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Abstract. Localized solutions are known to arise in a variety of singularly perturbed reaction-
diffusion systems. The Gierer-Meinhardt (GM) system is one such example and has been the focus
of numerous rigorous and formal studies. A more recent focus has been the study of localized
solutions in systems exhibiting anomalous diffusion, particularly with Lévy flights. In this paper we
investigate localized solutions to a one-dimensional fractional GM system for which the inhibitor’s
fractional order is supercritical. Using the method of matched asymptotic expansions we reduce the
construction of multi-spike solutions to solving a nonlinear algebraic system. The linear stability
of the resulting multi-spike solutions is then addressed by studying a globally coupled eigenvalue
problem. In addition to these formal results we also rigorously establish the existence and stability
of ground-state solutions when the inhibitor’s fractional order is nearly critical. The fractional
Green’s function, for which we present a rapidly converging series expansion, is prominently featured
throughout both the formal and rigorous analysis in this paper. Moreover, we emphasize that the
striking similarities between the one-dimensional supercritical GM system and the classical three-
dimensional GM system can be attributed to the leading order singular behaviour of the fractional
Green’s function.

Keywords: Gierer-Meinhardt system, fractional Laplacian, Lévy flights, localized solutions, singu-
lar perturbation.

1. Introduction

Reaction diffusion systems have consistently been at the forefront of pattern formation research
since Alan Turing’s seminal paper in 1952 [23] in which he demonstrated that sufficiently large
differences in the diffusivities of reacting agents can lead to the formation of spatial patterns. By
specifying reaction-diffusion systems either phenomenologically or from first principles, studies have
used linear stability analysis to explore pattern formation in complex systems with applications to a
variety of biological phenomena [16]. While these studies have traditionally assumed that individual
agents undergo Brownian motion in which the mean squared displacement (MSD) is a linear function
of the elapsed time, a recent growing body of literature has considered pattern formation in the
context of anomalous diffusion in which there is alternative nonlinear relationships between the MSD
and the elapsed time [9, 5, 31, 13]. Such anomalous diffusion may be better suited for describing
the spatial distribution of agents in complex biological environments such as those found within
individual cells [1, 19].

Of particular importance, and relevance to the present paper, is the case of anomalous superdif-
fusion with Lévy flights for which a heavy-tailed step-length distribution leads to an unbounded
MSD. In this case the resulting fractional reaction-diffusion system features the fractional Laplacian
which for one-dimensional problems is given by

(−∆)sφ(x) ≡ Cs

∫ ∞

−∞

φ(x)− φ(x̄)

|x− x̄|1+2s
dx̄, Cs ≡

22ssΓ(s+ 2−1)√
πΓ(1− s)

. (1.1)

where 0 < s < 1 and Γ(z) is the Gamma function. A growing number of studies have considered
such fractional-reaction diffusion systems with different reaction kinetics and using linear stability
analysis have demonstrated that the introduction of anomalous diffusion can have a pronounced
effect on pattern formation[5, 13]. Furthermore by considering parameters near the Turing stability
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threshold the authors in [13] used a weakly nonlinear analysis to investigate the resulting near
equilibrium patterns that emerge after the onset of linear instabilities. An increasing number of
studies have also analysed far from equilibrium solutions arising in the singularly perturbed limit
where one of the diffusivities is asymptotically small [17, 30, 7, 15] and it is this latter thread of
inquiry which we continue in this paper.

First proposed by Gierer and Meinhardt in 1972 [4], the Gierer-Meinhardt (GM) system is a
canonical reaction diffusion system that addresses the consequences of short range activation and
long range inhibition on pattern formation. In this paper we will be interested in the fractional GM
system which is given by{

ut + ε2s1(−∆)s1u+ u− v−1u2 = 0, −1 < x < 1,

τvt +D(−∆)s2v + v − u2 = 0, −1 < x < 1,

(1.2a)

(1.2b)

where u(x, t) and v(x, t) correspond to the activator and inhibitor concentrations respectively, τ > 0,
D > 0, and 0 < ε≪ 1. In this paper we impose periodic boundary conditions,

u(x+ 2, t) = u(x, t), v(x+ 2, t) = v(x, t), (1.3)

which allows us to avoid the technical difficulties in assigning Dirichlet or Neumann boundary
conditions [14] and with which (1.1) simplifies to

(−∆)sφ(x) ≡ Cs

∫ 1

−1
Ks(x− x̄)

(
φ(x)− φ(x̄)

)
dx̄,

Ks(z) ≡
1

|z|1+2s
+

∞∑
j=1

(
1

|z + 2j|1+2s
+

1

|z − 2j|1+2s

)
.

(1.4)

When s1 = s2 = 1 in (1.2) we recover the classical one-dimensional GM system which has been
the focus of numerous studies. Specifically, in the classical case both rigorous [29] and formal
asymptotic methods [12, 25] have been used to study the existence and stability of spike solutions.
The analogous system in two- and three-dimensions have also been studied in [27, 28, 6], while the
system posed on a two-dimensional Riemannian manifold was considered in [22]. In both rigorous
and formal approaches the activator’s asymptotically small diffusivity leads to a separation of spatial
scales which yields a tractable reduction of the full system. More recently spike solutions have been
analysed for s1 ∈ [1/2, 1) and s2 = 1 [17], s1 = s2 ∈ [1/2, 1) [30], s1 ∈ (1/4, 1) and s2 ∈ (1/2, 1)
[7], and for s1 = s2 = 1/2 [15]. The case of anomalous subdiffusion, in which the time derivative
is of fractional order, was also considered in [18]. The individual treatment of each range of s1
and s2 values stems from differences in the singular behaviour of the outer inhibitor solution in a
leading order theory. This is closely related to the limiting behaviour of the Green’s function G(x)
satisfying

(−∆)s2G+D−1GD = δ(x), 0 < x < 1, GD(x+ 2) = GD(x),

as x → 0. In particular as discussed further in §2.4 and Appendix A below, the Green’s function
remains bounded for subcritical values of s2 ∈ (1/2, 1] but has a logarithmic singularity at the
critical value of s2 = 1/2. There is a suggestive analogy here with the singular behaviour of the
classical free space Green’s function in one- and two-dimensions which we elaborate in §2.4 below.

In this paper we use the method of matched asymptotic expansions to study the existence and
stability of spike solutions to (1.2) in the parameter regime

1/4 < s1 < 1, 0 < s2 < 1/2. (1.5)

As discussed in §2.4 and Appendix A, the Green’s function in this regime has an algebraic (and
in some cases an additional logarithmic) singularity as x → 0 and for this reason we refer to the
resulting fractional GM system as being supercritical. Consequently the asymptotic analysis of spike
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Figure 1. (A) Numerically calculated profile of the activator in a symmetric
two-spike solution undergoing (A) a competition instability using parameters

s1 = 0.5, s2 = 0.39, ε = 0.01, τ = 0.1, and D = 1.095ε2s2−1, and (B) slow dynamics
over an O(ε2s2−3) timescale using parameters s1 = 0.4, s2 = 0.35, ε = 0.01, τ = 0.1,
and D = 0.768ε2s2−1. The solid blue and dashed orange curves in the (x, t) plane
in (B) indicate the numerically and asymptotically calculated spike locations.

solutions in this regime is analogous to that found in the classical three dimensional Schnakenberg
[24] and Gierer-Meinhard systems [6]. Using the method of matched asymptotic expansions we
thus construct multi-spike solutions by deriving an appropriate nonlinear algebraic system (NAS).
From the NAS we identify two distinguished parameter regimes: the D = O(1) regime and the
D = O(ε2s2−1) regime. Whereas in the former the NAS admits only symmetric solutions, we
find that in the latter it admits both symmetric and asymmetric solutions. The stability of the
resulting multi-spike solutions can then be determined by studying a globally coupled eigenvalue
problem (GCEP). From the GCEP we deduce that asymmetric solutions are always linearly unstable
while symmetric solutions are susceptible to two types of bifurcations: competition instabilities (see
Figure 1a for an example), and Hopf bifurcations. In addition to these bifurcation which occur
over an O(1) timescale, otherwise stable multi-spike solutions can also undergo drift motion over
an O(ε2s2−3) timescale (see Figure 1b for an example). This paper thus fully characterizes the
equilibrium solutions to (1.2) and their linear stability, while also identifying key parameter regimes
for the diffusivity D.

The bulk of this paper uses formal asymptotic methods to characterize localized solutions as
discussed in the preceding paragraph. While a rigorous justification of these results remains open
for the full range of values 0 < s2 < 1/2 there are some results that we can rigorously prove when
s2 < 1/2 is close to s2 = 1/2. Specifically, for such values of s2 we can rigorously prove the existence
and stability of ground state solutions to the core problem considered in §2. Specifically we have
the following theorem.

Theorem 1.1. There exists an ε0 > 0 such that for each s ∈
(
1
2(1− ε0),

1
2

)
the core problem

(−∆)
1
2U + U − V −1U2 = 0, (−∆)sV − U2 = 0, −∞ < x <∞,

U, V > 0, −∞ < x <∞,

U, V → 0, as |x| → +∞,

(1.6a)

(1.6b)

(1.6c)
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admits a solution (U, V ) such that

lim
ε0→0

∣∣τ−1
s U(x)− w(x)

∣∣ = 0, lim
ε0→0

∣∣τ−1
s V (x)− 1

∣∣ = 0, (1.7)

uniformly in compact sets in x. Here U is the ground state solution of

(−∆)
1
2w + w − w2 = 0,

and

τs =

(
Γ(1− 2s) sin(sπ)

π

∫
R
w2(x)dx

)−1

.

