , t ) = B1(zi , t = 0)e2β(zi )t .

This implies that the residues evolve as

ai (t ) = ai (0)e2β(zi )t .

Thus the Weyl function can be written as

W (z, t ) = lN +
N∑

i=1

ai (0)e2β(zi )t

−z + zi

def= lN +
∫

e2β(ζ)t dµ(ζ)

−z +ζ

where dµ(ζ) = ∑N
i=1 ai (0)δzi is the spectral measure at t = 0. Hence if we set λ = −z we obtain the

formula ∫
e2β(ζ)t dµ(ζ)

λ+ζ = 1

λmN + 1

lN−1 +
1

. . . + 1

l0 + 1
h

,

which shows that using Stieltjes’ inversion formulas (see [5, 24]) we can recover mN , · · · ,m1 and
lN−1, · · · , l0 in terms of the moments of the measure e2β(ζ)t dµ(ζ). Finally, one can recover lN by observ-
ing that

W (0) = h +1

h
= 1+ 1

h
= lN +

∫
e2β(ζ)t dµ(ζ)

ζ
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and solve for lN , or compute lN from the formula for the total length of the string: lN = 1−∑N−1
i=0 li . The

formula for β(ζ) depends on the deformation and boundary conditions and is given by (5.22), (5.24), if
ε> 0, ε= 0 respectively. More generally, for the multi-pole model, β(ζ) is given by (5.14).

Example 6.2. Let us now consider the case of ε= 0, hence b = b0+ b−1
z , and let us assume a discrete mass

density ρ =∑N
j=1 m jδx j . For the sake of comparison we consider two cases of boundary conditions:

Dirichlet-Dirichlet and Dirichlet-Neumann. We point out that the Dirichlet-Neumann case appeared,
somewhat unexpectedly, in the recent work on the modified Camassa-Holm equation [10].

We use the formulas corresponding to the rescaled time (see theorem 5.19 and corollary 5.21).

For the Dirichlet-Neumann case we have

GDN (x, y) =−
{

x, x < y

y, x > y

b−1 =−x, b0 =−
∫ 1

0
|x −ξ|GDN (x,ξ)ρ(ξ)dξ= ∑

x j <x
(x −x j )x j m j +

∑
x j >x

(x j −x)xm j ,

Both b−1,b0 satisfy the required boundary conditions b(0) = 0, bxx (1) = 0.

For the Dirichlet-Dirichlet case we have

GDD (x, y) =−
{

x(1− y), x < y

y(1−x), x > y

b−1 =−x(1−x), b0 =−
∫ 1

0
|x −ξ|GDD (x,ξ)ρ(ξ)dξ= ∑

x j <x
(x −x j )(1−x)x j m j +

∑
x j >x

(x j −x)x(1−x j )m j ,

Clearly, b−1,b0 satisfy the required boundary conditions b(0) = 0, b(1) = 0.

In both cases, the explicit form of the evolution equations (with respect to the rescaled time) reads:

ẋi =
N∑

j=1

∣∣xi −x j
∣∣G(xi , x j )m j ,

ṁi =−mi

(
N∑

j=1
sgn(xi −x j )G(xi , x j )m j +

N∑
j=1

∣∣xi −x j
∣∣〈Gx (x, x j )〉(xi )m j

)
, sgn(0) = 0.

with G being an appropriate Green’s function.
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8 Appendix I: weak Lax pairs

We assume ρ =∑N
j=1 m jδx j for the remainder of the appendix. Our goal is to compute conditions on

the Lax pair to be compatible as a distributional Lax pair. We will denote by Dx ,D t the distributional
derivatives with respect to x, t respectively, and define the distributional Lax pair as:

DxV =
[

0 1
−zρ 0

]
V D t V =

[ − 1
2 Dx (b)+β b

− 1
2 D2

x (b)− zρb 1
2 Dx (b)+β

]
V. (8.1)

It is immediate from the first equation that the first component of V is continuous and piecewise

smooth with jumps only on the support of ρ. So we can write, as before, V =
[

v
vx

]
, where vx is the

classical derivative. This implies that the first member of the Lax pair contains only one non-trivial
statement: Dx (vx ) = D2

x (v) =−zρv which is equivalent to

vxx = 0, if x 6= x j , [vx ](x j ) =−zm j v(x j ), (8.2)

where [ f ](x j ) means the jump of f at x j . Likewise, the second member of the Lax pair is well defined if
b is continuous and piecewise smooth with jumps only on the support of ρ. Thus the second equation
can be written:

D t V =
[

vt

vt x −∑N
i=1[vx ](xi )ẋiδxi

]
=

[ − 1
2 Dx (b)+β b

− 1
2 D2

x (b)− zρb 1
2 Dx (b)+β

]
V , (8.3)

or, equivalently,

vt = (−1

2
bx +β)v +bvx ,

vt x −
N∑

i=1
[vx ](xi )ẋiδxi =−1

2
bxx v −

N∑
j=1

(
1

2
[bx ](x j )v(x j )+ zm j b(x j )v(x j )

)
δx j + (

1

2
bx +β)vx ,

showing that it is the singular part of D t V that determines the evolution of xi ; using (8.2) and (8.3) we
obtain

zmi ẋi =−
(

1

2
[bx ](xi )+ zmi b(xi )

)
. (8.4)

The actual compatibility condition of equations (8.1), (8.3), which can be succinctly formulated as
distributional equality Dx D t V = D t DxV , is presented in the following theorem.

