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ABSTRACT. In this paper we consider the existence and stability of multi-spike solutions to the fractional Gierer-
Meinhardt model with periodic boundary conditions. In particular we rigorously prove the existence of sym-
metric and asymmetric two-spike solutions using a Lyapunov-Schmidt reduction. The linear stability of these
two-spike solutions is then rigorously analyzed and found to be determined by the eigenvalues of a certain 2 x 2
matrix. Our rigorous results are complemented by formal calculations of N-spike solutions using the method of
matched asymptotic expansions. In addition, we explicitly consider examples of one- and two-spike solutions
for which we numerically calculate their relevant existence and stability thresholds. By considering a one-spike
solution we determine that the introduction of fractional diffusion for the activator or inhibitor will respectively
destabilize or stabilize a single spike solution with respect to oscillatory instabilities. Furthermore, when consid-
ering two-spike solutions we find that the range of parameter values for which asymmetric two-spike solutions
exist and for which symmetric two-spike solutions are stable with respect to competition instabilities is expanded
with the introduction of fractional inhibitor diffusivity. However our calculations indicate that asymmetric two-
spike solutions are always linearly unstable.
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1. INTRODUCTION

The Gierer-Meinhardt (GM) model is a prototypical activator-inhibitor reaction-diffusion system that
has, since its introduction by Gierer and Meinhardt in 1972 [6], been the focus of numerous mathematical
studies. In the singularly perturbed limit for which the activator has an asymptotically small diffusivity the
GM model is known to exhibit localized solutions in which the activator concentrates at a discrete collection
of points and is otherwise exponentially small. The analysis, both rigorous and formal, of the existence,
structure, and linear stability of such localized solutions has been the focus of numerous studies over the
last two decades (see the book [32]). The GM model in a one-dimensional domain has been particularly
well studied using both rigorous PDE methods [28}131] as well as formal asymptotic methods [14, 26]]. More
recent extensions to the classical one-dimensional GM model have considered the effects of precursors
[34,[16], bulk-membrane-coupling [8], and anomalous diffusion [22}21},33]. It is the latter of these extensions
which motivates the following paper which focuses on extending the results obtained in [21} 33] for the
fractional one-dimensional GM model.

The analysis of localized solutions to the GM model fits more broadly into the study of pattern for-
mation in reaction-diffusion systems. Such reaction-diffusion systems have widespread applicability in
the modelling of biological phenomena for which distinct agents diffuse while simultaneously undergoing
prescribed reaction kinetics (see the classic textbook by Murray [20]). While these models have typically
assumed a normal (or Brownian) diffusion process for which the mean-squared-displacement (MSD) is
proportional to the elapsed time, a growing body of literature has considered the alternative of anomalous
diffusion which may be better suited for biological processes in complex environments [19), 23} 24] (see also
§7.1 in [1]]). In contrast to normal diffusion, for anomalous diffusion the MSD and time are related by the
power law MSD « (time)* where an exponent satisfying « > 1 or « < 1 corresponds to superdiffusion or
subdiffusion respectively. Studies of reaction-diffusion systems with subdiffusion and superdiffusion sug-
gest that anomalous diffusion can have a pronounced impact on pattern formation (see [15] as well as [7]
and the references therein). In particular studies have shown that both superdiffusion and subdiffusion
can reduce the threshold for Turing instabilities when compared to the same systems with normal diffusion
[12,17]. Likewise it has been shown that the Hopf bifurcation threshold for spike solutions to the GM model
with normal diffusion for the inhibitor and superdiffusion, mainly with Lévy flights, for the activator is
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decreased [21] whereas it is increased in the case of subdiffusion for the inhibitor and normal diffusion for
the activator [22].

In this paper we consider the existence and stability of localized multi-spike solutions to the periodic
one-dimensional GM model with Lévy flights for both the activator and the inhibitor. In particular we
consider the fractional Gierer-Meinhardt system with periodic boundary conditions

ut—l—ezsl(—A)slu—l—u—”—; =0, forx € (—1,1),
101 + D(—=A)20 4+ v — u? =0, forx € (—1,1), (1.1)
u(x) =u(x+2), v(x) =v(x+2), forxeR,
where 0 < ¢ < 1 and the parameters 0 < D < co and T > 0 are independent of e. We assume the exponents
satisfy 1/4 < s1 < 1and 1/2 < s, < 1. The (nonlocal) fractional Laplacian (—A)* replaces the classical

Laplacian as the infinitesimal generator of the underlying Lévy process for s < 1 and is defined for all
2-periodic functions by

00 _ v -1
(=AY p(x) = Cs. . Mdi =G /_1[47(95) — ¢(%)]Ks(x — %)d%, (1.2a)
where - )
_ 255T(s+1/2 1 & 1 1
o= s 0= L ) 20

j=1
and for which the equality in follows from the periodicity of ¢(x). The system (1.1) is a prototypical
model in which we can study the interplay of short range activation, long range inhibition, and intermittent
periods of directed motion in the underlying stochastic processes (i.e. Lévy flights). One of the goals of
this paper is to investigate the interplay of these three effects in the singularly perturbed limit for which
rigorous and formal methods can be used to obtain detailed descriptions of the structure and stability of
localized solutions. On a more technical note the properties of certain relevant Green’s functions in this
fractional case lead to a connection between localized solutions in the classical Gierer-Meinhardt model in
a different numbers of spatial dimensions. We remark that the system closely resembles the system
considered in [21] with the primary difference being that we consider the effects of Lévy flights for both the
activator and the inhibitor.

Before outlining the structure of this paper we outline our contributions as follows. Using a Lyapunov-
Schmidt type reduction we rigorously prove the existence of symmetric and asymmetric two-spike steady
solutions of satisfying

1 (—A)1u+u — ”72 =0, forx € (—-1,1),
D(—=A)2v+v—u? =0, forx € (—1,1), (1.3)
u(x) =u(x+2), v(x) =ov(x+2), forxelR.

and determine their linear stability by considering the spectrum of certain 2 x 2 matrices. In addition we use
the method of matched asymptotic expansions to formally construct N-spike quasi-equilibrium solutions
and derive a system of ordinary differential equations governing their slow dynamics. We furthermore
illustrate the effects of anomalous diffusion on the stability of one- and two-spike solutions by calculating
thresholds for oscillatory and competition instabilities. In particular our results indicate that Lévy flights for
the activator and inhibitor have, respectively, a destabilizing and stabilizing effect on the stability of single
spike solutions. On the other hand we demonstrate that the stability of symmetric two-spike solutions with
respect to competition instabilities is independent of s and is stabilized when the inhibitor undergoes Lévy
flights. Finally, we show that asymmetric two-spike solutions are always linearly unstable with respect to
competition instabilities.

The remainder of this paper is organized as follows. In §2|we outline the key rigorous results established
in this paper pertaining to the existence and stability of two-spike solutions. Then in §3|we collect prelim-
inary results which are used in the subsequent sections. In §4{ we use the method of matched asymptotic
expansions as well as full numerical simulations to illustrate the effects of fractional diffusion on the struc-
ture and stability properties of one- and two-spike solutions. We then provide proofs of the existence and
stability results in §5|and §f|respectively. Finally, in §7]we make some concluding remarks.
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2. MAIN RESULTS: EXISTENCE AND STABILITY

In this section we state the main results of this paper, which include the existence of two spike solutions
(symmetric and asymmetric) to the steady problem of the fractional Gierer-Meinhardt system and their
stability. Instead of studying the system (L.3), we replace u(x) by ceu(x) and v( ) by ¢ev(x), and introduce
the scaling x = ey for the first equation of (1.3 . Then we can write system (1.3) as

(—A);quuf%:O, fory € (—f %),
D(—=A)v+v —cu®> =0, forx € (—1,1), (2.1)
uey) = u(ey+2), v(x) =v(x+2), forx,yeR,

Ce = (s/}sz(y)dy) B

(-Aw+w—w*=0, wx)=w(—x). (2.2)

with

and w being the unique solution of

From now on, we shall focus on equation (2.1) and provide its existence and stability results.

Remark 2.1. To simplify the presentation, in the proof of Theorems 2.1 and 2.2 we have restricted our
attention to the case s; = s, = s. The arguments can be also applied for more general cases where s; € (%, 1)
ands, € (3,1).

In order to state the main results, we introduce the Green’s function associated to the steady problem
with periodic boundary and make three assumptions on the Green’s function that will be used for the
rigorous proof and stability analysis. For z € (—1,1), let Gp(x, z) be the function satisfying

(2.3)

D(—A)*Gp(x,z) + Gp(x,z) =é(x—z), forx e (-1,1),
Gp(x,z) = Gp(x+2,z), forx € R,

having the Fourier series expansion
eitm(x—z) 1

_1 = =2 cos({m(x —z))
Co 2 1+ D(ln)> ~ 2 ; 1+D(¢m)>

Let -1 < p(l) < pY < 1be 2 points in (—1, 1) where the spikes concentrate. We introduce several matrices
for later use. For p = (p1, p2) € (—1,1)?> we let Gp be the 2 x 2 matrix with entries

(9p)ij = Gp(pi, pj)- (2.4)

Let us denote a% as Vp,. When i # j, we can define V), Gp(p;, p;) in the classical way, while if i = j, since

Gp(x, x) is a constant due to the periodic boundary condition, we have V,,Gp(p;, pi;) = 0. Next, we define
the matrix associated with the first and second derivatives of G as follows:

VGp(p) = (Vp,Go(pi, ), V?Gp(p) = (Vp,Vp,Gp(pi pj))- (2.5)

We make the following two assumptions.

(H1) There exists a solution (&), £9) of the following equation

ZGD @72 =&, i=12 2.6)
j=1
(H2) § ¢ A(B), where A(B) is the set of eigenvalues of the 2 x 2 matrix B with entries

(B)ij = Gp(p}, ))&} 2.7)
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By the assumption (H2) and the implicit function theorem, for p = (py, p2) near p° = (p9,p9), there
exists a unique solution &(p) = (&;(p), & (p)) for the following equation

2
Go(pipj)é; =&, i=12 2.8)
=1

]
We define the following vector field:

F(p) := (Fi(p), F2(p)),

where
2
Fi(p) = Y Vp.Go(pipj)§i = Y. Vp.Go(pi,pj)§;, i=1,2. (29)
j=1 j#i
Set
M(p) =& 'V, Fi(p)- (2.10)

The final assumption concerns the vector field F(p).
(H3) We assume that at p® = (p{, p9):

F(p°) =0 and rank(M(p%)) =1. (2.11)

Next, let us calculate M (p?). Particularly, we shall show that it admits a zero eigenvalue. To compute
the matrix M (p?), we have to derive the derivatives of &. It is easy to see that &(p) is C! in p and from (2.8
we can calculate:

2 2
Vi =2 Gp(pi, p)&V &+ Y Vy,Gopi p1)&
=1 =1

3 q £ z P .
Zlgl GD(pi/pl)Clvpjgl+Vp].GD(pi,p]-)§]2, ifi #], (212)

2 £ £ 2 Z . . .
2 ¥ Go(pi P&V éi+ & Yy Golpip)ef,  ifi=],
where we used 9y, Gp(p;, pi) = 0. Therefore, if we denote the matrix

VE = (Vpéi), (2.13)

we have
2

Ve(p) = (I-2GpH) 1 (VGp) H? + O(Y_ [Fi(p)l), (2.14)
=1

where a superscript T denotes the transpose and where H is given by

H(p) = (&i(p)dj) - (2.15)
Let
22
Q = (qi7) = (Vp,;V;Gp(p1, p2) l; ?25,-;). (2.16)

We can compute M (p°) by using (2:12),
M(P®) = H UV3Gp + QH2+2H 'VGpH(I —2GpH) 1 (VGp)TH?, (2.17)
where AT means the transpose of A. Using (2.11)), we can further simplify the matrix M (p?) as the follow-

ing

(2.18)

(89 71V,, Vi, Gp(p1, p2)(89)*  (8)71Vp, V), Gp(p1, p2) (89)?
M(p’) =

(€)Y Vi, Gp(p2, p1) (€)% (83) 1V, VG (p2, p1) (8))?
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It is easy to see that the summation of both rows is zero, thus M (p") is singular and admits a zero eigen-
value. While the left non-zero eigenvalue can be represented as follows

M) = (€)Y, Vi, Go (1, 2)(80)% + (83) 'V, Vi Go (p2, 1) (89)* (2.19)
Our first result is the following;:

Theorem 2.1. Assume that (H1) and (H3) are satisfied. Then for ¢ < 1 problem (1.1)) has a two-spike solution which
concentrates at pf, p5. In addition,

2 x — pt U
wore 8w (S and o) ~a D& =12,
i=1

and (p5, ps) — (—3, %) ase — 0.
Remark 2.2. In Theorem 2.1|the spike height may be the same or different yielding, respectively, symmetric
and asymmetric two-spike solutions. In both cases the spike locations must satisfy V Gp(pi, p5) = 0and

by numerically evaluating the Green’s function this implies that |p] — p5| = 1. As described in more detail
in the limiting system (2.8) can then be solved explicitly as

0 _ 0 1 0 )
TR T 50,00+ GolL0) Go0,0) 27 Gp(0,0)
for the symmetric and asymmetric cases respectively and where z; and z, are defined in terms of § =
GD(l, 0)/GD(0,0) in .
Finally, we study the stability of the 2-spikes solution constructed in Theorem 2.1}

Theorem 2.2. Assume that ¢ < 1 and let (i, ve) be the solutions constructed in Theorem [2.1|and B be defined in
2.7).