Interestingly, we can also study the stability and instability of the ground state solution con-
structed in Theorem 1.1. Writing the associated eigenvalue problem for the system as{

(−∆)
1
2ϕ+ ϕ− 2V −1Uϕ+ V −2U2ψ + λsϕ = 0, −∞ < x <∞,

(−∆)sψ − 2Uϕ+ τλsψ = 0, −∞ < x <∞,

(1.8a)

(1.8b)

where λs ∈ C. Here we say (U, V ) is linearly stable if the real part of each eigenvalue is negative,
while (U, V ) is called linear unstable if there exists a λs such that its real part ℜ(λs) > 0.

Theorem 1.2. Let (U, V ) be the solution constructed in Theorem 1.1. There exists τ1 such that
the solution is linearly stable for any τ < τ1.

The remainder of this paper is organized as follows. In §2 we construct multi-spike quasi-
equilibrium solutions by first considering the relevant core problem in §2.1 and then deriving the
NAS in §2.2. This is followed by §2.3 where we specifically consider symmetric and asymmetric
solutions in the D = O(ε2s2−1) regime and by §2.4 where we discuss in more detail the singular
behaviour of the Green’s function and its connection with higher dimensional problems. In §3 we
study the linear stability of multi-spike solutions by deriving the GCEP and focusing in particular
on the D ≪ O(ε2s2−1) and D = O(ε2s2−1) regimes in §3.1 and §3.2 respectively. This is followed by
§4 where we derive an ordinary differential equation (ODE) system governing the slow dynamics
of multi-spike solutions. In §5 we then perform full numerical simulations of (1.2) to validate our
asymptotic theory. In §6 we prove Theorems 1.1 and 1.2. Finally in §7 we summarize our results
and make some concluding remarks.

2. Asymptotic Approximation of N-Spike Quasi-Equilibrium Solutions

In this section we will use the method of matched asymptotic expansions to calculate asymptotic
approximations of N -spike solutions to{

ε2s1(−∆)s1u+ u− v−1u2 = 0, −1 < x < 1,

D(−∆)s2v + v − u2 = 0, −1 < x < 1,

(2.1a)

(2.1b)

with periodic boundary conditions

u(x+ 2) = u(x), v(x+ 2) = v(x). (2.1c)

The successful use of the method of matched asymptotic expansions relies on the asymptotically
small activator diffusivity ε2s1 ≪ 1 which leads to the emergence of two distinct length scales.
Specifically the activator concentrates at N points −1 < x1 < ... < xN < 1 that are well separated
in the sense that |xi − xj | ≫ ε for all i ̸= j as well as x1 + 1 ≫ ε and 1 − xN ≫ ε. Over an O(ε)
length scale centred at each x1, ..., xN the system (2.1) is approximated by a core problem in R
whose solutions yields the local profile of the activator and inhibitor. This core problem depends
on an undetermined spike strength parameter whose value determines the far-field behaviour of
the core solution. On the other hand over an O(1) length scale away from each spike location
x1, ..., xN the nonlinear term appearing in (2.1b) can be approximated, in the sense of , by a sum
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of appropriately weighted Dirac delta functions centred at each x1, .., xN . As a consequence the
inhibitor can be approximated as a weighted sum of Green’s functions over an O(1) length scale.
By matching the behaviour of this sum of Green’s functions as x approaches each spike location
with the far-field behaviour of each core solution we can then derive a NAS of N equations in the N
undetermined spike strength parameters. The method of matched asymptotic expansions therefore
reduces the original PDE system (2.1) to a finite number of nonlinear algebraic equations whose
solutions yields an asymptotic approximation of an N -spike solution.

Guided by the preceding discussion, in the remainder of this section we will first discuss the
core problem and highlight some of its key properties. We will then use the method of matched
asymptotic expansions as outlined above to derive the NAS. The remainder of the section will then
be dedicated to a discussion on the existence of symmetric and asymmetric N -spike solutions as
well as to some of the peculiarities of the fractional Gierer-Meinhardt system which distinguish it
from the classical one- and three-dimensional Gierer-Meinhardt systems.

2.1. The Core Problem. The core problem is one of the key ingredients in deriving an asymptotic
approximation of an N -spike quasi-equilibrium solutions as outlined above. It is given by{

(−∆)s1Uc + Uc − V −1
c U2

c = 0, (−∆)s2Vc − U2
c = 0, −∞ < y <∞,

Uc ∼ ν(S)|y|−(1+2s1), Vc ∼ µ(S) + S|y|2s2−1, as |y| → ∞.

(2.2a)

(2.2b)

where S > 0 is a parameter which we refer to as the spike strength while ν(S) and µ(S) are two
S-dependent constants. Solutions to (2.2) will be denoted by Uc(y;S) and Vc(y;S) to make explicit
the dependence on the parameter S. The core problem (2.2) is a leading order approximation of
(2.1) after the rescaling y = ε−1(x− xi) and its solutions yield the local profile of each spike in an
N -spike quasi-equilibrium solution of (2.1). The far-field behaviour of Uc(y;S) and Vc(y;S) is a
consequence of the following lemma

Lemma 2.1. Let 0 < s < 1/2 and suppose that f(y) = O(|y|−σ) as |y| → ∞ for σ > 0.

(1) If σ > 1 + 2s then the solution to

(−∆)sϕ+ ϕ = f, for −∞ < y <∞; ϕ→ 0, as |y| → ∞,

decays like ϕ ∼ C|y|−1−2s as |y| → ∞.
(2) If σ > 1 then the solution to

(−∆)sϕ = f, for −∞ < y <∞; ϕ→ 0, as |y| → ∞,

decays like ϕ ∼ C|y|2s−1 as |y| → ∞.

Proof. The conclusion follows easily by using classical potential analysis and the decay properties of
the Green’s functions associated with the operators (−∆)s+ I and (−∆)s. Specifically the Green’s
function G(x, y) of (−∆)s + I has the asymptotic behaviour

lim
|x|→∞

G(x)|x|1+2s = C, (2.3)

for some constant C > 0, while the Green’s function G0(x, y) of (−∆)s has the form

G0(x, y) =
1

π
Γ(1− 2s) sin(sπ)|x|2s−1. (2.4)

We refer the readers to [30, Section 2] and [20, Section 1.12] for the proof of (2.3) and (2.4)
respectively. □

We can in fact be more explicit about the solution Vc of (2.2) by taking the Fourier transform of
the second equation in (2.2a) to get

Vc(y;S) = C + as2

∫ ∞

−∞
|y − ȳ|2s2−1Uc(ȳ;S)

2dȳ, as2 ≡ −2π−1sΓ(−2s2) sin(πs2). (2.5)
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Figure 2. Plots of core problem far-field constants µ(S) and ν(S) for distinct
values of 1/4 < s1 < 1. In each plot the darkest and lightest curves corresponds to
s2 = 0.2 and s2 = 0.49 respectively, with the intermediate curves corresponding to

0.01 increments in s2.

Taking the limit as |y| → ∞ then yields as a special case of Lemma 2.1 the limiting behaviour
Vc(y;S) ∼ C + as2 |y|2s2−1

∫∞
−∞ Uc(ȳ;S)

2dȳ. Comparing this with the far-field behaviour of the core

solution given in (2.2b) we deduce the useful identity

S = as2

∫ ∞

−∞
Uc(ȳ;S)

2dȳ. (2.6)

which in particular reinforces our assumption that S > 0 since as2 > 0 for s2 < 1/2.
In light of the above discussion the specification of the parameter S is equivalent to fixing the

L2(R) norm of Uc. By solving (2.2) for a fixed value of S we can then extract the values of the
far-field constants ν(S) and µ(S) by taking the limits

ν(S) = lim
y→∞

|y|1+2s1Uc(y, S), µ(S) = lim
y→∞

(
Vc(y;S)− S|y|2s2−1

)
. (2.7)

The nonlinearity in the first equation of (2.2a) implies that we must have Vc(y;S) > 0 for all y ∈ R
and this leads us to the constraint µ(S) ≥ 0. We next have to determine whether there any values
of S > 0 for which this constraint holds. To address this we first consider the small S-asymptotics.
Specifically if S ≪ 1 then (2.6) implies that Uc(y;S) = O(

√
S) and by balancing terms in (2.2) we

also deduce that Vc(y;S) = O(
√
S) and µ(S) = O(

√
S). It is then straightforward to see that to

leading order in S ≪ 1 we have the asymptotic expansions

Uc(y) ∼
√

S
bs1as2

ws1(y), Vc(y) ∼
√

S
bs1as2

, µ(S) ∼
√

S
bs1as2

, (2.8a)
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Figure 3. Plots of the critical values (A) S = S⋆ and (B) S = Scrit at which the
far-field constant µ(S) vanishes and attains its global maximum respectively. In
both plots the darkest and lightest curves corresponds to values of s1 = 0.3 and
s1 = 0.7 respectively with the intermediate curves corresponding intermediate

values in increments of 0.05. (C) The core solution for s1 = 0.5 and s2 = 0.4 at the
indicated values of S.

where

bs1 ≡
∫ ∞

−∞
ws1(y)

2dy, (2.8b)

and ws1(y) is the fractional homoclinic solution satisfying{
(−∆)s1ws1 + ws1 − w2

s1 = 0, −∞ < y <∞,

ws1(y) = O(|y|−(1+2s1)), as |y| → ∞.

(2.9a)

(2.9b)

We refer the reader to Section 4 in [30] for further properties of the nonlinear problem (2.9). The
small-S asymptotics (2.8a) imply that µ(S) > 0 for 0 < S ≪ 1. A numerical continuation in S then
further extends the range of S values for which µ(S) > 0 holds (see Appendix B.2 for details).