Theorem 8.1. Let ρ =∑N
j=1 m jδx j and let b be continuous, piecewise differentiable function with jumps

only on the support of ρ. Then Dx D t V = D t DxV implies:

zD tρ = 1

2
D3

x b + zLρb, (8.5)

where Lρb = Dx (ρb)+〈bx〉ρ and 〈bx〉 means the pointwise, arithmetic average of the right hand and
left hand limits.
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Proof. First we observe that the left hand side contains only the singular part of the distributional
equality. Indeed,

D tρ =
N∑

i=1
ṁiδxi −

N∑
i=1

mi ẋiδ
′
xi

.

Hence the regular part of the right hand side must be zero. Equating coefficients at δx j and δ′x j
on both

sides we obtain that the statement of the theorem is equivalent to:

bxxx = 0, if x 6= xi , (8.6a)

zṁi = 1

2
[bxx ](xi )+ zmi 〈bx〉(xi ) (8.6b)

−zmi ẋi = 1

2
[bx ](xi )+ zmi b(xi ), (8.6c)

for i = 1, . . . N . Moreover by localizing tests functions around individual points xi we can, without loss
of generality, assume that N = 1; in other words we can work with ρ = m1δx1 .

We obtain two statements corresponding to components of D t DxV = Dx D t V :

vt x − ẋ1[vx ](x1)δx j =
(
(−1

2
bx +β)v +bvx

)
x
+ [−1

2
bx v +bvx ](x1)δx1 (8.7a)

− z(ṁ1v(x1)+m1v̇(x1))δx1 + zm1v(x1)ẋ1δ
′
x1

= (8.7b)(
−1

2
bxx v + 1

2
bx vx +βvx

)
x
+ [−1

2
bxx v + 1

2
bx vx +βvx ](x1)δx1 −

(
1

2
[bx ](x1)v(x1)+ zm1b(x1)v(x1)

)
δ′x1

.

The equality of regular parts implies:

vt x =
(
(−1

2
bx +β)v +bvx

)
x
= vxt , bxxx = 0,

while equating in the first equation the coefficients at δx1 , with the help of (8.2), one easily recovers
(8.6c). Finally, to prove (8.6b) we need to equate the coefficients of δx1 :

−z(ṁ1v(x1)+m1v̇(x1)) = [−1

2
bxx v + 1

2
bx vx +βvx ](x1),

and proceed by observing that

1. v̇(x1) = 〈vx〉ẋ1 +〈vt 〉(x1),

2. [bx vx ] = 〈bx〉[vx ]+ [bx ]〈vx〉.

Upon carrying out several elementary cancellations one arrives, somewhat exhausted, at the final
formula (8.6b).
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9 Appendix II: mapping to the Real Line

In this appendix we discuss a relation between the flow generated by b = b0 + b−1
z and the CH equation

[9](see also [4]), which we will write in the notation adapted to our setup:

mt =Lmu, m = 1

2
(uζζ−u), ζ ∈ R, (9.1)

where Lm = m d
dζ+ d

dζm. We will discuss the relation for the smooth case only, although the comparison
is also valid on the level of distributional Lax pairs. We recall the Lax pair formulation of CH:

−Ψζζ+
1

4
Ψ= zmΨ, Ψt = (u − 1

z
)Ψζ−

uζ
2
Ψ, (9.2)

whose compatibility condition gives the evolution equation on m given above and the constraint

mζ =
1

2
(uζζ−u)ζ. (9.3)

For us the starting equations are (2.11)

ρt =Lρb0,
1

2
b0,xxx +Lρb−1 = 0, b−1,xxx = 0,

where ρ is the mass density in the boundary value problem undergoing an isospectral deformation

− vxx = zρv, vt = (−1

2
bx +β)v +bvx . (9.4)

Now we perform a Liouville transformation:

x = 1

2
+ 1

2
tanh

ζ

2
, Ψ= (cosh

ζ

2
) v, (9.5)

which leads to an equivalent form of Lax equations (9.4) on the real axis:

−Ψζζ+
1

4
Ψ= z

( 1

16
(sech4 ζ

2
)ρ

)
Ψ, Ψt = 4(cosh2 ζ

2
)bΨζ+

(− 1

2
((4cosh2 ζ

2
)b)ζ+β

)
Ψ, (9.6)

If we define:

û = 4(cosh2 ζ

2
)b

de f= û0 + û−1

z
, m̂ = 1

16
(sech4 ζ

2
)ρ (9.7)

then the compatibility condition for (9.6) reads:

m̂t =Lm û0, (9.8a)

1

2

(
û0 − û0,ζζ

)
ζ =Lm û−1, (9.8b)(

û−1 − û−1,ζζ
)
ζ = 0. (9.8c)

For the Dirichlet-Dirichlet case (see Example 6.2)

b−1 =−x(1−x) =− 1

4(cosh2 ζ
2 )
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which implies û−1 =−1, which by equation (9.8b) implies the constraint (9.3), and one recovers the CH
case. On the other hand, for example, for the Dirichlet-Neumann case

b−1 =−x

and hence
û−1 =−(eζ+1)

which does not reduce to the CH case.
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