(1) Ifmin,cypyo > %, then there exists Ty such that (ug, ve) is linearly stable for 0 < T < 1.

Z1

and & =

(2) If min,ep(pyo < %, then there exists Ty such that (i, ve) is linearly unstable stable for 0 < T < 7.

Remark 2.3. We shall prove Theorem [2.2|in section 6. Generally we have to study both large and small
eigenvalue problems for the steady state. We shall see that the matrix associated with the small eigenvalues
is degenerate: one eigenvalue is zero due to the translational invariance of the spike profiles. On the other
hand, the other small eigenvalue is always stable. The stability of the 2-spike solution therefore depends
only on by the matrix B, which naturally appears in the study of large eigenvalue problem.

Remark 2.4. The rigorous existence proof and analysis of the large eigenvalues can be extended to N > 2-
spike solutions. However, in this case it is not clear how to determine the sign of the eigenvalues of M (p)
given by and hence the linear stability with respect to the small eigenvalues. For this reason we
restrict our attention to the case of N = 2 spike solutions for which the linear stability can be completely
rigorously determined.

Remark 2.5. The restriction s; > 1/4 arises in the NLEP stability proof. Specifically this condition arises in
the calculation following (A.I5). It is not clear from our proof whether the stability of the NLEP for v > 1
can be extended for values of s; < 1/4. On the other hand the behaviour of the Green’s function satisfying
as x — z is markedly differentif s, > 1/2,sp = 1/2, or s < 1/2. The proceeding rigorous and formal
analysis is therefore restricted to the case of s, > 1/2.

3. PRELIMINARIES

In this section we collect several key preliminary results needed for the existence and stability proofs in
and §p|as well as for the formal calculations in §4]
Letting w be the ground state solution satisfying

{(—A)Sw+w—w2 =0, in R,

3.1
w(x) =0 as x| — oo, G



we have the following result [5] (also see Proposition 4.1 in [33] and the references therein)

Proposition 3.1. Equation (3.1) admits a positive, radially symmetric solution satisfying the following properties:
(a) There exists a posztwe constant bs depending only on s such that

w(x) = ||[;+25(1+o(1)) as |x| = oo

Moreover w'(x) < 0 for x > 0and

w’(x):—%(leo(l)) as  x — .

(b) Let Ly = (—A)* + 1 — 2w be the linearized operator. Then we have

ow
Ker(Ly) = span {Bx} .
(c) Considering the following eigenvalue problem

(—=A)°p + ¢ — 2w + adp = 0.

There is an unique positive eigenvalue o > 0.

Next we consider the stability of a system of nonlocal eigenvalue problems (NLEPs). We first establish
the following result which we prove in Appendix

Theorem 3.2. Consider the following nonlocal eigenvalue problem

Jg wodx

(—A)s¢+¢—2w¢+vww2+aq§ =0. (3.2)
(1) Ify < 1, then there is a eigenvalue « to such that ®(x) > 0
2 Ify>1lands > }I, then for any nonzero eigenvalue « of (3.2), we have
R(w) < —cg < 0.
(B) Ify # 1and a = 0, then ¢ = cooxw for some constant cy.

In our application to the case when T > 0, we have to deal with the situation when the coefficient 7 is a
function of ta. Letting v = y(7a) be a complex function of T« let us suppose that

7(0) €R, [y(ta)] <C for ag >0, T >0, (3.3)
where C is a generic constant independent of 7, 2. Then we have the following result.

Theorem 3.3. Consider the following nonlocal eigenvalue problem

(=AV¢+ ¢ — 2w + y(Ta) f]R 2 w? 4+ =0, (3.4)
Jrwrdx d
where y(ta) satisfies (3.3). Then there is a small number 1y > 0 such that for T < 7,
(1) if v(0) < 1, then there is a positive eigenvalue to (3.4);
(2) if y(0) > land s > }, then for any nonzero eigenvalue a of (34), we have
%(06) < —¢g <0.

Proof. The above Theorem follows from Theorem [3.2|by a perturbation argument. To make sure that the
perturbation works, we have to show that if ag > 0and 0 < T < 1, then || < C, where C is a generic
constant (independent of 7). In fact, multiplying by ¢ - the conjugate of ¢ - and integrating by parts,
we obtain that

J D39 + lgF? = 20lgl)ax = —a [ 1ol — (1) ) ‘fdjf | Wz 5

From the imaginary part of (3.5), we obtain that

lar] < Cily(Ta)l,
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where & = ag + +/—1aj and C; is a positive constant (independent of 7). By assumption (3.3), |y(7ta)| < C
and so |a;| < C. Taking the real part of and we get that

left hand side of (35) > C / |¢|2dx  for some C € R, (3.6)
R

then we obtain that ag < C, where C; is a positive constant (independent of T > 0). Therefore, || is
uniformly bounded and hence a perturbation argument gives the desired conclusion. O

We now consider the following system of linear operators

-1
LD = (—AVD + @ — 20wd + 28 ( / wcpdx> ( / wzdx> w?, (3.7)
JR R

where B is given by and @ := (¢1,¢2)" € (H*(R))2. The conjugate operator of L under the scalar
product in L2(R) is
-1
LYY := (—A)"YF + ¥ — 2w¥ + 287 ( / wz‘i’dx> ( / wzdx> w, (3.8)
R R
where ¥ := (1, 2)T € (H*(R))?. We then have the following result.
Lemma 3.4. Assume that (H2) holds. Then
Ker(L) = Ker(L*) = X @ Xo, (3.9)

where Xy = Span{w’(x)}.

Proof. We first prove Ker(L) C X @ Xo. Suppose L® = 0. By the fact that Gp is symmetric and H(p) is a
diagonal matrix, we can diagonalize 5. Let

PP =7,

where P is an orthogonal matrix and J is diagonal form, i.e.,
(01 0
"7 B (0 0'2)
with suitable real numbers ¢;, i = 1,2. Defining ® = P® we have
. -1 .
(—AY® + & — 2uwd +2 < / w2dx) ( / chbdx) w? = 0. (3.10)
R JR

For i = 1,2 we look at the i-th equation of system (3.10):

~1
(—=A)PD; + &; — 20wd; + 20; (/ wzdx> (/ wcbidx) w? = 0. (3.11)
R R

By Theorem (3), equation (3.11) implies ®; € X since by condition (H2) we know that 20; # 1.
We proceed similarly to prove Ker(L*) C X @ Xo. Using o(B) = o(BT) the i-th equation of the diago-
nalized system is as follows

(—A)Y; + ¥, — 209, + 20, < /R dex) o < /]R wz‘f’idx) w=0. (3.12)
Multiplying the above equation by w and integrating over the real line, we obtain
(1-20;) /R 0¥, = 0, (3.13)
which together with the fact that 20; # 1 implies that
/ w?¥; =0, i=1,2.
R

Thus all the nonlocal terms vanish and we have Ly¥; = 0 for i = 1,2, which in turn implies that ¥; € X,

for i = 1,2. On the other hand, it is obvious that Xy & Xy C Ker(L) and X & Xo C Ker(L*). Therefore, we

conclude that (3.9) holds. O
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Lemma 3.5. The operator L : (H**(R))? — (L?(R))? is invertible if it is restricted as follows
L: (Xo ® Xo) ™ N (H*(R))* = (Xo @ Xo)* N (L*(R))*
Moreover, L~ is bounded.
Proof. This follows from the Fredholm Alternatives Theorem and Lemma ]
Finally we study the eigenvalue problem (see for the definition of L)
L®+ad =0, (3.14)
for which we have the following lemma.

Lemma 3.6. Assume that all the eigenvalues of B are real. Then we have
(1) If2 mi(rlg) o > 1 then for any nonzero eigenvalue of (3.14) we must have R(x) < —cp < 0.
[4STo

(2) If there exists o € o(B) such that 20 < 1, then there exists a positive eigenvalue of (3.14).
Proof. We first prove (1). Let (P, a) satisfy and assume that 2 Urer}i(rllg ) o > 1. Suppose ag > 0and a # 0.
Similar to Lemma 3.5 we diagonalize
(—M%+©—M@+ﬂ4@%@4%yﬂémﬂm®:Q (3.15)
and the i-th equation of system becomes

-1
—A)’®; + D; — 2wd; + 20; wdx w®; | w? + ad; = 0. (3.16)
R R

The first conclusion follows by Theorem (2) and the fact that 20; > 1. We conclude that either ®; =
P, =0o0ra < —¢p < 0. Since ® does not vanish and & < 0, thus (1) is proved.

Next we prove (2) and assume that 20; < 1 for some 0; € o(B). Then the equation corresponding to ¢;
becomes

-1
(=APD; + ®; — 2wd; + 20; </ w2> (/ wCIDidx) w? + ad; = 0.
R R

By Theorem (l) we know that there exists an eigenvalue «y > 0 and an eigenfunction ®g such that

-1
Lo®g + 20; (/ wzdx) (/ w@odx) w? + ag®y = 0. (3.17)
R R
Let us take @; = &y and ®; = 0 for j # i. Then (P, ag) satisfies (3.14) which establishes (2). g

4. FORMAL ANALYSIS OF N-SPIKE EQUILIBRIUM SOLUTIONS AND THEIR LINEAR STABILITY

Although the fractional Laplacian (—A)? is nonlocal, the method of matched asymptotic expansions can
nevertheless be used to construct leading order asymptotic approximations to equilibrium solutions of (I.T).
Indeed, assuming —1 < p; < ... < py < 1 (N > 1) are well separated in the sense that p; +1 = O(1),
1—py =0(1),and |p;s1 — pi| = O(1) foralli =1,..., N — 1 then it is clear from the definition that

0Q), j#i,
K ey —p; —€fy) = . .
s(pi+ey —pj—ef) { L 1‘1+25 +0Q1), j=i,

el+2s |y7y’

5 =0Q).
Moreover for any bounded and periodic function ¢(x) such that ¢(x) ~ ®(y) forx = p; + ey and y = O(1)

(~8F0() ~ e B (-ap0 00, (mare=c, [T GO

which effectively separates the inner region problems in the method of matched asymptotic expansions. In
the remainder of this section we use the method of matched asymptotic expansions to formally construct
multi-spike equilibrium solutions to (1.1) and determine their linear stability.
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4.1. Multi-Spike Solutions and their Slow Dynamics. With the separation of inner region problems as
outlined above, the construction of quasi-equilibrium solutions follows closely that for the classical case
when s; = sp = 1 as detailed in [14]. In particular letting —1 < p; < ... < py < 1 be given as above, then
we obtain the inner expansions

ur e (Ews (y) +0(1), v~e ' (G+0(1), for x=pit+ey, y=0(1)

for each i = 1, .., N where w;, satisfies the core problem (3.1) with s = s1 and ¢; > 0 is an undetermined
constant. Therefore forall -1 < x < 1