Plots of the numerically calculated far-field constants µ(S) and ν(S) are shown in Figure 2. These
plots indicate that there exists a value of S = S⋆ > 0 beyond which µ(S) > 0 no longer holds. In
Figure 3a we plot S⋆ as a function of s2 for select values of s1. In addition the plots in Figure 2
indicate that µ(S) attains a unique global maximum in 0 < S < S⋆ at some value S = Scrit which
we plot for distinct values of s1 in Figure 3b. This critical value of S = Scrit plays a crucial role
in the leading order stability theory of multiple spike solutions as will be further discussed in §3
below. Finally, in Figure 3c we plot the profiles of the core solutions for select values of S > 0 when
s1 = 0.5 and s2 = 0.4.

We conclude by remarking that our preceding discussion has thus far been limited to numerical
calculations of solutions to the core problem (2.2). In §6 we rigorously prove the existence and
stability of ground state solutions, i.e. those for which µ(S) = 0, when s2 ≈ 1/2. For more general
values of s2 < 1/2 the rigorous justification of such solutions remains an open problem. We remark
also that the existence of a ground state is not guaranteed as can be seen, for example, in the case of
the core problems associated with the three-dimensional Gray-Scott, Schnakenberg, and Brusselator
systems [6].

2.2. Asymptotic Matching and the Nonlinear Algebraic System. We now consider the
asymptotic construction of an N spike solution to (2.1). Assuming that the N -spikes concentrate
at N well separated (in the sense made precise above) points −1 < x1 < ... < xN < 1 we begin by
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making the ansatz that

u(xi + εy) ∼ Dε−2s2
(
Ui(y) + o(1)

)
, v(xi + εy) ∼ Dε−2s2

(
Vi(y;Si) + o(1)

)
. (2.10)

A simple change of variables then yields that Ui and Vi must satisfy

(−∆)s1Ui + Ui − V −1
i U2

i = 0, (−∆)s2Vi +D−1ε2s2Vi − U2
i = 0 − (1 + xi) < εy < 1− xi.

(2.11)

Approximating the domain −ε−1(1 + xi) < y < ε−1(1 − xi) with −∞ < y < ∞ and dropping the
D−1ε2s2 term in the Vi equation we deduce that

Ui(y) ∼ Uc(y;Si) + o(1), Vi(y) ∼ Vc(y;Si) + o(1), (2.12)

where Uc(y;S) and Vc(y;S) are the solutions of the core problem (2.2) discussed and Si > 0 is an
as-of-yet undetermined constant. Implicit in the asymptotic approximation (2.12) is the assumption
that the inner profiles interact only through the far-field behaviour constants Si, the nature of which
is revealed by formulating the outer problem and deriving an appropriate matching condition.

Next we derive an outer problem valid for values of −1 < x < 1 such that |x − xi| ≫ ε for all
i = 1, ..., N . We first make note of the limit

u2 → ε1−4s2D2
N∑
i=1

∫ ∞

−∞
Uc(y;Si)

2dy δ(x− xi) = ε1−4s2D2a−1
s2

N∑
i=1

Siδ(x− xi),

as ε→ 0+ which is to be understood in the sense of distributions and for which we have used (2.6)
in the equality. The outer inhibitor solution must then be a 2-periodic function satisfying

(−∆)s2v +D−1v = ε1−4s2a−1
s2 D

N∑
i=1

Siδ(x− xi), x ∈ (−1, 1) \ {x1, ..., xN}, (2.13a)

and having the limiting behaviour

v ∼ Dε−2s2
(
ε1−2s2Si|x− xi|2s2−1 + µ(Si)

)
, as x→ xi, (2.13b)

for each i = 1, ..., N obtained from the far-field behaviour of the inner solution (2.2b). We let GD(x)
be the the 2-periodic fractional Green’s function satisfying

(−∆)s2GD +D−1GD = δ(x), −1 < x < 1, GD(x+ 2) = GD(x), (2.14)

which can be written as (see Appendix A)

GD(x) = D

kmax∑
k=1

(−1)k+1aks2
Dk

|x|2ks2−1 +RD(x), kmax ≡ ⌈ 1
2s2

− 1⌉, (2.15)

where aks2 ≡ −2ks2π
−1Γ(−2ks2) sin(πks2) and RD(x) is given explicitly by (A.7b). In terms of

this Green’s function the solution to (2.13a) can be explicitly written as

v(x) = ε1−4s2a−1
s2 D

N∑
i=1

SiGD(x− xi). (2.16)

Comparing the limiting behaviour of (2.16) as x→ xi with the limiting behaviour (2.13b) from the
inner solution yields the algebraic equation

µ(Si) + ε1−2s2Si|x− xi|2s2−1 ∼ ε1−2s2

as2

(
DSi

kmax∑
k=1

(−1)k+1aks2
Dk

|x− xi|2ks2−1 + SiRD(0)

+
∑
j ̸=i

SjGD(|xi − xj |) +O(|x− xi|)
)
.

(2.17)
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The Si|x − xi|2s2−1 term on the left-hand-side cancels the k = 1 term in the sum on the right-
hand-side while the remaining singular terms corresponding to k = 2, ..., kmax are cancelled out by
higher order corrections to the inner solution. On the other hand the constant term µ(S) on the
left-hand-side must be balanced with the constant terms appearing on the right-hand-side. Since
this must hold for each value of i = 1, ..., N we are thus led to the NAS

µ(Si) =
ε1−2s2

as2

(
SiRD(0) +

∑
j ̸=i

SjGD(|xi − xj |)
)
, i = 1, ..., N. (2.18)

Note that this NAS must in general be solved numerically since µ(S) can only be computed numer-
ically (see §2.1). It nevertheless provides a substantial reduction in the construction of multi-spike
solutions to the equilibrium equation (2.1).

We remark that the NAS (2.18) is ε-dependent and yields distinct leading order approximations
depending on whether D = O(1) or D = D0ε

2s2−1 where D0 = O(1). Indeed in the former case
(2.18) implies that µ(Si) = 0 to leading order and hence Si ∼ S⋆+O(Dε1−2s2). On the other hand
if D = D0ε

2s2−1 ≫ 1 then the asymptotics

RD(0) ∼
1

2
D +O(1), GD(|xi − xj |) ∼

1

2
D +O(1) for i ̸= j (D ≫ 1), (2.19)

imply that S1, .., SN > 0 must solve the leading order system

µ(Si) =
κ

N

N∑
j=1

Sj , κ ≡ ND0

2as2
, (2.20)

for each i = 1, ..., N with the next order correction being O(D−1
0 ε1−2s2). The shape of µ(S) illus-

trated in Figure 2 suggests the possibility that S1, ..., SN ∈ {Sl, Sr} for some 0 < Sl < Sr < S⋆.
Thus whereas the D = O(1) regime supports solutions in which the profiles of each spike are iden-
tical, i.e. the N -spike solution is symmetric, the D = D0ε

2s2−1 regime may admit both symmetric
and asymmetric N -spike solutions which we discuss further in §2.3 below.

While the leading order approximations discussed above are suggestive of the solutions we may
encounter it is important to highlight that their associated errors are O(Dε1−2s2) when D = O(1),
and O(D−1

0 ε1−2s2) when D = D0ε
2s2−1. Although these errors are small in the limit ε → 0 they

may in practice be unacceptably large. For example if ε = 0.01 and s2 = 0.4 then ε1−2s2 ≈ 0.4. In
contrast if we solve the ε-dependent NAS (2.18) directly then the next order correction to the inner
problem can be deduced from the matching condition (2.17) and is either O(D−1ε2s2) if s2 < 1/4
or O(Dε2−2s2) if 1/4 < s2 < 1/2. In particular this yields an O(ε) error when D = D0ε

2s2−1 and
For this reason we will be using the D = D0ε

2s2−1 regime when we perform numerical simulations
of (1.2) in §5 below.

2.3. Symmetric and Asymmetric Solutions in the D = D0ε
2s2−1 Regime. As discussed

above, the leading order equation of the NAS (2.18) in the D = D0ε
2s2−1 regime given by (2.20)

admits both symmetric and asymmetric N -spike solutions. In the following section we will explore
these two types of solutions in more detail while also drawing parallels to the analogous solutions
encountered in the case of the three-dimensional Gierer-Meinhardt system [6].

Symmetric N -spike solutions are perhaps the easiest to analyze since in this case the spike
strengths are all equal, S1 = ... = SN = Sc and the leading order NAS (2.20) reduces to the
scalar equation

µ(Sc) = κSc, 0 < Sc < S⋆. (2.21)

From the plots of µ(S) in Figure 2 it is clear that Sc → S⋆ as D0 → 0 thereby providing a connection
between the D = O(1) and D = O(ε2s2−1) regimes. On the other hand as D0 → ∞ we obtain S → 0
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(a)

0.0 0.2 0.4
Sr

0.00

0.01

0.02

0.03

Sl(Sr) for s1=0.45

(b)

0.2 0.4
Sr

0.6

0.4

0.2

0.0
S ′l(Sr) for s1=0.45

(c)

Figure 4. Plots of (a) the common spike strength in a symmetric solution, (b) the
small spike strength value corresponding to the large spike strength value in an
asymmetric solution, and (c) its derivative. In each plot the darkest and lightest
curves corresponds to s2 = 0.2 and s2 = 0.49 respectively, with the intermediate

curves corresponding to 0.01 increments in s2

and in particular using the small-S asymptotics (2.8a) we find that S ∼ (bs1as2κ
2)−1. In Figure 4a

we plot Sc versus κ for a selection of s1 and s2 values.
In addition to symmetric N -spike solutions the leading order NAS (2.20) and plots of µ(S)

in Figure 2 further suggest the possibility of asymmetric N -spike solution. Specifically, recalling
that 0 < Scrit < S⋆ is the value where µ(S) attains its unique maximum we deduce that for any
Sr ∈ [Scrit, S⋆) there is a unique Sl(Sr) ∈ (0, Scrit] which we plot for‘ s1 = 0.45 and a selection of s2
values in Figure 4b. Notice from its definition that Sl(Scrit) = Scrit whereas Sl(S⋆) = 0. Moreover,
by differentiating µ(Sl(S(r)) = µ(Sr) we obtain S′

l(Sr) = [µ′(Sl(Sr))]
−1µ′(Sr) so that in particular

S′
l(Sr) → 0 as Sr → S⋆ due to the small S asymptotics (2.8a). Plots of S′

l(Sr) in Figure 4c further
indicate that −1 ≤ S′

l(Sr) ≤ 0.
We next consider the construction of asymmetric N -spike solutions consisting of 1 ≤ n ≤ N − 1

large and N − n small spikes by letting

Sσ(1) = ... = Sσ(n) = Sr, Sσ(n+1) = ... = Sσ(N) = Sl(Sr), Scrit < Sr < S⋆,

where σ is a permutation of {1, ..., N}. With this assumption the leading order system (2.20) reduces
to the scalar equation

µ(Sr) = κf(Sr,
n
N ), f(S, θ) ≡ θS + (1− θ)Sl(S). (2.22)

This scalar equation was previously encountered in the classical 3D Gierer-Meinhardt model [6].
For that model two key properties of µ(S) and Sl(Sr) allowed for a complete characterization of
the bifurcation structure of (2.22), the first being that µ′(S) < 0 for Scrit < S < S⋆, and the second
that −1 < S′

l(Sr) < 0 for all Scrit < Sr < S⋆. Since these properties likewise hold for the µ(S) and
Sl(Sr) in our present case we will simply state the results from [6], referring the interested reader
to Section 2.3 of [6] for more details. The first result states that if

0 < κ < κc1 ≡ µ(Scrit)/Scrit, (2.23)

then (2.22) has a unique solution for any 1 ≤ n ≤ N − 1. In addition if n ≥ N − n then (2.22) does
not have a solution for any κ ≥ κc1. If on the other hand n < N − n then (2.22) has exactly two
distinct solutions for

κc1 < κ < κc2 ≡ µ(S⋆r )/f(S
⋆
r , n/N), (2.24)
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Figure 5. Plots of the threshold DR(s2) (solid black) and its limiting behaviour

as s2 →
(

1
2r

)−
for odd values of r ≥ 1 and as s2 →

(
1
2r

)+
for even values of r ≥ 1

(dashed red).

where Scrit < S⋆r < S⋆ is the unique solution to

f(S⋆r , n/N)µ′(S⋆r ) = f ′(S⋆r , n/N)µ(S⋆r ), (2.25)

and no solutions if κ ≥ κc2.

2.4. On the Fractional Green’s Function. The preceding sections have highlighted the impor-
tance of the fractional Green’s function satisfying (2.14) in the asymptotic construction of quasi
equilibrium solutions. We conclude this section by highlighting some of the key properties of the
fractional Green’s function and relating them to the behaviour of the classical Green’s function in
one-, two-, and three-dimensions.

The limiting behaviour of GD(x) as x → 0 plays a crucial role in the existence and stability
of multi-spike solutions. Interestingly this behaviour is markedly different when s2 ∈ (1/2, 1],
s2 ∈ (0, 1/2) \ { 1

2r | r ∈ Z, r ≥ 1}, and s2 ∈ { 1
2r | r ∈ Z, r ≥ 1}. In particular when s2 ∈ (1/2, 1) the

Green’s function is not singular with GD(x) ∼ as2 |x|2s2−1 +O(1) as x→ 0 [7]. On the other hand,
referring to Propositions A.1 and A.2 in Appendix A, we have

GD(x) ∼

{∑kmax

k=1
(−1)k−1aks2

Dk−1 |x|2ks2−1 +O(1), s2 ∈ (0, 1/2) \ { 1
2r | r ∈ Z, r ≥ 1},∑r−1

k=1
(−1)k−1aks2

Dk−1 |x|2ks2−1 + (−1)r

πDr−1 log |x|+O(1), s2 = 1
2r , for r ∈ Z, r ≥ 1,

(2.26)

where kmax = ⌈ 1
2s2

− 1⌉. The singular behaviour in each of these cases has direct analogies with
the singular behaviour of the non-fractional Green’s function in one-, two, and three-dimensions.
Specifically, we may view the fractional Green’s function as analogous to the one-, two-, and three-
dimensional non-fractional Green’s function when s2 ∈ (1/2, 1), s2 = 1/2, and s2 ∈ (0, 1/2)\{ 1

2r | r ∈
Z, r ≥ 1} respectively. This analogy further extends to the methods used in the analysis of spike
solutions as is evident by the similarities between the analysis in [7] for s2 ∈ (1/2, 1) and the
classical Gierer-Meinhardt system (e.g. in [12]), that in [15] for s2 = 1/2 and the two-dimensional
Gierer-Meinhardt system [27, 28], and that in the present paper with the analysis of spike solutions
in the three-dimensional Schnakenberg [24] and Gierer-Meinhardt [6] systems. For the remaining
values of s2 ∈ { 1

2r | r ∈ Z, r ≥ 2} the mixing between logarithmic and algebraic singularities leads
to problems which don’t appear to have a clear classical analog. The analysis of the fractional
Gierer-Meinhardt system for these remaining parameter values is not addressed in this paper but
is an interesting direction for future research.
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We now consider the regular part of the Green’s function RD(x) which can be computed using
the series expansion (A.7b). Numerical calculations indicate that RD(0) > 0 for all D > 0 when
s2 ∈ ( 1

2(r+1) ,
1
2r ) for even values of r ≥ 1, whereas there is a threshold DR(s2) > 0 for which

RD(0) < 0 for all D < DR(s2) when s2 ∈ ( 1
2(r+1) ,

1
2r ) for odd values of r ≥ 1. The threshold

DR(s2) can be numerically computed using (A.7b) and is plotted in Figure 5. Note that special

care must be taken when using the series (A.7b) as s2 → 1
2r

+
for any integer r ≥ 2. Specifically,

in this case kmax = ⌈ 1
2s2

− 1⌉ < r so that in the limit the second term in (A.7b) does not converge.

This is easily fixed by letting kmax = r when s2 is sufficiently close to 1
2r and we use this in

our numerical computations. In addition our numerical calculations indicate that DR(s2) → +∞
as s2 →

(
1

2(r+1)

)+
and s2 →

(
1
2r

)−
for odd values of k ≥ 1. This diverging behaviour can be

explicitly characterized by balancing dominant terms in the series (A.7b). Specifically by noting
that Γ(−z) ∼ −(1 − z)−1 as z → 1 we deduce that ars2 ∼ π−1(1 − 2rs2)

−1 as sr → 1
2r . Assuming

that D = DR(s2) ≫ 1 in (A.7b) and balancing dominant terms then implies that

DR(s2) ∼

{(
2

π(1−2rs2)

)1/r
, as s2 →

(
1
2r

)−
for odd r,(

2
π(2rs2−1)

)1/r
, as s2 →

(
1
2r

)+
for even r.

(2.27)

which we plot using dashed lines in Figure 5. This diverging behaviour of the threshold DR(s2) is
suggestive of an alternative scaling that arises in this limit. Indeed the appearance of a logarithmic
singularity at values of s2 = 1

2r for integer r ≥ 1 suggests that an additional small parameter ν =

− 1
log ε must be incorporated into the asymptotic theory, likely leading to alternative distinguished

asymptotic regimes for the diffusivity.
We conclude by remarking that the negativity of RD(0) for D < DR(0) and s2 ∈ ( 1

2(r+1) ,
1
2r )

for even values of r ≥ 1 poses a challenge to the application of our asymptotic theory. Indeed,
recalling the NAS (2.18) we observe that RD(0) < 0 in this regime contradicts the positivity of
µ(S). By restricting our attention to the case D = D0ε

2s2−1 this difficulty can be circumvented at
least in theory when ε≪ 1 and for which D > DR(s2). However to validate our asymptotic theory
with numerical simulations we have to use a finite value of ε > 0 which may lead to D < DR(s2)
especially as s2 approaches any of the values for which DR(s2) diverges. Such behaviour is not in
the range of validity of our asymptotic theory and we will henceforth ignore it though we would
be remiss to not at least suggest approaches for handling this issue. One possibility is to develop
a higher order asymptotic theory though this falls out of the scope of this paper. An alternative
approach is to consider a ε-dependent core problem (2.2) posed on the truncated domain |y| < L/ε
for some L > 0 in which case negative values of µ(S) are permissible provided that the solution Vc
remains positive. This approach however has two major shortcomings: it requires an appropriate
assignment for Vc in |y| ≥ L/ε in order to have a well-posed problem, and the core problem will
need to be recomputed anew for different values of ε.