N
u(x) ~e 1Y Gws (e x —pil) +o(eh), (4.1a)
i=1

where the corrections due to the algebraic decay of the core solution do not contribute until O (e1). More-
over, in the sense of distributions we calculate the limit u? — e~ 1w, Z]-Iil 6]25(3( —pj)ase— 0" from which
it follows that for all x such that [x — p;| > eforalli =1, ..., N the inhibitor is given by

N 00
v~ elwy Y GGp(x,py) Fole),  wy = /0 ws, (y)*dy, (4.1b)
j=1

where Gp(+,-) is the Green’s function satisfying ([2.3) with s = s,. Since v — e (& +0(1)) as x — p; we
obtain the nonlinear algebraic system

&~ ws,Gp&* =0, (4.2a)
where
§=(-.in)" 9o = (Gplpipi)iizr- (4.2b)

When N = 2 we recover the system and when N = 1 we obtain & = [ws,Gp(p1, p1)] 1
Given a fixed configuration —1 < p; < ... < py < 1 the algebraic system can be solved for the
unknown constants {1, ..., { yielding quasi-equilibrium solution to given by (£.1I). We emphasize that
the resulting solutions is not, for arbitrary spike locations, a stationary solution of (L.I). Indeed, while the
solution (&) is stationary over an O(1) timescale the spike locations drift slowly over an O(¢~2) timescale
according to the system of differential equations (see Appendix[D]for details)
dpi

oo 2 oo 3
2. -1 2 A wg, dy e wg, dy
—- = — . *V .G D), = = ,
it & Kslgl ];(:] pi D(Pz P]) Ksl 3f_oo |dw51 /dy|2dy

where V,, denotes the derivative with respect to the first argument and we remark that this is to be solved
concurrently with the algebraic system (4.2). In particular, if —1 < p; < ... < py < 1 are chosen so that

Y. & VyGolpipj) =0, (4.4)
j#i
foralli = 1,..,N, then (4.1) is an equilibrium solution of (1.1). Theorem and the proof found in
rigorously establish the existence of the equilibrium solution constructed in this section for N = 2.

(4.3)

4.2. Linear Stability of Multi-Spike Solutions. We now consider the linear stability of the N-spike equi-

librium solutions constructed above which we denote by u, and v,. Substituting u = u, + ¢ and
v = v, + eMyp where |¢], || < 1into (1) and linearizing we obtain

X1 (=N + ¢ — 20, uep + 0, 2UdPp + AP =0, —1<x<1, (4.5a)

D(—AY29p + ¢ — 2upp + TAP =0, —1<x<1, (4.5b)

where we assume in addition that both ¢ and ¢ are 2-periodic. We focus first on the case where A =

O(1), the so-called large eigenvalues, and make a brief comment on the case of small eigenvalues for which

A = O(?) at the end of this section. Proceeding with the method of matched asymptotic expansions

as in the previous section we deduce that ¢ ~ ¢;(y) +0(1) when x = p; + ey and y = O(1) for each

i =1,..,N. It follows that ¢ ~ Z]'Ii1 ¢i(e M (x —p;)) +0(1) for all -1 < x < 1 and furthermore . —
9



Z]-Iil & f = ws, (y)¢;i(y)dyd(x — pj) ase — 07 in the sense of distributions. Substituting this into #5b) we
deduce that

N o
v =2Y6 [ w8 w)dvGh(x, p),
j=1 7
where Gé (x,z) is the eigenvalue dependent Green’s function satisfying

D(=A)2GH+ (14+TA)GH =6(x —2), —1<xz<]1, (4.6)

with periodic boundary conditions. It follows that for x = p; + ey equation (4.5a) becomes
_— * A
Logi+202 Y& | s, ()0, (0)AyGh (pispy) + A =0,
j= e

for each i = 1,..., N where L is the linear operator of Proposition [3.I|with s = s;. This system of equations
is conveniently rewritten as the system of NLEPs

) ffooo ws, EMPdy

Lo® + 2w, (GRTTT FAD =0, (4.72)
where
¢1(y) GGH(pLp1) - ENGH(p1pN)
o= : |, &= : : b= w0 b (4.7b)
PN (y) &GGH(pn.p1) - ENGH(pN,pPN)

Letting p;' and x; be the eigenpairs of £* satisfying £'p;} = x}'p; foreachk = 0,1,..., N — 1 we can further
diagonalize (£.7a) by setting ® = ®yp; to get the decoupled system of NLEPs

2 f foc>o Wsy ch dy
$1 ffooo wgl d]/
An N-spike equilibrium solution is linearly stable with respect to the large eigenvalues provided that all

eigenvalues of satisfy R(A) < O forall k = 0,..., N — 1. Finally, we remark that the NLEP can be
further reduced to the algebraic equation

Lo®@y + 2x}w + Ad, = 0. (4.8)

1 2 ws, (Lo + A) w2 dy
AN = — +Fs, (A) =0, Fo (M) =2== = L
k( ) X;)(\ 51( ) 51( ) f,oo wgld]/

4.9)

which will in general require the numerical evaluation of F5, (7).

The stability of a multi-spike equilibrium solution with respect to the small eigenvalues is closely related
to the slow dynamics given by (.3). In particular, whereas the large eigenvalues correspond to amplitude
instabilities occurring on an O(1) timescale, the small eigenvalues are linked to the linear stability of the
spike pattern with respect to the slow dynamics and therefore occur on an O(e~?2) timescale. In the
case of two-spike equilibrium solutions Theorem [2.2|rigorously establishes the linear stability with respect
to the large eigenvalues. On the other hand, as discussed in §6|two-spike equilibrium solutions are always
linearly stable with respect to the small eigenvalues. In the remainder of this section we consider explicitly
the asymptotic construction and linear stability of one- and two-spike solutions.

4.3. Example: Symmetric N-Spike Solutions. By appropriately choosing the spike locations we can ex-
plicitly calculate an N-spike solution that is symmetric in the sense that the local profile of each spike is
identical. Specifically, letting

N-1 -1
pi=—1+N12i-1), &=¢&= (wsl y GD(ZN—lk,o)) ,  forall i=1,..,N, (4.10)
k=0

10



it is then straightforward to show that (4.2) is satisfied and the spike locations are stationary solutions of
the the slow-dynamics (&3). Since the resulting matrix £* defined by (.7B) is circulant and its eigenpairs
are explicitly given by

2k

T YN HApi N
o 2n(N—1)k _
pi= (1, i ,g”i;”) ,oxh =22 H}=GhNk,0) (4.11)
Li—o Hj
foreachk=0,..,N — 1.

For the remainder of this example we focus exclusively on the calculation of the Hopf bifurcation thresh-
old for a one-spike solution. In particular, by using the winding number argument in [27], we seek con-
ditions under which with k = 0 admits an unstable solution (i.e with ®(A) > 0). Letting Cr =
{iAf] =R <A <R}U{Re®| — /2 < 0 < 71/2} be traversed counterclockwise and noting that |x3| > 0
for all A with R(A) > 0 whereas F, (A) has a simple pole on the positive half-plane corresponding to the
principal eigenvalue of Ly we find that the number Z of unstable solutions to can be determined by

L lim ¢ dAo/dr )y _ 7y,
27Ti R—oo Cr AO
1 _L
Noting that x§ ~ O(A22 1) and therefore Ap(A) ~ O()Ll 252 ) for |A| > 1 we deduce that the change in

argument of A over the semi-circle part of the contour is (1 — 2172) 7t from which it follows that

zZ=3-.L- %argA(zAI)‘TI_O
We note that arg A(iA;) — (1 — 2172) as A — co whereas A4y(0) = —1 since Lo_lwg1 = —w;,. Furthermore

numerical evidence suggests that %t.4¢(iA]) is monotone increasing in A and so there exists a unique value
0 < A} < oo such that RAy(iA}) = 0. It then follows that either Z = 2 or Z = 0 depending on whether
SAp(iAT) > 0 or SAg(id]) < O respectively. The Hopf bifurcation threshold can thus be calculated by
numerically solving Ay(iA;) = 0 for T = 1,(D, s1,52) and A; = Aj,(D, s1,s2). By first considering the limit
D — oo for which x} — (1+ 7A)~! we calculate the Hopf bifurcation threshold 77°(s1) and accompany-
ing eigenvalue AS°(sq), both of which are independent of s, and are plotted in Figure In particular we
observe that 77° is monotone increasing with s; and therefore the introduction of Lévy flights for the acti-
vator destabilizes the single spike solution as previously observed in [21]. This behaviour persists for finite
values of D > 0 but we observe that the Hopf bifurcation threshold is monotone decreasing with s, and
therefore introducing Lévy flights for the inhibitor stabilizes the single spike solution. This behaviour is
illustrated in Figure [Ib|for which we plot the Hopf bifurcation threshold as a function of D for select values
of s; and sp. We remark in addition that the Hopf bifurcation’s dependence on the inhibitor diffusivity D
remains qualitative unchanged with the introduction of Lévy flights: 7;,(D, s1,s,) decreases monotonically
with D.

To illustrate the above observations, mainly the destabilization (resp. stabilization) of the single-spike
solution with decreasing s (resp. s»), we numerically solve starting with a single spike solution centred
atp; = Owithe = 0.02, D = 2, and 7 = 1.5 for three distinct pairs of exponents (s1,s) = (0.8,0.7), (0.8,0.9),
and (0.4,0.7). See Appendix B|for details on the numerical calculation. From the numerically calculated
threshold we find 7,(2,0.8,0.7) =~ 2.306, 7;,(2,0.8,0.9) ~ 1.096, and 7;,(2,0.4,0.7) ~ 1.399 and therefore with
T, = 1.5 we anticipate the single spike solution to be stable for the first exponent set and unstable for the
latter two. The plots of (0, t) in Figure [lc/support these predictions.

4.4. Example: Symmetric and Asymmetric Two-Spike Solutions. When s; = s, = 1 it has been shown
that the one-dimensional Gierer-Meinhardt model may exhibit asymmetric solutions consisting of spikes
with different heights [26,[31]. The gluing method for constructing such asymmetric N-spike solutions relies
crucially on the locality of the classical Laplace operator. However, since the fractional Laplace operator
(—A)? isnonlocal for s < 1 we cannot use this gluing method to construct asymmetric multi-spike solutions
and we are therefore restricted to solving the nonlinear algebraic system directly. In this example we
restrict our attention to the case of N = 2 for which a complete characterization of all two-spike solutions
can be obtained directly from the algebraic system (4.2).
11
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FIGURE 1. Hopf bifurcation threshold for a one-spike solution in (A) the shadow limit
D — oo, and (B) for finite D > 0 at select values of s; = 0.4,0.8 and s, = 0.7,0.9. (C) Single
spike height obtained from numerical simulations with parameters ¢ = 0.02, D = 2, and
T = 1.5 and exponent sets (s1,s2) = (0.8,0.7), (0.8,0.9), and (0.4,0.7) for the top, middle,
and bottom plots respectively.

Assuming without loss of generality that —1 < p; < p2 < 1 we first calculate from that

dip2—p1) _ §§’+§% /
— g s 6 Gp(lp2 — p1l,0),

where Gf(z,0) = dGp(z,0)/dz. By numerically evaluating Gp(z,0) (see Appendix|C) we observe that it
is monotone decreasing for 0 < z < 1, attains its global minimum at z = 1, and is monotone increasing
for 1 < z < 2. Any stationary solution of must therefore satisfy p — p; = 1 and furthermore any
such solution is linearly stable with respect to the slow-dynamics with the exception of having a neutral
eigenvalue corresponding to translational invariance. Defining

zZ1 = wslGD(O, 0)61, Zy = wsl GD(L 0)62, 0= GD(l,O)/GD(O, 0),
the algebraic system (4.2) can be rewritten as
21— 20 — 025 =0, 2y — 022 — 25 = 0. (4.12)

This system always admits the symmetric solution for which z; = z; = z. where z. = (1 + ) ! recovering
the result from the previous example for N = 2. One the other hand, assuming z; # z, we may subtract
the first equation from the second to obtain zp = (1 — ) ™! — z;. Substituting this expression for z, back
into the first equation in yields a quadratic in z; which is readily solved to obtain

_1/2 130 _1/2 1-36
21—1_(9(”\/1+e>' 22—1_9<1v1+e)- (13)

We immediately deduce that an asymmetric two-spike solution exists if an only if § < 1/3 and we obtain
the bifurcation diagram shown in Figure Interestingly, the structure of two-spike solutions depends
only on the ratio 8 depending only on D and the inhibitor exponent s.