3. Linear Stability: The Large, O(1), Eigenvalues

In this section we consider the linear stability on an O(1) timescale of the N -spike equilibrium
solution ue and ve constructed in Section 2 above. We proceed by substituting into (1.2) the
perturbed solutions u = ue + eλtϕ and v = ve + eλtψ where |ϕ|, |ψ| ≪ 1. To linear order in ϕ and ψ
we then have the spectral problem

λϕ+ ε2s1(−∆)s1ϕ+ ϕ− 2v−1
e ueϕ+ v−2

e u2eψ = 0, −1 < x < 1,

τλψ +D(−∆)s2ψ + ψ − 2ueϕ = 0, −1 < x < 1,

ϕ(x+ 2) = ϕ(x), ψ(x+ 2) = ψ(x), −1 < x < 1,

(3.1a)

(3.1b)

(3.1c)
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for which we seek λ = O(1) eigenvalues. If ℜ(λ) > 0 (resp. ℜ(λ) < 0) then the N -spike equilibrium
solution is linearly unstable (resp. stable) and we will commonly refer to such an eigenvalue as being
unstable (resp. stable). Noting that the diffusivity ε2s1 ≪ 1 appearing in (3.1a) is asymptotically
small we will use the method of matched asymptotic expansions to derive a globally coupled eigen-
value problem (GCEP) from which distinct modes of instabilities and their respective thresholds
can be determined.

For each i = 1, .., N and y = O(1) we begin by substituting

ϕ(xi + εy) = Φεi (y), ψ(xi + εy) = Ψε
i (y),

into (3.1) to get{
λΦi + (−∆)s1Φi +Φi − 2V −1

i UiΦi + V −2
i U2

i Ψi = 0, −1 + xi < εy < 1− xi

τλε2s2D−1Ψi + (−∆)s2Ψ+ ε2s2D−1Ψi − 2UiΦi = 0, −1 + xi < εy < 1− xi.

(3.2a)

(3.2b)

Assuming that D ≫ O(ε2s2) and exploiting the homogeneity of this system we obtain the leading
order asymptotic expansion

Φεi ∼ ciΦ
λ
c (y;Si) + o(1), Ψε

i ∼ ciΨ
λ
c (y;Si) + o(1),

where Φλc (y;S) and Ψλ
c (y;S) satisfy{

(−∆)s1Φλc +Φλc − 2V −1
c UcΦ

λ
c + V −2

c U2
cΨ

λ
c = −λΦλc , −∞ < y <∞,

(−∆)s2Ψλ
c − 2UcΦ

λ
c = 0, −∞ < y <∞,

(3.3a)

(3.3b)

where we assume the general far-field behaviour

Φλc → 0, Ψλ
c ∼ B(λ, S) + o(1), as |y| → ∞. (3.4)

The undetermined constants c1, ..., cN correspond to distinct instability modes and moreover yield
additional degrees of freedom with which we can normalize the behaviour of solutions to (3.3). We
can solve (3.3b) explicitly as

Ψλ
c (y;S) = B(λ, S) + 2as2

∫ ∞

−∞

Uc(z;S)Φ
λ
c (z;S)

|y − z|1−2s2
dz. (3.5)

Substituting this back into (3.3) then results in the inhomogeneous equation

MΦλc = λΦλc +B(λ, S)V −2
c U2

c (3.6a)

where the nonlocal operator M = M (S) is defined by

MΦ ≡ −(−∆)s1Φ− Φλc + 2V −1
c UcΦ− 2as2V

−2
c U2

c

∫ ∞

−∞

Uc(z)Φ(z)

|y − z|1−2s2
dz. (3.6b)

Observe that if B(λ, S) = 0 then λ is an eigenvalue of M (S) and Φλc (y;S) the corresponding
eigenfunction. If λ is not an eigenvalue of M then we can uniquely solve (3.6a) for Φc which gives

Φλc (y, S) = B(λ, S)(M − λ)−1
(
Vc(y;S)

−1Uc(y;S)
)2
. (3.7)

In addition we make note of the far-field behaviour

Ψλ
c ∼ B(λ, S) + 2as2 |y|2s2−1

∫ ∞

−∞
Uc(z;S)Φ

λ
c (z;S)dz as |y| → ∞,

in which the second term vanishes if Φλc (·;S) is odd. On the other hand if Φλc (y;S) is not odd then
using the additional degrees of freedom granted by c1, ..., cN we can normalize Φλc (y;S) such that∫ ∞

−∞
Uc(z;S)Φ

λ
c (z;S)dz =

1

2as2
, (3.8)
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with which we get the far-field behaviour

Ψλ
c ∼ B(λ, S) + |y|2s2−1 as |y| → ∞. (3.9)

Note in addition that such a normalization fixes B(λ, S)which we obtain by multiplying (3.7) by
Uc(y;S) and integrating to get

B(λ, S) =

(
2as2

∫ ∞

−∞
Uc(z;S)(M − λ)−1

(
Vc(z;S)

−1Uc(z;S)
)2
dz

)−1

. (3.10)

We next consider the distributional limit

2ueϕ→ 2ε1−2s2D
N∑
i=1

ci

∫ ∞

−∞
Uc(y;Si)Φ

λ
c (y;Si)dyδ(x− xi)

from which we observe that any i ∈ {1, ..., N} corresponding to odd-valued Φλc (y;Si) will not
contribute to the outer problem. A modification of the proceeding calculations in which we keep
track of such odd-valued Φc(·, Si) reveals that such terms do not contribute to the linear stability
over an O(1) timescale, though they do contribute to drift instabilities considered in §4 below.
Without loss of generality we therefore assume that none of the Φλc (y;Si) (i = 1, ..., N) are odd-
valued. Using the normalization (3.8) we thus obtain the outer problem

(−∆)s2ψ +
1 + τλ

D
ψ = ε1−2s2a−1

s2

N∑
i=1

ciδ(x− xi), x ∈ (−1, 1) \ {x1, ..., xN}, (3.11a)

together with the singular behaviour

ψ(x) ∼ ci
(
B(λ, Si) + ε1−2s2 |x− xi|2s2−1

)
, x→ xi, (3.11b)

for each i = 1, ..., N . The solution to (3.11a) can then be expressed in terms of the Green’s function
satisfying (2.14) as

ψ(x) =
ε1−2s2

as2

N∑
i=1

ciGDλ
(x− xi), Dλ ≡ D

1 + τλ
. (3.12)

Using (2.15) the matching condition (3.11b) then becomes

ci
(
B(λ, Si) + ε1−2s2 |x− xi|2s2−1

)
∼ ε1−2s2

as2

(
ci

kmax∑
k=1

(−1)k−1aks2
Dk−1
λ

|x− xi|2ks2−1 + ciRDλ
(0)

+
∑
j ̸=i

cjGDλ
(|xi − xj |) +O(|x− xi|)

)
,

as x→ xi for each i = 1, ..., N . The leading order singular behaviour immediately balances whereas
balancing the leading order constants for each i = 1, ..., N yields the GCEP

B(λ,SSS)ccc = ε1−2s2a−1
s2 GDλ

ccc, (3.13a)

where SSS = (S1, ..., SN )
T , ccc = (c1, ..., cN )

T , and B(λ,SSS) and GDλ
are N ×N matrices with entries

(B(λ,SSS))ij =

{
B(λ, Si), i = j,

0, i ̸= j,
(GDλ

)ij =

{
RDλ

(0), i = j,

GDλ
(|xi − xj |), i ̸= j.

(3.13b)

In the following subsections we consider the leading order behaviour of the GCEP (3.13) when
D ≪ O(ε2s2−1) and when D = D0ε

2s2−1. This leading order behaviour will provide insights into the
modes of instabilities arising in each of these asymptotic regimes. However, as in the case of the NAS
(2.18) analyzed in §2 we remind the reader that the errors in such leading order approximations will
typically be unacceptably large for moderately small value of ε > 0. Therefore when we perform full
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Figure 6. (A)-(C) Plots of the real part of the eigenvalues of M versus
0 < S < S⋆ at the indicated values of s1 and s2. In each plot the dashed vertical
line corresponds to the value of S = Scrit at which µ

′(Scrit) = 0. (D) Plots of ℜλ1
at S = S⋆ versus 0.2 < s2 < 0.5 for different values of s1. The darkest (uppermost)
and lightest (lowermost) curves correspond to values of s1 = 0.4 and s1 = 0.49
respectively, with the intermediate curves being separated by intervals of 0.01.

numerical simulations of (1.2) to support our asymptotic predictions in §5 we will be numerically
computing the relevant stability thresholds from the ε-dependent GCEP (3.13) directly.

3.1. Linear Stability in the D ≪ O(ε2s2−1) Regime. We consider first perhaps the simplest case
which is when D ≪ O(ε2s2−1) or D = O(1) in particular. From our discussion in §2 we know that
in this case all N -spike solutions are symmetric to leading order in ε≪ 1 with S1 = ... = SN = S⋆.
Moreover in this regime the GCEP (3.13) reduces to the single scalar equation B(λ, S⋆) = 0.
Therefore λ must be an eigenvalue of the operator M (S⋆) defined in (3.6b) above with the far-field
asymptotics (3.4).

By numerically calculating the spectrum of M as outlined in Appendix B we have observed that
the dominant eigenvalue is always stable when S = S⋆. In Figures 6a-6c we plot the three largest
eigenvalues of M . Note that λ = 0 is always an eigenvalue of M but that this corresponds to the
translational mode Φ = ∂Uc/∂y and Ψ = ∂Vc/∂y whose analysis is deferred to §4 below. Therefore
λ1 is the appropriate eigenvalue for which (3.4) is satisfied when S = S⋆ and the plot of ℜλ1 at
S = S⋆ versus 0.2 < s2 < 0.5 for select values of s1 in Figure 6d indicates that this eigenvalue is
always stable. In summary, when D ≪ O(ε2s2−1) all N -spike solutions are linearly stable to leading
order in ε≪ 1.

3.2. Linear Stability in the D = O(ε2s2−1) Regime. In this section we consider the case when
D = D0ε

2s2−1 and for which we will consider the case D0 → ∞ as a special case. Using the large
D asymptotics of the Green’s function (2.19) the GCEP (3.13) becomes to leading order in ε≪ 1

B(λ,SSS)ccc = κ

1 + τλ
ENccc, EN =

1

N
eeeeeeT , (3.14)

where eee = (1, · · · , 1)T and where we remind the reader that κ = ND0/(2as2). In this section we
will consider the linear stability of both the symmetric and asymmetric solutions described in §2.3.
We demonstrate that the symmetric N -spike solutions are susceptible to two types of instabilities:
oscillatory instabilities arising through a Hopf bifurcation, and competition instabilities arising
through a zero eigenvalue crossing. On the other hand we will show that asymmetric solutions
are always linearly unstable with respect to competition instabilities. The proceeding analysis
closely follows previous work done on the three-dimensional Gierer-Meinhardt model [6] with its
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Figure 7. (A) Leading order competition instability threshold κc1 versus s2. The
darkest (uppermost) and lightest (lowermost) curves correspond to values of

s1 = 0.3 and s1 = 0.7 respectively, with the intermediate curves corresponding to
increments of 0.05. The dashed line corresponds to s1 = 0.5. (B) The leading order

Hopf bifurcation threshold τh at s1 = 0.5. The darkest and lightest curves
correspond to s2 = 0.3 and s2 = 0.48 respectively, with the intermediate curves

corresponding to 0.02 increments in s2. (C-D) The leading order Hopf bifurcation
threshold τh at indicated values of s2 = 0.45 and s2 = 0.40. The darkest and

lightest curves in both plots correspond to s1 = 0.3 and s1 = 0.7 respectively, with
the intermediate curves corresponding to 0.05 increments in s1.

successful adaptation to the present one-dimensional fractional case being due to the properties of
µ(S) described in §2.1.

3.2.1. The Shadow Limit D0 → ∞. Before analyzing (3.14) in general we first consider the shadow
limit obtained by letting D0 → ∞. As discussed in §2.3 all N -spike solutions are then symmetric
with Sc ∼ (bs1as2κ

2)−1 ≪ 1. Moreover by using the small S asymptotics (2.8a) and the definition
of M given in (3.6b) we readily deduce that

MΦ ∼ LΦ+O(κ−1), LΦ ≡ −(−∆)s1Φ− Φ+ 2ws1Φ. (3.15)

From (3.10) we obtain

B
(
λ, (bs1as2κ

2)−1
)
∼

κ
∫∞
−∞ws1(y)

2dy

2
∫∞
−∞ws1(y)

(
L − λ

)−1
ws1(y)

2dy
,

with which (3.14) becomes ∫∞
−∞ws1(y)

2dy

2
∫∞
−∞ws1(y)

(
L − λ

)−1
ws1(y)

2dy
ccc =

1

1 + τλ
ENccc. (3.16)

Note that the shadow limit case is independent of s2. If N ≥ 2 then this equation is satisfied if ccc is
any competition mode satisfying c1+ ...+ cN = 0 and λ is the dominant eigenvalue of L . Since the
dominant eigenvalue, Λ0, of L has a positive real part (see Section 4 of [3]) we therefore deduce
that multi-spike solutions in the D0 → ∞ are always linearly unstable. We refer to the resulting
instabilities as competition instabilities since the condition c1 + ...+ cN = 0 leads to the growth of
some spikes at the expense of the decay of others. If on the other hand N = 1 then (3.16) becomes
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the scalar nonlocal eigenvalue problem (NLEP)

1− 2

1 + τλ

∫∞
−∞ws1(y)

(
L − λ

)−1
ws1(y)

2dy∫∞
−∞ws1(y)

2dy
= 0. (3.17)

Following the arguments used in the classical one-dimensional Gierer-Meinhardt system in [26] it
can be shown that there is a Hopf bifurcation threshold τ∞h such that all eigenvalues are stable if
τ < τ∞h whereas there is exactly one complex conjugate pair of unstable eigenvalues when τ > τ∞h .
To calculate this Hopf bifurcation threshold we substitute the purely imaginary eigenvalue λ = iλI
into (3.17) and isolate real and imaginary parts to get the system{

2ℜ
(∫∞

−∞ws1(y)
(
L − iλI

)−1
ws1(y)

2dy
)
=
∫∞
−∞ws1(y)

2dy,

2ℑ
(∫∞

−∞ws1(y)
(
L − iλI

)−1
ws1(y)

2dy
)
= τλI

∫∞
−∞ws1(y)

2dy.
(3.18)

We can then find the Hopf bifurcation threshold by numerically solving the first equation for λI =
λ∞h (s1) and then substituting into the second equation to get a value for the Hopf bifurcation
threshold τ = τ∞h (s1) (for plots of τ

∞
h and λ∞h see Figure 1A of [7]).

In summary, when D0 → ∞ multi-spike solutions are always linearly unstable due to competition
instabilities whereas single spike solutions are linearly stable provided τ does not exceed the nu-
merically calculated Hopf bifurcation threshold τ = τ∞h (s1). We now address the question of what
happens to these competition instability and Hopf bifurcation thresholds for symmetric N -spike
solutions when D0 is finite.

3.2.2. Stability Threshold for Symmetric Solutions. We now consider the linear stability of sym-
metric N -spike solutions for which we remind the reader that S1 = ... = SN = Sc where Sc satisfies
(2.21). To determine the linear stability of these solutions with respect to competition modes we
first let ccc satisfy c1 + ... + cN = 0. It follows that (3.14) reduces to B(λ, Sc) = 0 so that λ is an
eigenvalue of M whose eigenfunction satisfies the far-field behaviour (3.4). Numerical calculations
of the spectrum of M indicate that this eigenvalue is positive if S < Scrit whereas it is negative
if Scrit < S < S⋆ (see Figure 6a-6c). From (2.21) and the plots of µ(S) in Figure 2 we therefore
conclude that symmetric N -spike solutions are linearly stable with respect to competition insta-
bilities if κ < κc1 and linearly unstable otherwise. Recall that κc1 = µ(Scrit)/Scrit was previously
encountered in (2.23) when considering the existence of asymmetric solutions. From the definition
of κ we can alternatively express this threshold for κ as a threshold for the diffusivity

D0,comp =
2as2
N

µ(Scrit)

Scrit
. (3.19)

As in the classical Gierer-Meinhardt model (and other singularly perturbed reaction diffusion sys-
tems) the stability of multi-spike solutions decreases as the number of spikes increases. In Figure
7a we plot the leading order competition instability threshold κc1 versus s2 for several values of
s1. From which we observe that the competition instability threshold is monotone decreasing in
s1. Moreover the threshold decreases monotonically with s2 for s1 > 0.5 whereas we see that for
s1 < 0.5 it is non-monotone, increasing for smaller values of s2 and then decreasing.

Since c1 + ...+ cN = 0 spans an (N − 1)-dimensional subspace of RN it remains only to consider
the synchronous modes ccc for which c1 = ... = cN . By substituting such a synchronous mode ccc into
(3.14) we get

B(λ, Sc)−
κ

1 + τλ
= 0. (3.20)

First we show that λ = 0 is not a solution of (3.20). Differentiating the core problem (2.2) with
respect to S we first make the observation that B(0, Sc) = µ′(Sc) so that after solving (2.21) for κ
(3.20) becomes

Scµ
′(Sc)− µ(Sc) = 0,
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for which we claim the left-hand-side is strictly negative. This is clearly true for Sc ≥ Scrit since
µ′(Sc) < 0 (see Figure 2). On the other hand for Sc < Scrit the claim follows by observing that
the derivative of the left-hand-side is µ′′(Sc) < 0 whereas the small S asymptotics (2.8a) imply

Scµ
′(Sc) − µ(Sc) ∼ −1

2

√
Sc/(bs1as2) < 0 as Sc → 0+. Therefore instabilities with respect to the

synchronous mode must arise through a Hopf bifurcation. Seeking purely imaginary eigenvalues
λ = iλI and separating the real and imaginary parts of (3.20) we obtain the system

|B(iλI , Sc)|2

Re[B(iλI , Sc)]
− µ(Sc)

Sc
= 0, τ = − Im[B(iλI , Sc)]

λIRe[B(iλI , Sc)]
, (3.21)

which we can numerically solve for λI = λh(Sc, s1, s2) from the first equation and then calculate
the Hopf bifurcation threshold τ = τh(S, s1, s2) from the second equation. The first equation is
numerically solved using Newton’s method by slowly increasing Sc starting from a small value for
which the shadow-limit value λ∞h (s1, s2) provides an accurate initial guess. The resulting (leading
order) Hopf bifurcation thresholds τh(Sc, s1, s2) and associated eigenvalue λh(Sc, s1, s2) are plotted
in Figures 7b and 7c. In all cases we observe that the Hopf bifurcation threshold diverges toward
+∞ as Sc → S−

crit and this is a consequence of the nonlocal operator M having a zero eigenvalue
for this value of Sc. As discussed in §5 the Hopf bifurcation threshold can be extended beyond
this critical value of Sc = Scrit but this requires calculating the Hopf bifurcation threshold from the
ε-dependent GCEP (3.13) directly.

3.2.3. Asymmetric N -Spike Solutions are Always Unstable. We conclude this section on the leading
order stability of multi-spike solutions by adapting the analysis for the three-dimensional Gierer-
Meinhardt model [6] to show that the asymmetric solutions of §2.3 are linearly unstable. The
analysis follows closely that previously done in [6] so we provide only an outline, highlighting the
key properties of µ(S) which allow the adaptation of the analysis in [6].