We conclude this section by considering the linear stability of two-spike solutions with respect to com-
petition instabilities, neglecting the possibility of Hopf bifurcations by assuming that 7 is sufficiently small.
In view of and Theorem B.2]it suffices to consider the eigenvalues of

_(zn1 0z
go o <921 Z2 ) )
When z1 = zp = z itis easy to see that &, has eigenvectors py = (1,1) and p; = (1, —1) with corresponding
eigenvalues x) = 1 and ¥ = (1—0)/(1+6). Since xJ > 1/2 by Theorem 3.2 the k = 0 mode is always

linearly stable. On the other hand the k = 1 mode is stable if and only if x] > 1/2 and in particular the
12
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FIGURE 2. (A) Bifurcation diagram showing the rescaled spike heights z; = ws, Gp(0,0)¢;
versus 0. Solid (resp. dashed) lines indicate the resulting two-spike solution is linearly sta-
ble (resp. unstable) with respect to competition instabilities. (B) The competition instability
threshold for a symmetric two-spike solution. (C) Spike heights at x = —0.5 (solid blue)
and x = 0.5 (solid orange) obtained from numerical simulations with initial condition con-
sisting of a symmetric two-spike solution and with parameter values of s; = 0.8, ¢ = 0.02,
T = 0.05, and D = 1.2D;(s;) where s; = 0.9 (top), 0.8 (middle), and 0.7 (bottom). The
dashed orange line indicates the (common) spike height obtained with the same parame-
ters but with D = 0.8D;(s3).

symmetric solution is linearly stable when 6 < 1/3 and unstable otherwise. Finally, when z; and z, are
given by (4.13) it can be shown that the eigenvalues of &) are given by

o 1/2(,, [4#2-3041 o_ 1/2 (  [462-30+1
X0 =19 1+0 ) M T 19 1+0 )

from which we deduce that Xg > 1 and X(l) < % < % forall 0 < 6 < 1/3. Therefore by Theorem
the k = 1 mode is linearly unstable. In Figure Ra| we indicate the values of 6 where the two-spike
solution is linearly stable (resp. unstable) with respect to competition instabilities by solid (resp. dashed)
curves. By numerically solving 8 = 1/3 for D as a function of s, we can calculate the competition instability
threshold D = Dj(sy) for the symmetric two-spike solution and this is shown in Figure Interestingly,
the competition instability threshold is independent of the exponent s;. On the other hand, similarly to
the case of a single spike solution there will be an s; dependence for the Hopf bifurcation thresholds but
this will be qualitatively similar to that found for the single spike solution and for this reason we do not
explored this further here. In Figure 2c|we illustrate the onset of competition instabilities when s; = 0.8,
e = 0.02, T = 0.05, and for values of s = 0.9, 0.8, and 0.7 and D = 1.2 x D;(sy) by performing full
numerical simulations of (see Appendix[Blfor details). We remark that the accuracy of the leading order
approximation to the competition instability calculated above grows increasingly inaccurate as s, — 0.5 for
a fixed value of ¢ > 0. Indeed, as described in more detail in the derivation of the slow dynamics found
in Appendix @ the first order correction to the quasi-equilibrium solution is O(¢22~!) and this tends to
O(1) as s, — 1/2. When s; = 1/2 the Green'’s function is known to have a logarithmic singularity (see
Lemma 2.2. in [33]) and we anticipate that the method of matched asymptotic expansions will lead to an
asymptotic expansion in powers of v = —1/loge as is often the case for singularly perturbed reaction-
diffusion systems in two-dimensions [17, 2].
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5. RIGOROUS PROOF OF THE EXISTENCE RESULTS

In this section we shall prove the existence theorem, i.e., Theorem We divide the discussion into
three sections. In first subsection, we give an approximate solution. Then we apply the classical Lyapunov-
Schmidt reduction method to reduce the infinite dimensional problem to a finite dimensional problem
in second subsection. In last subsection we solve the finite dimensional problem and thereby prove the
Theorem[2.1]

5.1. Study of the Approximate Solutions. Let —1 < p? < p) < 1 be 2 points satisfying the assumptions

(H1) — (H3). Let & = (&), &) be the solution of and let p° = (pY, p9). We shall construct an approxi-
mate solution to which concentrates near these 2 points.
Let —1 < p; < pp < 1be such that p = (py, p2) € Bas—1(p°). Set

1 1
ro = mmm{P‘f +1,1-p3 Slni - PSI}
and define a cut-off function x(x) such that x(x) =1 for |x| < 1 and x(x) = 0 for |x| > 2. Letting

wi(y) =w (y - %) X <Sy_p> / CRY

10
where w is the ground state solution of , it is then straightforward to check that
(=A)ywiy) +wi(y) —wi(y) = hot, (5.2)
where /1.0.t. refers to terms of order £!+% in L2 (—%, 1). Let &(p) = (&1, &) be defined as in (H1). Fix any

€

function u € H? (7 1 %) and define T[u] to be the solution of

D(=A)T[u] + T[u] —ceu?> =0, x€(-1,1), (5.3)
Tlu)(x) = T[u](x +2), xR, '
where
-1
Ce = <8/Rw2(y)dy> . (5.4)
Letting p € Boas1(p®) we define
We,p = Zgzwl
and using we compute
1
T = Tloeg) (i) = ece [, Go(piey)dp(y)dy = eco 2 & / G (pis ey (4)dy
‘ (5.5)

- e Zé (GD Pi.Pj / 2(]/)@) +Pi = Z G (pi, pj)§; + Py,
j=1

where Gp (x,y) is defined in (2:3) and P; is a number with order €~ 1. Thus, we have obtained the following
system of equations:

2
% =) Gplpi pj)&; + P (5.6)
j=1
According to the assumption (H1)-(H3) and the implicit function theorem, we have the above equation
has a unique solution
=849, i=12 8 =0(>").
Hence

T[wep)(pi) = &+ O(e* 7).



Now for x = p; + ez we calculate

Twep] (x) = Tlwep](pi) = ce /jl[GD(x/é) — Gp(pi, 0)]w?, (g) dc
:cgé?/jl[cp(x,g) Go (93, 0)] 3(5>

i+ L@ [ Golx0) - Golpidlu? (&) ag
” : (5.7)
_ CSSC%/IR[GD(SJ/— ez) — Gp (ey)]w? dy+cg];€ /7 [Gp(x,) — Gp(pi, {)]w? < > dC +h.o.t.
= Pi(z) + EZ (szzvpiGD(pi, pj) + O(ezz)) + h.o.t.
j#i
where

Pi(z) = ceeC / Gp(ey — ez) — Gp(ey)]w?(y)dy is an even function and of order &
R
Next we define

25s—1

u
Slu] == (=A)yu+u i’ (5.8)
for which we calculate
wZp
Slwep](y) = (—A)jwep + wep T[twe,p]
2 &y — , 2 w2
Y Gix 7 _F; (—A)w y—& + Y dwi— —2— 4 ho.t
=1 "o €/ A Tlwep] 59)
isz— (516 +hot |
1 ™ T[we,p] o
—E +Ey+hot. in L2<—1,1>,
where
2. (X5 Gw))? (T Gwp)? (T §jw))?
E1=Z<j2 Rt i LA and E; = =127 =100 .
7 Tlwepl(pi) ’ Tlwep](pi)  Tlwepl(x)
Using we calculate
2 (22—151'60]‘)2 2 [ £2 2
Ei =Y &uw? - 2=/ L — [ p— w? = 0> 1) Y w?,
! ]; T5T Tlwep](pi) ]; FoE4e ) ( L]
and therefore

Bl 2-1,1) = O(=71).

(5.10)
In addition since x is close to p; we see that E; can be decomposed into two parts: one part of order ¢
and symmetric in x — p;, and the other part of order . Next we calculate

2s—1
2, (Gwy)? [we,p) (pi) — Tlwep) (x)\"
B = X (Tl (e (el (8) ~ Tl G*E( Thaep (70 ))
& ) i(2) )"
a (T[wsp](lﬂ'))2 (H Z( wep](P)) ) (5.11)
2
+SZ C’ i) Y &2V,,Gp(pip1) + hot.
wepl (p1) &

= Ey —|— Ex + h.o.t.,
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where
Ep; = O(e* 1) is symmetric in x — p;, i = 1,2, and ||E22HL2(71 1= O(e). (5.12)

We have thus established the following lemma.
Lemma 5.1. For x = p; + ez, |ez| < ro, we have the decomposition for S[wep](x),
S[we,p] = S1,1+ S1,2,

where
S11(z) = ew; Zélzvpz (pisp1) + ho.t.,
1#£i
and
(éiwi)z

51,2(2) = WRi(Z) + h.o.t,,

where R;(z) is even in z and ||S1,2HL2(_1 1) < Ce?~1. Furthermore,
e’e

S[wg,p] = h.o.t. fOT' |x — pl| 2 o, 1= 1’2

5.2. The Lyapunov-Schmidt Reduction Method. In this subsection, we use the Lyapunov-Schmidt reduc-
tion method to solve the problem

Slwep + ¢| = Z c] ay (5.13)

for real constants c; and a perturbation ¢ € H? (—%, %) which is small in the corresponding norm. To

proceed we first need to study the linearized operator
2

Sp])z (T/[wﬂ P]‘P)

We,p

w.

WiARe

Lep¢ := Stlweplp = (— ) ¢p+¢—2 [

&p

For a given function ¢ € L? (—%, %) we introduce T'[wp|¢ as the unique solution of

{D(A)S(T’[we,m + T [wepl¢p — 2ccwepdp =0, x € (—1,1),
(T'[wep)¢) (x) = (T’ [wep] ) (x +2), x€R.

The approximate kernel and co-kernel are respectively defined by

dw;
Kep = Span{]‘ j= 1,2} C H® (—1 1) ,

11
Cep —Span{‘ =1, 2} cr? (_e €> .
From the definition of the linear operator L in (3.7) we recall that by Lemma [3.5|we know that
L: (Xo® Xo)" N(HZ(R))? = (Xo ® Xo)* N (L*(R))?

is invertible with a bounded inverse. We shall see that the linear operator L is a limit of the operator L, as

(5.14)

¢ — 0. First we introduce the projection 7IJ- L? (—f 7> — C;, J— and study the operator Lep := 71‘g oLep.

Letting ¢ — 0 we shall show that L : Ke,p — CE%P is invertible w1th a bounded inverse provided ¢ is small
enough. This result is contained in the following proposition.

Proposition 5.2. There exists positive constants g,6,C such that for all e € (0,2), (p1,p2) € (—1,1)% with
min([1+p1f, |1 = pal, [p1 = p2l) >4,

ILeplliz( 11y = Cliglgae( 11y

Furthermore, the map
(5.15)



is surjective.

Proof. The proof follows the standard method of Lyapunov-Schmidt reduction which was also used in
[10, [11],29], B0, [31]. Suppose the proposition is not true. Then there exist sequences {e;}, {p*}, ¢* satisfying
ex — 0ask — oo, pF € (=1,1)%, min(|1 + pk|, |1 — p&|, [Pt — p&|) > 6, and ¢F = ¢¢, € ICSLk ok forallk > 1
such that ’

||<Pk||H2s(,%,%) =1, ||Lgk,pk<Pk||Lz(,%l%) —0, as k— . (5.16)
We define cpf-‘, i=1,2and 47’3‘ as follows:
2
&y — pi ) 11
Pr(y) = ¢*(v)x (yropz) Li=12, ¢5(y) Z ok (y) (—8, s) . (5.17)

Although each 4)5-‘ is defined only in (— o 7) By a standard result they can be extended to R such that their

norm in H?*(R) is still bounded by a constant independent of & and p for e small enough. In the following
we shall study the corresponding problem in R. To simplify our notation, we keep the same notation for
the extension. Since {¢} is bounded in HZ (R) it has a weak limit in HZ (R) and therefore also a strong

limitin L2 _(IR) and L. (IR). We denote the limit by ¢;. Then ® = (¢, ¢2)" solves the system
L® =0.