The key idea in showing that the asymmetric solutions are always linearly unstable is to construct
specific modes ccc for which an instability is guaranteed. Assuming without loss of generality that
S1 = ... = Sn = Sr > Scrit and Sn+1 = ... = SN = Sl(Sr) the leading order GCEP (3.14) becomes(

B(λ, Sr)In On,N−n
ON−n,n B(λ, Sl(Sr))IN−n

)
ccc =

κ

1 + τλ
ENccc, (3.22)

where In is the n × n identity matrix and On,m is the n ×m zero matrix. If 1 ≤ n ≤ N − 2 then
the mode ccc with c1 = ... = cn = 0 and cn+1 + ...+ cN = 0 is immediately seen to be unstable since
(3.22) reduces to B(λ, Sl(Sr)) = 0 and Sl(Sr) < Scrit implies the dominant eigenvalue of M with
the far-field behaviour (3.4) is unstable (see Figures 6a-6c). Thus, competition between the N − n
small spikes is always destabilizing.

Since the modes considered above are trivial when n = N − 1 a different argument must be used
to show the instability of asymmetric solutions in this case. In particular if n ≥ N − n then it it
was shown in [6] that unstable modes of the form c1 = ... = cn = cr and cn+1 = ... = cN = cl
can always be found. The argument used in [6] relies on the some key properties of µ(S) and the
spectrum of M . First it requires that µ′(Sl) > 0, µ′(Sr) < 0, and S′

l(Sr) > −1 all of which our
numerical calculations indicate are satisfied in the present case (see Figures 2 and 4c). Second it
requires that the eigenvalues of M satisfying the appropriate far-field behaviour (3.4) are stable
for Sr > Scrit. Since this condition is likewise satisfied (see for example Figures 6a-6c) we are able
to adapt the argument from [6] and therefore conclude that all asymmetric N -spike solutions are
linearly unstable.

4. Slow Spike Dynamics and the Equilibrium Configurations

It is well known that localization solutions to a variety of singularly perturbed reaction diffusion
systems exhibit slow dynamics [11, 24, 6]. Similar behaviour has likewise been observed for the
fractional Gierer-Meinhardt system in one-dimension when s2 > 1/2 [7]. In this section we establish
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that these slow dynamics persist in the case 1/4 < s2 < 1/2 albeit at a different time scale. The
dynamics in this parameter regime share qualitative similarities with their classical counterparts
in one-, two-, and three-dimensions. Specifically the dynamics are determined by the gradient
of the Green’s function which leads to a mutual repulsion between spikes. The derivation of the
slow dynamics however more closely resembles that for the three-dimensional Gierer-Meinhardt
and Schnakenberg systems [6, 24] owing to, as in previous sections, the strong coupling between
the activator and inhibitor in the inner region. In this section we formally derive the equations
governing the slow dynamics of a multi-spike solution and in §5.3 we validate our theory with
numerical examples of two-spike solutions (see also Figure 1b in §1).

Slow spike dynamics are the result of higher order corrections so we begin by first substituting
x = xi + εy into (2.16) to obtain the higher order expansion

v ∼ ε1−4s2Da−1
s2

[
Sεi

(kmax∑
k=1

(−1)k+1aks2
Dk−1

|y|2ks2−1ε2ks2−1 +RD(0) + εR′
D(0)y +O(ε2)

)
+
∑
j ̸=i

SεjGD(xi − xj) + εβi,1y +O(ε2)

]
,

where we have defined

βi,1 =
∑
j ̸=i

SεjG
′
D(xi − xj). (4.1)

Note that due to the periodic boundary conditions we have R′
D(0) = 0. This implies, as subsequent

calculations will show, that the dynamics of individual spikes are independent of their absolute
position in the interval −1 < x < 1 but are due solely to interactions between spikes. Next we
refine the inner expansion (2.10) by letting

u(xi + εy) ∼ ε−2s2D
(
U εi +Φεi + h.o.t.

)
,

v(xi + εy) ∼ ε−2s2D
(
V ε
i +Ψε

i + ε2−2s2a−1
s2 βi,1y + h.o.t.

)
,

(4.2a)

(4.2b)

where U εi ≡ Uc(y;S
ε
i ), V

ε
i ≡ Vc(y;S

ε
i ), |Φεi | ≪ U εi and |Ψε

i | ≪ V ε
i , and where h.o.t. refers to

higher order terms whose order will become evident after the asymptotic expansions are carried
out. Substituting (4.2) into (1.2) we find that ΦΦΦεi ≡ (Φεi ,Ψ

ε
i )
T satisfies LεiΦiΦiΦiε = fff εi , where

Lεi ≡

(
(−∆)s1 + 1− 2

Uε
i

V ε
i

(Uε
i

V ε
i

)2
−2U εi (−∆)s2

)
, fff εi ≡

(
1
ε
dxi
dt

dUε
i

dy − ε2−2s2a−1
s2

(Uε
i

V ε
i

)2
βi,1y

− ε2s2
D V ε

i

)
. (4.3)

We observe that ( ddyU
ε
i ,

d
dyV

ε
i )

T is in the kernel of Lεi and assume that the kernel of (Lεi )T is likewise

one-dimensional and spanned by PPP εi ≡ (P εi , Q
ε
i )
T . We can then impose the solvability condition

0 =

∫ ∞

−∞
(PPP εi )

TLεiΦΦΦεidy = 1
ε
dxi
dt

∫ ∞

−∞
P εi

dUε
i

dy dy − ε2−2s2a−1
s2 βi,1

∫ ∞

−∞
yP εi

(Uε
i

V ε
i

)2
dy − ε2s2

D

∫ ∞

−∞
QεiV

ε
i dy.

Numerical calculations indicate that P εi and Qεi are odd so that the final term vanishes and therefore

dxi
dt

∼ as2ε
3−2s2

∫∞
−∞ yP εi

(Uε
i

V ε
i

)2
dy∫∞

−∞ P εi
dUε

i
dy dy

∑
j ̸=i

SεjG
′
D(xi − xj), (i = 1, ..., N). (4.4)

Together with the NAS (2.18) this constitutes a differential algebraic system for theN spike locations
x1, ..., xN and their strengths Sε1, ..., S

ε
N .
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We immediately observe that (4.4) implies that the slow dynamics occur over a slow O(ε2s2−3)
timescale. Furthermore since P εi is odd in y we also have∫∞

−∞ yP εi
(Uε

i
V ε
i

)2
dy∫∞

−∞ P εi
dUε

i
dy dy

≤ 0. (4.5)

If xi ≷ xj then G′
D(xi − xj) ≶ 0 and we thus conclude that spikes are mutually repulsing. In

particular it is easy to see from (4.4) that two-spike solutions are stationary if and only if |x1−x2| =
1. In §5.3 we compare the slow-dynamics predicted by the differential algebraic system (4.4) and
(2.18) with numerical simulations of (1.2) for two spike solutions that are initially separated by a
distance |x1(0)− x2(0)| < 1.

We conclude this section by outlining how to calculate the function P εi needed to evaluate the
coefficient appearing in (4.4). Following the analysis of §3 we write

Qεi = Cεi − as2

∫ ∞

−∞

(U εi (z)/V
ε
i (z))

2P εi (z)

|y − z|1−2s2
dz,

from which we deduce that P εi solves M ⋆(Sεi )P
ε
i = −2Cεi U

ε
i where we define the adjoint operator

M ⋆ = M ⋆(S) by

M ⋆(S)P ≡ −(−∆)s1P − P + 2
Uc
Vc
P − 2as2U

∫ ∞

−∞

(Uc(z)/Vc(z))
2P (z)

|y − z|1−2s2
dz. (4.6)

Numerical calculations (not included) indicate that the adjoint operator M ⋆, like M in §3, has
exactly one zero eigenvalue for all 0 < S < S⋆ except at S = Scrit for which it has exactly two zero
eigenvalues. In particular assuming Sεi ̸= Scrit we may set Cεi = 0 and thus deduce that P εi is in the
kernel of M ⋆(Sεi ).

5. Numerical Simulations

In this section we numerically simulate the fractional Gierer-Meinhardt system (1.2) to support
our asymptotic calculations in the preceding section. Using the asymptotically constructed solutions
from §2 as initial conditions we choose parameter values to support the stability thresholds found
by numerically solving (2.18). We proceed in three parts. In the first we consider Hopf bifurcations
of single spike solutions, in the second we consider competition instabilities of two-spike solutions,
and in the third and final part we consider the slow dynamics of two-spike solutions. In the first
two parts we will first numerically compute the corresponding ε-dependent stability thresholds and
compare them with their leading order counterparts. As emphasized in §3, due to the fractional
powers of ε in the asymptotic expansions of the stability thresholds we anticipate that the leading
order thresholds deviate substantially from those obtained by solving (2.18) directly. Finally, when
considering the slow-dynamics of two-spike solutions in the third part we will choose parameter
values for which the two-spike solutions are linearly stable with respect to Hopf and competition
instabilities.