By Lemma 3.4, ® € Ker(L) = X @ Xp. Since ¢* | Kelk,pk’ by taking k — co we get ® € (Xo @ Xp)* and
therefore ® = 0.
By elliptic estimates we get ||¢¥|| s r) — 0ask — oo fori = 1,2. Furthermore, ¢5 — ¢3in H*(R),
where ¢3 solves
(—=AP¢p+¢=0 in R (5.18)

Therefore, we conclude ¢3 = 0 and ||4>]3‘||H25(]R) — 0 as k — +oo. This contradicts ||¢*|| s (_ 11 ) = 1.To
&%
complete the proof of Proposition [5.2] we just need to show that the operator which is conjugate to Lep

(denoted by L ) is injective from K, J— to C;, J— - Note that L, = 7 p © Lif/p with

We,p))?

The proof for Lg , follows exactly the same as the one of L p and we omit the details. g

7 * £P wg/P
Ls,pl/J ( ) Y+ 2 [ ]IP_FT [wSrP] ((ﬂll)) :

Now we are in position to solve the problem
Ty © Se(Wep + ) = 0. (5.19)
Since Lep | Kép is invertible (call the inverse L, ) we can rewrite the above problem as
¢ = —(Lg, o 7'[ b © Se(Wep)) — (Lgp o nslp o Nep(9)) = Mep(9), (5.20)
where
Nep(¢) = Se(wep + Se(We,p) — Se(Wep)¢p

¢) —
and the operator M, is defined by ¢ € H* ( H %) We are going to show that the operator M. is a
contraction map on

11
B€,0' = {(P c HzS (_ ) ‘ H(PS||H25( 1 1) < (T} (521)
if o and € are small enough. We have by the discussion in last section and Proposition 5.2|that
|Mep (@)l (—1,1y < C (I 0 Nep(@)llg2(—1,1) + 7 0 Selavep) 12 1))

< Clc(o)or + =71,
17
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where C > 0is a constant independent of ¢ > 0, ¢ > 0 and ¢(¢) — 0 as ¢ — 0. Similarly we show that
1Mep(@1) = Mep(¢2)ll 25 (1 1) < C(e(0)) |91 = P2l s 11y,

g’e

where ¢(¢) — 0as o — 0. If we choose 0 = £* for a < 25 —1 and & > 0 sufficiently small then M, is
a contraction map on Be,. The existence then follows by the standard fixed point theorem and ¢ p is a
solution to (5.20). We thus proved

Lemma 5.3. There exists € > 0, § > 0 such that for every pair of e, p with 0 < ¢ <& p € (—=1,1)2, and
min {1+ p1, 1= pa, [p1—p2l} >4,
there is a unique ¢ p € ICEL,P satisfying Se(wep + ¢ep) € Cep. Furthermore, we have the estimate

([ pe,p

|st(,1,;) < Ce*
forany o < 2s—1.

More refined estimates for ¢ , are needed. We recall from the discussion in last section that S[we 5] can be
decomposed into the two parts Sq ; and Sy if x is close to the center of spike, where S ; is in leading order
an odd function and Sy is in leading order an evenly symmetric function. We can similarly decompose
¢e,p as in the following lemma.

Lemma 5.4. Let ¢ p be defined in Lemma Then for x = p; + €z, |ez| < 6,1 = 1,2, we have the decomposition
Pep = Pep1 Tt Pep2, (5.23)

where ¢ p 2 is an even function in z which satisfies

Pep2 =O(") in H <—1 1) , (5.24)
and
: 2s 11
$ep1 =0O(e) in H —7 ) (5.25)
Proof. We first solve
2 ,
S[Wg’p + (Pg,p,Z] - S[Wg’p}_'_ Z 51’2 (y - Z]) G CE/P/ (5-26)
j=1
for ¢epp € ICEL/P. Then we solve
2
pi
S[ws,p + (Ps,p,Z + (Pe,p,l] - S[ws,p + ‘Pe,p,2]+ 2 Sl,l <y - 8]) S Ce,pr (5'27)
j=1

for ¢pep1 € }Cép. Using the same proof as in Proposition both equations (5.26) and (5.27) have unique
solution provided ¢ < 1. By uniqueness, ¢e,p = ¢ p 1+ ¢ep2, and it is easy to see that ¢ 1 and ¢ p have
the required properties.

5.3. The Reduced Problem. In this subsection, we solve the reduced problem which finish the proof of
Theorem By Proposition for every p € Ba1(p?) there exists an unique solution Pep € ICgfp such
that
S[wep + Pep) € Cep. (5.28)
To complete the proof of Theoremwe need to determine p® = (p$, p§) near p such that S [We,p + Pep] L
Ce,p, which in turn implies that S[we,p + ¢¢p] = 0. To this end, let We := (Wg1(p), We2(p)) : B 1(p°) —
R? where
¢ ow;
Wei(p) == 871/ | Slwep +‘Ps,p]afyld /

€

i=1,2
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Then W,(p) is a map which is continuous in p and our problem is reduced to finding a zero of the vector
field W,(p). Let us now calculate W,(p)

1
1 [F (We,p + Pep)” | Qw;
=/ l<_A)S(w€p Hop) (gt 90p) =, Tru ) Sy
1
o (@ep + ep)?] dw; (5.29)
[} [t o - o
1 /1 (Wep + Pep)®  (Wep + Pep)? | duw; ay
-1 T[we,p] + Pep T[werp] dy
=hL+1D
where I;, I, are defined by the last equality and ¢ , satisfies
D(—A)ep + Pep — 2ceWepdep — Cerp = O. (5.30)

For I, we have by Lemma
1

1 [F
Il =& <'/_1

)
oL mmwwm +ey) - T[we,prz))aZ;idy) Lo

s (wWep + e p)?
—A € € € €  Tlwepl(pi)
(—=A)* (wWep + ¢ep) + (Wep + Pep) Twep|(pi

9w;
dy

dy

— el /i (0 (E0s o) + (s o) — 0T Pep)” | O (5.31)
_% iWi e,p iWi ep T[wg P](Pz) ay y
L (Ew; + pepn)? N i
e </_€1 Wq[w&ﬂ(pi +ey) - T[we,p](i’i))éi')ydy> +0(e>7h).

Note that, by Lemma 5.4, we have

o=

./_ [(=A)ep + pep — 2w¢£p ’dy /Gbspl ((*A)Swﬁrwi*wf)dy+O(s1+25):O(sl+25),

&€

(5.32)
and
g2 Wigy o [ I 4y 4 ot = O 5.33
¢gp a J_1 ¢£,p,l¢£,p,2 By y+ 0.l. = (8 ) ( . )
Now by Lemma 5.4/and equations and we have
1t oo , ) 9w 25-1
Lhi=e [ wi(Tlwep](pi +ez) - T[w&P](pl))@dy +0(™ )
1
1 [® o ow; -
¢! ¥ w? <Pi(z) +e§§%zvp[GD(pi, p]-)) a—yzderO(gs 1 (5.34)
€ J7F1

—_

= -3 W’ (y)dy Y &V, Go(pi, pj) +O(* 7).
j#i
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Similarly, we calculate

T[w, p + Pep T[we,p] dy

12 _ g / . [ wsp + 4781) (wE,P + ¢£/P) awl dy
1

. M wi 251 5.35
‘ /J (T[wep))? IPEP Iy W +olE=) o

. [t 10
——e 3 ;; ($ep = Pep(pi)dy + O(>1).

Since ¢, p satisfies (5.30), a similar argument to that used in Lemma [5.4|gives
| | Y gup () 42, (E))
Pep(pi +€2) — Pep(pi) = ce . (GD(Pz +ez,0) — Gp(pi,€))  2Wep Pep +Pep c ¢

=0 (S Z cf]zzvpiGD(pi, p])> + pl'(Z) + h.o.t.,
J#i
(5.36)
where D;(z) is an even function in z = y — £ Substituting (5.36) into (5.35) we obtain that

= o(y_ &V pGolpi pj) +o(e*71). (5.37)
i

Combining the estimates for I; and I, we obtain

Wei(p) = =3 [ @)y E &, Golpi,py)(1+0(1)) + 0@ = —3F(p) [ @’y + 01,

j#

(5.38)
where F;(p) is defined in 2.9). From (H3) we have F(p’) = 0 and from numerical calculations of the
Green’s function we deduce that pJ — p¥ = 1. By symmetry we conclude that if there exists p = (p1, p2)
such that either one of W, 1(p) = 0 or W2 (p) = 0 then W¢(p) = 0. For W, ; we have

1 s .
Weilp) == 3 | @)y (1 =BV Vi Go () + (02 =PSBV Vi Go (1}, 13))
+0(lp—p"P+*71).

By assumption (H3) we have V,, V;,,Gp(pY, pJ) # 0. As a consequence, we can apply Brouwer’s fixed

point theorem to show that for ¢ < 1 there exists a point p® such that W,(p¢) = 0 and p¢ € Bas—1(p°). Thus
we have proved the following proposition

Proposition 5.5. For e sufficiently small there exist points p¢ with p¢ — p° such that We(p¢) = 0.

Proof of Theorem[2.1) By above Proposition, there exists p* — p° such that We(p®) = 0. In other words,
Slwepe + Pepe] = 0. Let ue = ce(Wepe + Pepe), Ve = T wepe + ¢epe]. By the Maximum principle, ue > 0
and v, > 0. Moreover (i, ve) satisfies all the properties of Theorem[2.1] O

6. RIGOROUS PROOF OF THE STABILITY ANALYSIS

The linear stability of the two-spike solution constructed above is determined by two classes of eigen-
values: the large and small eigenvalues satisfying A, = O(1) and Ay — 0 as ¢ — 0 respectively. In the
following two subsections we consider each case separately.

20



6.1. Stability Analysis: Large Eigenvalues. In this subsection, we consider the stability of the steady state
(ue, ve) constructed in Theorem Linearizing around the equilibrium states,

U=t + Pe(x)eM, v =10 + et = T[ue] + e, (6.1)
and substituting the result into (GM) we deduce the following eigenvalue problem
{(_A>;¢€ + e — 2T[ug Pe + T[u (TTue))? Yo+ Aee =0, (6.2)
(_A)slpf + Pe — 2cettepe + TAPe =0,

where A, is some complex number. In this section, we study the large eigenvalues, i.e. those for which we
may assume that there exists ¢ > 0 such that [A¢| > ¢ > 0 for ¢ small. If ®(A;) < —c then we are done (since
these eigenvalues are always stable) and we therefore assume that (A¢) > —c. For a subsequence ¢ — 0
and A — Ap we shall derive a limiting NLEP satisfied by A,.

We first present the case T = 0. In the end, we shall explain how we proceed when 7 > 0 is sufficiently
small. By the second equation of (6.2), we have . = T'[u;](¢¢). Let us assume that ||¢e|| Hs(-L1) = 1 and

we cut off ¢ as follows:

Doi(y) = de(n)(L=Fh), 63)

7o
where x(x) is a given in (5.1) of §5] Using LemmaEtogether with R(A¢) > —c, the asymptotic expansion
of u, given in Theorem 2.1} n and the algebraic decay of w given in Proposition[3.1} we get that

2
¢e =Y ¢ei+hot. inH? (—1, 1) . (6.4)
i=1

e e
Then by standard procedure we extend ¢, ; to a function defined on IR such that

| (~1,1) i=1,2. (6.5)

Without loss of generality we may assume that [|¢e[|;2s(gy = 1 and by taking a subsequence of ¢, we may

also assume that ¢, ; — ¢; strongly as ¢ — 0 in L?> N L* for i = 1,2, on compact subsets of R. Therefore we
also have
we; — we; as € — 0, strongly in L(R). (6.6)

v = [ oo (£) o (£) ac 67

Now we use the expansion of i, to calculate the value of . at x = p§ for eachi =1,2

lps(Pi)—ch/ Gp(pi, ¢ Z‘:] <€£P§>X<e§ p])¢g<g>d€+h0t

2
=2ec. ) &iGp(pi, pj) /]Rw¢>jdy+og(1).
=

It is known that

(6.8)

Substituting into the first equation of (6.2) and letting ¢ — 0, we obtain the nonlocal eigenvalue prob-
lem

-1/ .2
(=A)°¢i + ¢i — 2we; +2 (/IR wz(y)dy> (/R Y &iGp(pi, Pj)w¢jdy> w? + Ao =0, i=12. (6.9)
¥
We can rewrite in matrix form as

-1
(—AV® +d — 20d + 2 </ wz(y)dy> (/ wBCIDdy) W+ Ag® = 0 (6.10)
R R
where B is the matrix introduced in and ® = (¢1,¢)T € (H*(R))2. We then have the following

conclusion

Theorem 6.1. Let A, be an eigenvalue of (6.2) such that %(A¢) > —c for some ¢ > 0.
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(1) Suppose that for suitable sequence e, — 0 we have A, — Ag # 0. Then Ag is an eigenvalue of the problem
given in (6.9).

(2) Let Ay # 0 with R(Ag) > 0 be an eigenvalue of the problem given in (6.9). Then for € sufficiently small,
there is an eigenvalue A, of with A = Agase — 0.

Proof. The proof of (1) follows from a similar asymptotic analysis to that used in

To prove part (2) of Theorem [6.1|we follow the argument given in §2 of [3]. We assume that Ag # 0 is an
eigenvalue of problem with R(Ag) > 0 and we first note that from the equation for ¢, we can express
e in terms of ¢, as in (6.7). Then we rewrite the first equation as

Uepe .

[

12
P = _Re()\s> [2 ;lps] ’
US
where R¢(),) is the inverse of (—A)® + (1 + A;) in H*(R) and ¢ = T.[u¢](¢¢) is given in the second
equation of (6.2). The key observation is that R¢(A¢) is a Fredholm type operator if ¢ is sufficiently small.
The rest of the argument follows as in [3]. O

By diagonalizing B we see that the eigenvalue problem (6.10) can be reduced to the nonlocal eigenvalue
problems

wd;d R R )
WWZ + Mo =0, ¢ € H5(R), i=12, (6.11)
R

where 07 and 0 are the two eigenvalues of B.

We now study the stability of for large eigenvalues explicitly. Suppose that

2 min o< 1. (6.12)
ceA(B)

Then by Theorem [3.2}(1) there exists an unstable eigenvalue of and therefore by Theorem [6.1] there
exists an eigenvalue A, of such that R*(A¢) > co for some positive number ¢(. This implies that (1, v,)
is unstable. On the other hand if 2min, ¢, ) 0 > 1 then by Theorem (2) any nonzero eigenvalue Ag is
stable. Therefore by Theorem|6.1|for ¢ small enough all nonzero eigenvalues A of for which |A¢| > ¢ >
0 holds, satisfy (A¢) < —c < 0 for € small enough.

Finally we comment that when T # 0 and 7 is small. We shall apply the results of Theorem In
this case, the matrix B will have to be replaced by the matrix B.,, which depends on Te. In particular the
Green’s function Gp is replaced by the Green’s function G7, satisfying

(=AY i + ¢i — 2we; + 20;

D(=A)GH 4+ (14+7TA)Gph =0, GPH(x+2,2) = G (x,2). (6.13)
It is then easy to check that the eigenvalues of B;)_ satisfy the same properties as those of B provided that

T is sufficiently small.

6.2. Stability Analysis: Small Eigenvalues. We now study the eigenvalue problem with respect to
small eigenvalues. Namely, we assume that A, — 0 as e — 0. Let

iy = We, pe + (Pg/psl O = T[wg’p€ + (Pe,pg]' (6.14)
where pf = (p§, p§). After rescaling, the eigenvalue problem (6.2) becomes

= 72

{(—A>;¢s+¢s = Hepe+ TPt Age =0, (615)
D(—A)sl,bg + e — 2¢eilePe + T)lsl,bs =0,

where c; is given by (5.4). We take T = 0 for simplicity. As TA, < 1 the results in this section are also valid

for T finite, this is due to the fact that the small eigenvalue are of the order O(e?), we shall prove it in this

subsection.
We cut off i, as follows

ey — pt )
Tei(y) = X (yrop) we(y), i=12, (616)
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where x(x) and rq are given in §5] Similarly to the §5we define

11
Kepnew = Span {ii;; | i =1,2} C H* <_gfg> ,

11

Ce,p,new = Span{ﬁé,i |i= 1'2} cr <_€ €>

Then it is easy to see that

2
e (y) = 2 i i (y) + h.o.t.. (6.17)

Note that

and 7, ; satisfies

=2
<.
(=D)ilg; + e — f +hot.=0. (6.18)
€
Thus ﬁé,i = ddﬁ;i
)
u
(=D ; + . U“ ol +hot. =0, (6.19)

€

and we have

2 0w v

— &5 ( B o).
Let us now decompose

Z asily ; + g, (6.20)

where af are complex numbers and ¢;- L K;. Similarly, we can decompose

2
=Y A + e, (6.21)
i=1

where 1, ; satisfies

D(_A)Slpf,i + l/JE,i - 2C51/_lgﬁé’i - O/ 1 - 1/2/ (622)
and ;- satisfies
s, L L -l

D(_A) l:bs + lps - ZCS”S(PS =0. (6~23)

We impose periodic boundary conditions on both of these equations.
Suppose that \|¢£||H25(7%%) = 1. Then [af| < C since

L od

f 4)€ ”szd
a; = ————— +o(1

l Clz Jrwdy
Substituting the decompositions of ¢, and ¢, into (6.15) we have

s ol 1 2u€ ﬁzi —/ 1 u 2 P
(=A)pe + ¢ — P zpe + A — € 2 02 - SPei | Hhot.=—Ac ) afii ;. (6.24)
i=1
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Let us first compute
. z e i g e
Jo:= S;ai ?77%’08 - E;glpez
2 a2, 1 2
— sZaf <;21 "2 8%,)) — Eafz ;ﬁjlpﬁ'i+h'0t
i=1 € i=1  jAi Ue
2 2. 1 2 2.
=¢ af% (—el,bg,i + ?72) -y aflp&j% + h.o.t
=1 Ye i=1j#i €
We rewrite Jj as follows
2 2 2
1
Jo=—¢e) Zaj = (glpg,j 172(51]> +h.o.t (6.25)
i=1j=1
Let us also set )
u i
Lege i= —(= D)y — e +25¢ — v (6.26)
€
and
a;:= (a5,a5)7. (6.27)
Multiplying both sides of (6.24) by iI; , and integrating over ( % %) , We obtain
2 1
rhs. = <A Y at [ty = <reai@ [ (! (1)%y(1+ OE>H)) (6.28)
i=1 Y7
and
i u l
Lhs. = ZZ / s _2 1,Lvs] €0,0;7) 1l ldy—i—/ . _2 lps dy — / Lol é(])de (1+0(1))
i=1j=1 ? (6'29)
= (Ju1+ )21+ J31) (1 +0(1))
where [;;, i = 1,2,3, are defined by the last inequality.
We define the vectors
Ji=Jin Ji2)", i=1,2,3. (6.30)
To give estimates on each J; (i = 1,2, 3) we need the following three lemmas
(e — €0:050) (pf) = —eVGHH? + o(e). (6.31)
(6.32)

Lemma 6.2. We have
Proof. Note that for i # j, we have
(lpsj 8085]1)(;71) l/JE](pl) = ZCE/ GD(p,,C)ugug]dg = _‘C—g V GD(pz' P]) +O( 1+25)
z)dz + ¢, Z/ Gp(x, Q)i (g) d€+o(81+25)'

Next we compute . ; — T, near p?
_ 4 *©
T:(x) =c. | Gp(x,Q) () ag = ec, Gp(x,€z)il
[ uteio (£ = [0
02 (£) e+ o).
j#i

/ VGp(x, ez)ig ;(z)dz

1
So
oL (x) —scg/ VxGp(x,ez)ii2(z dz—i—ch/ V:Gp
Thus .
Pei(x) — evi(x) :2£c5/ Gp(x, ez) i i, ;dz
~a ) [ Voo (£) g+ o)
7
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Therefore we have,
Yei(p) — et (pf) = 2ece / Gp (P, €2)il, il jdz — €%ce [ VG (pf, €2)it; ;(2)dz

e Y [ VyGolpea)i (2)dz + O )

:_28(:1’ EGD pz/pz 826] EGD pz’p])+o( 25)
7
=—¢fiV, sGD(pf, pi) + O(e¥).
Equation (6.31) then follows from solvmg 6.32) and (6.33). O
Lemma 6.3. Let gj; be defined as in @2.16). Then we have
(¢ez 505‘5]1)07; + ‘C'Z) - (lps,i - 877:;5]‘1')(}7;) = _SZZ (VpivprD(p;?/ pf) + qjiéji) ézz + 0(82)' (6-34)

We next study the asymptotic expansion of ¢;-. Let us first define

2 . pg. 2
Pei = Y. Vpljw (y - ;) ;o fei= e} e (6.35)
j=1 i=1
Then we have the following lemma.
Lemma 6.4. Let be ¢ sufficiently small. Then
62 = @¢llpgas (1,1 = 0(e)- (636)

Proof. We first derive a relation between ;- and ¢;-. Note that similar to the proof of Proposition L is
invertible from KC2, ponew 1O Ct pnew- By Lemma6.2land the fact that L. is invertible, we deduce that

||<Psl||st(,%/%) = O(e). (6.37)
Let us decompose
N ey — ps
Pei = (P*SX (}/P,) . (6.38)
o
Then
2
¢ = Z i+ ho.t. (6.39)
Suppose that
Fei — ¢ in H' (—1 1) : (6.40)

By the equation for ;- (similar to the proof of Lemma

ve (p) —2€Cs2/ Gp(pj, z)iledej(z)dz + o(e —ZEZGD Pi. p}) gf]fflwaP, +o(e), (6:41)

j=
and therefore

wdgdx
(e (P, e (p3))" = ngD’H% +o(e), (6:42)
R
where @) = (¢1, )" Substituting (-42) into (6.24) and using Lemma 6.2} we have that ®j satisfies
Dod
(—A)5®p + By — 20D, + ngHf}zwzilx 2 (VGp) T H2a%%? = 0, (6.43)
R

where

T

a’ = lim a® —hma as)"t.

Jm 0( 1,a3)
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Thus
@y = — (I-2GpH) " (VGp) "H?a"w = —P(VGp) H?*a"w, (6.44)
where
P=(I-2GpH)"
Now we compare &g with ¢}. By definition

R
e =—¢€) Zafvpl;fjjw y=— (6.45)
i=1i=1
On the other hand,
3
—eZgbg,Jrhot —sZgb, (yp) o(e). (6.46)
The lemma is proved by using (6 and comparing (6.45) and (6.46). O
From Lemmal6.4l we have that
(e (P, 9 ()T = —2eGpHP(VGp) Ha’ + o(e) (6:47)
and
wedx
Y (P + e2) — v (p) = 2672 Z VG (pi, p5) é‘;ffR e (6.48)

=

With the above three lemmas we can now derive the following results concerning the three terms J1,J2, J3
defined in (6.30).

Lemma 6.5. Let Gp, H, Q, and a, be given by 2.4), 2.15), 2:16), (6-27) respectively. Then
J1 = ae2H(V2Gp + Q) H?a: +0(€%), Jo = 2012 HVGpHP(VGp) T H%a. + o(?), (6.49)

and J3 = o(€?), where c; = % [, wdy.

Proof. The computation of J; follows from Lemma In fact since @, = o(1)
2 1 =2

i) = ﬂf/? ”82,1 (e,; — €0.071) 0, dy
B = e S '
2 1 112
= 20 [ 25 (196 ) — <L) — o) — 0t (p)ég]) Ty + ()
e (6.50)

2
= —&¢ /}R (yw?w'(y))dy ) at (Vp;Vp;.GD(Pi, p) + qzjézj) & +o(e?)
j=1

2
=q§é§:@(Vﬁngﬂﬁmﬁ+mﬁﬂCf+d3%

which, by Lemmal6.2] proves the first estimate of (6.49). The estimate for J, follows from
2,

1
Jo = /_ _2 Lyt iy dy

=/?$%umaw+/lﬂwan )y (651)

112
—/1wm<>%Wm%mww»

together with (6.44), (6.47)-(6.48). The estimate on J3; follows from Lemma the fact that .(pj) =
& + O(e71) at pf and the leading order of . (p} + ey) — T,(pf) is an odd function of order e. O
26




We can now provide an estimate on the small eigenvalue. From Lemmal6.5 we have

Ji+J2+]5 = c1€H ((vng +OH2+ ZVQD’HP(VQD)TH2) ag + 0(2)
= c1&?H>* M(p®)a; + o(€?),
and therefore by combining and (6.29), we obtain

HAM(p)ae +o(e?) = —AHa, /ﬂ;(w’(y))zdy(l +0(1)). (6.52)
From this equation we see that
Ae = =€ 02 pyp0) (1 +0(1)),

where ¢ is a positive constant and A \¢p0) is the non-zero left eigenvalue of M(p?) given in @19). In
Appendix |[C| we derive a quickly converging series expression for the Green’s function for which we can
interchanging summation and differentiation to calculate its second derivatives. Numerical calculations
then indicate that 92Gp(x,0) > 0 at x = 1 and using we therefore deduce that the non-zero left
eigenvalue of M (p?) is positive. The small A, is therefore negative (stable) so that the two spike pattern is
linearly stable with respect to the small eigenvalues. In particular, linear stability is determined solely by
the eigenvalues of B and the proof of Theorem [2.2|is therefore complete.

7. CONCLUSION AND OPEN PROBLEMS

In this paper we have proven the existence and rigorously analyzed the stability of both symmetric and
asymmetric two spike equilibrium solutions of the fractional one-dimensional Gierer-Meinhardt system
with periodic boundary conditions. In addition, by using a combination of formal asymptotic and nu-
merical methods we have calculated asymptotic approximations for N-spike quasi-equilibrium solutions
and derived a system of ODEs governing their slow dynamics on an O(e2) timescale as well as a system
of NLEPs governing their linear stability on an O(1) timescale. Our findings indicate that a single spike so-
lution may be destabilized or stabilized with respect to oscillatory instabilities by decreasing the fractional
exponents for the activator, s1, or inhibitor, sy, respectively. On the other hand we found that decreasing
the fractional exponent for the inhibitor, s;, has a stabilizing effect on the stability of symmetric two-spike
solutions with respect to competition instabilities. Finally we determined that asymmetric two-spike solu-
tions are always linearly unstable with respect to competition instabilities. In all one- and two-spike cases
we found that the equilibrium spike patterns are linearly stable with respect to the slow dynamics and that
this is a consequence of the choice of periodic boundary conditions.

We conclude this section with an outline of open problems and directions for future research. The first
open problem is to prove the existence and to provide a complete classification of all N-spike equilib-
rium solutions to the fractional one-dimensional Gierer-Meinhardt model. In particular a key question is
whether, as in the classical Gierer-Meinhardt model [31]], asymmetric N-spike solutions are generated by
sequences of spikes of two types. Second, in this paper we have chosen to use periodic boundary condi-
tions to reduce the technical difficulties typically encountered when implementing Dirichlet or Neumann
boundary conditions (see [18]). However, we believe our results can be extended to these more general
cases by appropriately modifying the relevant Green’s function satisfying with Dirichlet or Neumann
boundary conditions as well as by extending our analysis to provide regularity estimates at the boundaries
x = £1. Another interesting direction for future research is to investigate the behaviour of solutions to the
fractional GM model in the D < 1 regimes for which the classical GM model is known to exhibit distinct
behaviour such as spike splitting and clustering. Finally a detailed analysis, either rigorous or formal, of
localized solutions for different reaction-kinetics as well as in higher-dimensional domains would be a fruit-
ful direction of future research. Indeed the analysis of localized solutions to the classical Gierer-Meinhardt
model is markedly different in one-, two-, and three-dimensions [14)} [29] 9] due, at least in part, to the dif-
ferent singular behaviour of the related Green’s functions and we suspect that this will also be the case for
the higher-dimensional analogues of (L.T).
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APPENDIX A. THE NONLOCAL EIGENVALUE PROBLEM

In this section, we prove Theorem 3.2l We consider the eigenvalue problem
Jg wepdx
Jg w?dx
Our aim is to show that the above eigenvalue problem has an eigenvalue with real part when v € (0,1)

and the real part of the eigenvalue is always negative if Y > 1 and s > %.
Before we give the proof of Theorem [3.2] we first present the following result.

(—=A¥p+ ¢ — 2w + +ap =0, ¢ H*R). (A1)

Proposition A.1 ([5]). The eigenvalue problem
(=AY ¢+ ¢ —2wp+up=0inR, ¢ H*(R) (A2)
admits the following set of eigenvalues:
1 >0, up=0, uz3<0, ---. (A.3)
Moreover, the eigenfunction corresponding to yy is radial and of constant sign.

Proof of Theorem[3.21(1). The original problem is equivalent to finding a positive zero root of the function
F(«) defined by

F(a) :/ dex+'y/ w(Lo + o) lw?dx,
R R
where

Lo¢p = (=A)°¢ + ¢ — 2wg.

By the above proposition, Ly has a unique eigenvalue y; > 0 with an eigenfunction of constant sign. We

now consider F («) in the interval (0, 41). Since L, 'w? = —w, we deduce that

F(0)=(1—7) / wldx > 0, (A4)

R

provided v < 1. Next, as « — p; , we have that

/ w(Ly + o) tw?dx — —oo. (A5)

R

Hence, we get from (A.5) that

{(a) = —c0 as a—pu?, (A.6)
when v € (0,1). By (A4), (A.6) and the continuity of {(«), we can find a ¢y € (0, 1) such that f(xp) =0
whenever v € (0,1). O

Next, we shall study (A.I) when o > 1. We shall prove that the real part of the eigenvalue is negative in
any case. To this end, we introduce some notation and make some preparations. Set

mwz, ¢ € H®(R). (A7)

According to the definition of L, we can easily see that L is not self-adjoint. Let

ow
Xo :=ker{Ly} = Span{ax} .

Lo := Lop + v

Then .
Low = —w?, Ly <w—|— 2% Vw) = —w. (A.8)

Hence

/(Lalw)wdx:/ (;Sx-wa> wdx = 15 / w?dx, (A9)
JR JR JR



and
/ (Lalw)wzdx = —/ Laleowdx = —/ w?dx. (A.10)
R R R
Before we give the proof of Theorem 3.2} We present the following important lemma.
Lemma A.2. Let Ly be an operator defined by

waqbdxwz [g W dx R widx [, wpdx

Li¢p = Lop + 5 5 5 (A.11)
Jr wdx Jg wdx (g w?dx)
Then we have
(1) Ly is self-adjoint and the kernel of L, (denoted by X;) is Span {w, %—Z‘C’ }
(2) There exists a positive constant a; > 0 such that
' s wodx [, w>pdx widx wedx)?
L9 i= [ (1(=8)50f + g7 — 2ug?) dx -+ 2 IR TIRPAT_ Jy % g 0p)
R Jg wdx ([ w2dx) (A12)

> ald%Z(]R) ((P/ Xl),
forall ¢ € H?(R), where dpa(ry means the distance in L2-norm.

Proof. By (A.12), L, is self-adjoint. It is easy to see that w, %—zy" € Ker{L,}. On the other hand, if ¢ € Ker{L,},
then by Proposition

Log = —c1(#)w — ca(9)0? = c1($)Lo(w + o - Vo) + ca(@)Lo(w),

2s
where
c1(¢) = Jr wpdx B f]Rw3dxf]Rw¢)dx 02() = M
fIR w2dx (f]R wzdx)z ’ f1R D2dx

Hence

§—c1(9) (@ + 5x- Vo) — () € Ker{Lo}. A
Note that

w? (w+ Lx-Vw) dx 3 1.

ot ot =71 T LA f“éji(Zz;i;x ve)ds
1, [gwdx

=c1l9) — @)= )P,

by (A.9) and (A.10). This implies that ¢;(¢) = 0 for s > }1. By (A.13) and Proposition we prove the first

conclusion.

It remains to prove (2). Suppose it is not true. Then by the first conclusion there exists («, ¢) such that (7)
« is real and positive, (ii) ¢ L w, ¢ L 9% and (iii) L1(¢) + a¢ = 0.

We shall show the above conclusion is not possible. From (ii) and (iii) we have

2¢d
Mw —0. (A.14)
[g w?dx

First we claim that [ w?¢ # 0. In fact if [, w>¢ = 0, then —a < 0 is an eigenvalue of Ly. By Proposition
—a = p1 and ¢ has constant sign. This contradicts with the fact that ¢ L w. Therefore —a # 1,0 and
hence Ly + « is invertible in X3 So (A.14) implies

B Jr w2 pdx
T

(Lo+a)p+

(Lo + Dé)_lw.

Thus
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/w Ppdx = fIR 2¢)dx/((L0+oc)_1w)w2dx,

Jg wrdx
which implies
/]R w?dx = — /]R((LO + a) " lw)w?dx = /IR((LO + o) w)((Lo + a)w — aw)dx,

hence
/]R((LO +a) lw)wdx = 0. (A.15)

Let hy(a) = [g((Lo + &) 'w)wdx, then

1 1 '
— —1 = — J— Y = (— — 2
h1(0) = /IR(LO w)wdx = /]R(w+ 7 Vw)w (43 1)./]Rw dx <0,
due tos > 411' Moreover,

I () = — /]R(LQ +a)2ww = — /]R((LO + )" w)2dx < 0.
This shows that i1 («) < 0 for all « € (0, p1). Clearly, h1(a) > 0 for all @ € (p,00) since LH}: hi(a) = 0.
14 e}
This is a contradiction to (A.15) and we finish the proof. d

Proof of Theorem [3.2}(2)-(3). We now finish the proof of Theorem [3.2}(2) and (3). First, we prove (2). Let
g = ag +iay and ¢ = ¢Pr + i¢;. Since ay # 0, we can choose ¢ L ker{Ly}. Then we can obtain two
equations

(A.16)

d
Lopr + YIJF %I;xx w? = —ar¢R + a1y,
dx
Logr + ’YJ}R uﬁ;x w? = —ar¢pr — AR,
Multiplying the first equation of (A.16) by ¢r and the second one of (A.16) by ¢; and adding them together,

we obtain

—&R /11{(4’122 + ¢7)dx = L1 (¢r, ¢r) + L1(¢1, ¢1) + (wade [(/ w¢Rdx> + (/IR w<p1dx)2

(A.17)
- f]R WPRAx [ W Prdx + [ wprdx [ w?Prdx
Jg w?dx
Multiplying both equations of (A.16) by w and adding together, we get
d . . .
/ w24>Rdx — fIR ZR * / wldx = ag / wPrdx — «g / werdx,

JR f]R w?dx JR JR

(A.18)

wordx
/szfmdx— f}{w?dx /w3dx—er/ w¢1dx+rx1/ wrdx.

We multiply the first equation of (A.18) by [ w¢rdx and the second one of (A18) by [ wedx and add
them together, we obtain

/w(dex/ w ¢Rdx+/ w4>1dx/ w (l)[dX— (sz+'y§ 2dx> < / w4>Rdx /w<p1dx >

(A.19)

Therefore, we have
—Q&R /]R(CP%z + ¢7)dx = L1 (¢r, ¢r) + L1 (1, ¢1) + (ff]R { / wprdx)? / wedx) ]
Jrw’d ) (Jr wgdex + (Jr quIdx)zdx

[g w?dx Jg w?dx
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Set
¢r = cRw + Pk, pp L X1, 1 =crw+oi, ¢ L X1

/ wqudx:cR/ wdx, / wPrdx = C]/ wdx,
R R R R

By (01 X1) = [0 22, oy (91, X1) = 01112
By some simple computations we have
Li(gr, ¢x) + Li (1, ¢1) +ar (=D +c) [ wldv+(+cD(r =12 [ wldxar(lok |+t I3:) =0
By Lemmal[A.2}
ir(r=D(k+c) [ @i+ (7 =12k +e) [ @+ (081 + ot 13) <o

Since y > 1, we have ag < 0, which proves Theorem [3.2}(2).
It remains to prove the last conclusion. Since ¢ satisfies

Then

and

dx
~A P+ p—2 w9 oy A21
(—A)p+¢ w¢+7f]Rw2dxw (A.21)

d
Then Lop = —c3(¢)w?, where c3(¢) = 'yﬁz;;fdj. Hence ¢ — c3(¢)w € Ker{Ly}. Thus

Jg wedx
_ _ , A22
es(9)1 =7 s = o) (a2)

Soif ¥ # 1, we get c3(¢p) = 0. Then ¢ € Ker{Ly} and we complete the proof. O

APPENDIX B. OVERVIEW OF NUMERICAL CALCULATIONS

In this section we briefly outline the numerical calculation of solutions to the core problem and the
time-dependent fractional GM system with periodic boundary conditions (I.I). In both cases we use the
finite difference-quadrature discretization for the fractional Laplacian with piecewise linear interpolants
developed by Huang and Oberman [13]]. When discretizing we approximate the fractional Laplacian
on a truncated domain using the far-field behaviour presented in Proposition [3.1| to capture the nonlocal
behaviour outside the truncated domain. On the other hand, when spatially discretizing we use the
spatial periodicity of the system to simplify the expression for the discrete fractional Laplacian. Time step-
ping of the spatially discretized system is then performed using a second-order semi-implicit backwards
difference scheme [25]. In the remainder of this section we provide additional details for both of these cases.

First we consider the numerical calculation of solutions to the core problem (3.1). Since the domain
for is —co < y < oo we need to both truncate and then discretize the truncated domain to obtain a
numerical calculation. Outside of the truncated domain we use the far-field behaviour from Proposition3.1]
to impose a Dirichlet boundary condition. Specifically, letting L > 0 we approximate solutions to by
solving the truncated problem

(~AfU+U-U*=0, |y|<L,  U(y)=UL)(L/y)">, |y|>L

where we have replaced bs with U(L)L'*% since we do not yet know the value of bs. To account for the
nonlocal contributions outside of the truncated domain we discretize a computational domain that extends
beyond the truncated domain. Specifically we discretize the computational domain —2L < y < 2L by
letting y; = ih fori = —2N, ..., 2N where h = L/ N. Seeking symmetric solutions we impose U; = U; for all
i = —2N,...,2N which reduces the unknown values to Uy, ..., Uy. Note in addition that U; = (L/ym )1+25 Uy
for all |i| > N. The fractional Laplacian can then be approximated by (see §5 in [13])
2N
(=D U(y) =~ (=) Ui = Y (U= Uyypwj+C'u; —cf'uy,  i=0,..,N (B.1)
j=—2N



Core Solution ws(y) Decay Coefficient bs

s

3.0 A — 0.3 2.0 A
2.5 0.4

— 0.5 1.5
2.0 A — 0.7
0.9

1.0 A

0.5 A

0.0 T T T

0.4 0.6 0.8 1.0

(4) (B)

FIGURE 3. (A) Sample plots of numerically computed solutions to the core problem (3.1).
(B) Far-field decay coefficient b, in the core problem (3.T).

where the first term accounts for integration inside of the truncated domain and

(j=+1,+2,.),  (B2)

Cs {21—25 —2+4(1—s5)"1s, j=+1,
ZU] =

25(2s —1)h% | [j+ 1|1 7% —2[j|1"% 4+ |j — 1|17%, otherwise,

where we note that the value of wy is never needed in the discretization. Note that these weights require that
s # 1/2 but a simple modification is needed for s = 1/2 (see Section 3 of [13] for details). The remaining
two terms C! and C!!! account for contributions outside of the computational domain and are respectively
given by

C
cll — s
s(2L)2s
I CSLZSJrl y; i
C = st DEDE (2F1(25+1,4s+1;4s+2,2i)+2F1(25+1,4S+1;4S+2r_2i)>/

where , F; is the Gaussian hypergeometric function.

With the above discretization it is then possible to approximate solutions to by solving the nonlinear
algebraic system for the N + 1 unknowns U, ..., Uy. To numerically solve this nonlinear system we
use the fsolve function in the Python 3.6.8 SciPy library. Our initial guess for the nonlinear solver is
obtained by numerical continuation in s starting with s = 1/2 for which the exact solution ws = 2/ (1+ yz)
is known. In this way we may numerically calculate the core solution for an arbitrary value of s and in
Figure [3a| we plot the resulting core solutions for select values of s where we have used N = 2000 for the
spatial discretization. From these solutions we may also extract the value of the far-field decay coefficient by
and this is plotted in Figure [3b| We conclude by remarking that no nontrivial solution to the core problem
exists for s < 1/6 (see for example [5]) and our numerical computations failed to yield solutions for
s ~ 0.2 and below because of this.

Turning now to the numerical solution of we discretize the interval —1 < x < 1 into N uniformly
distributed points given by x; = —1+2ih fori = 0,..,N —1 where 1 = 1/N. Assuming that ¢(x) is
a 2—periodic function on —1 < x < 1 and letting ¢; = ¢(x;) for each i = 0,..., N — 1 we calculate (see
equation (FLh) in [13])

=] N-1
(=AYp(xi) = (=8p) i = Y. (pi—¢ij)wj= )Y, Wi j(¢i —¢j), (B.3)
= oo =0
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where the final equality follows from the periodicity of ¢ and where

e}
W = ws + 2 (W4 Nk + Wo—NK),
k=1
with each weight w; (i € Z) being given by (B.2). In our numerical calculations we truncate the sum
after 500 terms. From (B.3) it is then straightforward to deduce the entries of the matrix (—A)® which we
remark is dense in contrast to the tridiagonal matrix obtained by applying a finite-difference approximation
to the one-dimensional Laplacian. With this spatial discretization we can then approximate (1.1) with the
2N-dimensional system of ODEs

dip L AD 4N (D) = (B.4)

where ®(t) = (ug(t),...,un—1(t),vo(t), ..., vN,l(t))T, A = diag(e?1(=Ay)%, 77 1D(=A,)%2), and N (D) is
the 2N-dimensional array that accounts for the nonlinearities in (I.I). To integrate we employ a
second-order semi-implicit backwards difference scheme (2-SBDF) [25] that uses second-order backward
difference time-stepping for the fractional Laplace term and explicit (forward) time-stepping for the non-
linear term. Specifically, given a time-step size At > 0 and denoting by ®, = ®(t,) where t, = nAt the
2-SBDF scheme becomes

(3T — 2AtA) D, 1 = 4D, — ,y_q + AALN (@) — 2AtN (D7), (B.5)

where 7 is the 2N x 2N identity matrix. Given an initial condition ®; (based on the asymptotic approxi-
mations of §4) we also need ®; to initiate time-stepping with 2-SBDF. We calculate ®; by using a first-order
semi-implicit backwards difference scheme (1-SBDF) [25] given by

(Z — AtA)D, 1 = Dy + AN (D), (B.6)

with which we perform five time steps with a step size that is one-fifth that used in our main 2-SBDF
scheme. Throughout the numerical simulations of (L.I) in and we used a mesh consisting of
N = 2000 points and a time-step size of At = 0.001.

APPENDIX C. A RAPIDLY CONVERGING SERIES FOR THE FRACTIONAL GREEN’S FUNCTION

In this section we provide a quickly converging series expansion of the Green’s function Gp(x, z) satis-
fying @2.3). In particular, by adding and subtracting appropriate multiples of |x —z|?**~! and |x — z|*~! as
outlined below we obtain the series expansion

Gp(x,z) = as(]x — z|>71 - 2%) —¢s(|x — z|¥1 — 4%) — %((25 —1)as — (4s — 1)) (|x — z|?> — %)

-1
1 1 & 1 cosnm|x — > asdy (C1)
ot 1)3”;(1 * D(m)zs> () Ar2 Z( nF 77)25) cosntlx —z,
where
2 . _ 4 .
as = —ﬁsr(—ZS) sin(7ts), ¢ = —st(—éls) sin(27s), (C.2)
and
ap = (2s —1)(2s —2) / x%573 cos xdx, (C.3)
nrm

[o0]

7T

by = —(4s — 1)(4s — 2) (45 — 3) ((—1)”(nn)454 + (45— 4) /

The key reason for considering this expansion is that the coefficients of cosnm|x — z| converge to zero
sufficiently fast to allow the order of summation and second-differentiation to be interchanged. In particular
using we can numerically calculate that 92Gp (x, 0) is strictly positive at x = 1.

To derive (C.1) we use integration by parts to calculate the coefficients in the Fourier series

lf =2 + Z

x5 cos xdx) . (C4)

nrm
7 COSNTLX, Cnp = / xP~1 cos xdx, (C.5)
0
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where p =25 € (1,2) or B = 4s € (2,4). Specifically we calculate
nrt
Cnos = —(25 — 1)/O ¥ 2 gin xdx = —(2s—1) /0

—(2s—1) /(:O x> 2sinxdx + (—1)"(2s — 1) (n1)>* 2 4+ ay,

e} e}

X2 sinxdx + (25 — 1) / x*72 sin xdx

nr

for B = 2s and
Cnas =(4s — 1)(ds —2)(4s — 3) / x4 sinxdx + (—1)"(ds — 1) (n70)*2 + by,
JO

for = 4s and where a, and b, are defined by (C.3). The definite integrals appearing in ¢, 2; and ¢, 45 can
then be written in terms of a; and ¢, respectively by using the integral representation of the Gamma function
Jo  x* tsinxdx = T(z)sin(%) for =1 < R(z) < 1 together with the reflection formula zI'(z)I'(—z) =
—7t/sinmz for all z ¢ Z (see equatlons (56.9.7) and (5.5.3) in [4] respectively).

APPENDIX D. DERIVATION OF THE SLOW DYNAMICS

In this appendix we outline the derivation of the system of ODEs (4.3) governing the slow dynamics
of the multi-spike quasi-equilibrium solutions considered in Letting x = x; + ey with y = O(1) we
obtain (4.1b) together with (C.1) (with s = s)

N
v~ e, (2 E2Gp (i, ;) + as, S22 |y 227 4 ey + 0<smm{2'4521}>), (D.1)
j=1
where b; = Yji (_",‘]ZV xGp(xi, x]-). It follows that the first order correction term in the inner expansion must
be O(e2271) and in particular for x = x; + ey and y = O(1)
u~ e (Gws, () + 2 U +o(e*27h)), v~ e (G + 2 Wy +o(e2271),
By repeatedly using the method of matched asymptotic expansions we determine that the fractional power

22~ 1 initiates a chain of corrections at powers of ¢ that are multiples of 2s, — 1. In particular for each
i =1,..., N the inner expansion when x = x; + ey with y = O(1) takes the form

kmax_l
u~ e (s (y)+ Y &P VU + el +0(e)), (D.2)
k=1
kmax_l
v~e ! (61 + Z sk(Zszfl)Vik + SVikmax 4 0(8)) (D.3)
k=1

where kmax is the smallest integer such that kmax(2s; —1) > 1. Importantly, since Vi ~ Ck|y|252_1 as
ly| — oo for 1 < k < kmax €ach of these corrections are even in y. On the other hand when k = kpax we

have the far-field behaviour

Vi ~ @Wsi by + 01 2571 Chmae V1721 Y| = 00, (D.4)
where §; ; is the discrete Kronecker delta function. Therefore we can write Vi = ws biy + Vﬁ{max where
Vi 18 an even function in y. Assuming that each x; = x;(t) and substituting into with x =
X; + ey we obtain

1 d kmax—
& ;";1 ‘Zi + Z @2V 11 + Lol

e T Ne + €03, (ws, by + Vi ) +0(e) =0,  (D5)
where N, is an even funct1on of y that consists of the residual nonlinear combinations of U and Vj; for
1 < k < kmax. Recalling that dws, /dy spans the kernel of Ly we impose a solvability condition on (D.5) by
multiplying it with dw;, /dy and integrating to obtain
oS dws

dxl- 2 wsl bi f—oo wgl dyl ydy 2 (/Jsl f_

o, - : - _ R .

at 8i [ |dws, / dy[2dy 3¢ |7 Idwsl/dy\ dy
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where we have used integration by parts to obtain the second equality. This establishes (4.3).
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