5.1. Hopf Bifurcation of One-Spike Solutions. We first verify the Hopf bifurcation threshold
for a single spike solution centred, without loss of generality, at x = 0. With N = 1 the NAS (2.18)
and GCEP (3.13) become 

µ(Sc) = a−1
s2 ε

1−2s2RD0ε2s2−1(0)Sc,

B(iλI , Sc) =
a−1
s2 ε

1−2s2

1 + iτλI
RD0ε2s2−1

1+iτλI

(0),

(5.1a)

(5.1b)
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Figure 8. (A)-(D) Hopf bifurcation thresholds for a one-spike solution obtained
by numerically solving the ε-dependent system (5.1) with ε = 0.01. (E)-(F) Plots of
u(0, t) from numerically simulating the fractional Gierer-Meinhardt system with

ε = 0.01, s1 = 0.5, s2 = 0.34, and indicated values of D0 with τ = 0.95τ εh(D0) (top)
and τ = 1.05τ εh(D0) (bottom). In each case a single spike solution (obtained using
the asymptotics of §2) centred at x = 0 with multiplicative noise was used as the

initial condition.

where we remind the reader that RD(x) is given by (A.7b). For a given value of D0 we first solve
(5.1a) for Sc = Sεc . Separating real and imaginary parts in (5.1b) we can then numerically solve
for the Hopf bifurcation threshold τ = τ εh and accompanying eigenvalue λI = λεh. Specifically we
solve the resulting system with Newton’s method starting with a large value of D0 for which the
shadow limit solutions τ∞h and λ∞I are good initial guesses. Using ε = 0.01 the resulting ε-dependent
Hopf bifurcation thresholds are shown in Figures 8a-8d which illustrate the persistence of the Hopf
bifurcation threshold for S > Scrit not captured by the leading order theory. To support our
asymptotically predicted threshold we performed several numerical simulations of the full system
(1.2) with ε = 0.01 and using a single spike solution centred at the origin as an initial condition.
In Figures 8e-8h we plot u(0, t) when s1 = 0.5 and s2 = 0.34 for select values of D0 and values of
τ slightly below and slightly above the Hopf bifurcation threshold, all of which validate the Hopf
bifurcations thresholds from the asymptotic theory.

5.2. Competition Instabilities of Two-Spike Solutions. Turning our attention now to the
case of a symmetric N = 2-spike solution we perform numerical simulations to verify the onset of
competition instabilities as predicted by our stability theory. We assume that |x1 − x2| = 1 so that
there are no small eigenvalues or, equivalently, there are no slow dynamics as discussed in §4. In
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Figure 9. (A)-(D) Competition instability thresholds for a two-spike solution
obtained by numerically solving the ε-dependent system (5.2) with ε = 0.01.

(E)-(F) Plots of u(x1, t) (solid blue) and u(x2, t) (dashed orange) from numerically
simulating the fractional Gierer-Meinhardt system with ε = 0.01, s1 = 0.5, at the
indicated values of s2 with D0 = 0.95Dε

0,comp (top) and D0 = 1.05Dε
0,comp (bottom).

In each case a two spike solution (obtained using the asymptotics of §2) separated
by a distance of |x1 − x2| = 1 with multiplicative noise was used as the initial

condition.

this case the NAS (2.18) and GCEP (3.13) with λ = 0 become{
µ(Sc) = a−1

s2 ε
1−2s2

(
RD0ε2s2−1(0) +GD0ε2s2−1(1)

)
Sc,

µ′(Sc) = a−1
s2 ε

1−2s2
(
RD0ε2s2−1(0)−GD0ε2s2−1(1)

)
.

(5.2a)

(5.2b)

We can numerically solve this system for D0 as a function of s2 at select values of s1. Doing so with
ε = 0.01 we obtain the higher order competition instability threshold shown in Figures 9a-9d. In
contrast to the leading order competition threshold which can be calculated as in §3.2.2 there is an
upper limit to the value of s2 for which we can compute the higher order ε-dependent threshold from
(5.2). This is a consequence of the change in sign of RD(0) for smaller values of D as described in
§2.4. For sufficiently small values of ε the value of D = D0ε

2s2−1 will always exceed this threshold
and a competition instability threshold Dε

0,comp can be calculated for values of s2 closer to 1/2.
Otherwise higher order correction terms need to be calculated or the inhibitor in the numerical
discretization of the core problem (2.2) needs to be allowed to become negative as described in §2.4.
We will not address these additional technical difficulties further.

To support our asymptotically calculated higher order competition instability threshold we per-
formed several numerical experiments. In each experiment we use the methods of §2 to asymp-
totically construct a symmetric two-spike solution with spikes centred at x1 = −0.5 and x2 = 0.5.
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Figure 10. Time evolution of spike locations x1(t) and x2(t) in a two-spike
solution. In each example τ = 0.1, ε = 0.01, and D = D0ε

2s2−1 where
D0 = 0.8Dε

0,comp and Dε
0,comp is the corresponding two-spike competition instability

threshold.

Using this solution as the initial condition we then solve (1.2) numerically for select values of s1
and s2 and with small value of τ = 0.05 (so that there are no Hopf bifurcations) as well as values
of D = D0ε

2s2−1 such that D0 is either slightly below or slightly above the numerically calculated
competition instability threshold Dε

0,comp. In each case we found good agreement with the higher
order calculated threshold Dε

0,comp and in Figure 9e-9h we show a sampling of numerically calcu-

lated values of the spike heights u(x1, t) and u(x2, t) for values of D0 = 0.95Dε
0,comp (top) and

D0 = 1.05Dε
0,comp (bottom).

5.3. Slow Dynamics of Two-Spike Solutions. We conclude the numerical validation of our
asymptotic theory by considering the slow dynamics of symmetric two-spike solutions. Using the
translational invariance granted by the periodic boundary conditions we reduce the differential
algebraic system (4.4) and (2.18) to the pair of scalar equations

d(x2 − x1)

dt
= 2as2ε

3−2s2

∫∞
−∞ yP εc

(Uε
c

V ε
c

)2
dy∫∞

−∞ P εc
dUε

c
dy dy

G′
D(x2 − x1),

µ(Sεc ) =
ε1−2s2

as2

(
RD(0) +GD(|x2 − x1|)

)
Sεc .

(5.3a)

(5.3b)

We remind the reader that the NAS (second equation) determines the common spike strength Sεc
for a given spike separation distance |x2 − x1|. The common spike strength is then used to solve
(2.2) for U εc and V ε

c as well as to solve for P εc in the adjoint problem of §4. We implement this
system numerically by pre-computing Sεc as a function of 0 ≤ |x2 − x1| ≤ 2 and then computing
each of U εc , V

ε
c , and P

ε
c as functions of 0 < Sεc < S⋆. The differential algebraic system can then be

easily solved with any standard ordinary differential equation library (we used solve ivp from the
SciPy integrate library).

To validate our asymptotic theory we performed multiple numerical simulations of (1.2) with
an initial condition consisting of a symmetric two-spike solution constructed using the methods in
§2 where the spikes are concentrated at x1 = −0.2 and x2 = 0.2. For each of our simulations
we set ε = 0.01 and used values of τ = 0.1 and D = 0.8Dε

0,compε
2s2−1 with which we can avoid

Hopf bifurcations and competition instabilities (see Sections 5.1 and 5.2). These simulations were
completed for the pairs (s1, s2) = (0.4, 0.35), (0.4, 0.3), (0.46, 0.3), and (0.46, 0.35) and the resulting
spike trajectories are shown as solid blue lines in Figure 10. In each of these plots the trajectories
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predicted by solving (5.3) are shown as dashed orange lines. We see that in each case the asymptotics
provide good qualitative agreement of the spike trajectories. Finally we direct the reader to Figure
1b where have plotted in more detail the time evolution of the activator to accompany Figure 10a.

6. Rigorous Results for s2 ≈ 1/2

In this section we shall rigorously study the existence and stability of the ground state solution
to the core problem

(−∆)
1
2U + U − V −1U2 = 0, (−∆)sV − U2 = 0, −∞ < x <∞,

U, V > 0, −∞ < x <∞,

U, V → 0, as |x| → +∞.

(6.1a)

(6.1b)

(6.1c)

We proceed by first presenting in § 6.1 several known results which will be used throughout this
section. Then in § 6.2 and § 6.3 we provide the rigorous study on the existence and stability of the
ground state solution respectively.

6.1. Preliminaries.

Lemma 6.1. Let s < 1
2 and G(x) be the Green’s function of the equation

(−∆)sG(x) = δ(x). (6.2)

Then

G(x) =
Γ(1− 2s) sin(sπ)

π
x2s−1.

Proof. Using the Fourier transform, we can write the (6.2) as

|ξ|2sĜ(ξ) = 1. (6.3)

Therefore, we have

G(x) =
1

π

∫ ∞

0

cos(xξ)

ξ2s
dξ = x2s−1 1

π

∫ ∞

0

cos ξ

ξ2s
dξ =

Γ(1− 2s) sin(sπ)

π
x2s−1, (6.4)

where we used
∫∞
0

cos ξ
ξ2s

dξ = Γ(1− 2s) sin(sπ) if 2s < 1. □

We introduce the transformation

U = τsU, V = τsV, τs =

(
Γ(1− 2s) sin(sπ)

π

∫
R
w2(y)dy

)−1

=
1

2Γ(1− 2s) sin(sπ)
, (6.5)

where w is the unique ground state solution to

(−∆)1/2w + w − w2 = 0 in R, w(x) → 0 as |x| → ∞. (6.6)

In this case we can give the explicit form of w and the integral of w2 on the real line

w(x) =
2

1 + x2
and

∫
R
w2dx = 2π. (6.7)

Based on (6.5) we can write (6.1) as
(−∆)

1
2U + U − V −1U2 = 0, (−∆)sV − τsU

2 = 0, −∞ < x <∞,

U, V > 0, −∞ < x <∞,

U, V → 0, as |x| → ∞.

(6.8a)

(6.8b)

(6.8c)
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We look for a solution to (6.8) in the form U = w + ϕ with ϕ being a lower order term. Denoting
by T (h) the unique solution of the equation

(−∆)sV = τsh in R, V (x) → 0 as |x| → ∞, (6.9)

for h ∈ L∞(R), then formally we have

T (U2) = T (w2) + 2T (wϕ) + h.o.t., (6.10)

where h.o.t. indicates the higher order terms. We denote vw = T (w2) so that using the Green’s
function given in Lemma 6.1 we have

vw = T (w2) = τs

∫
R
w2(y)G(x− y)dy. (6.11)

Expanding the Green function in the following way

G(x) =
Γ(1− 2s) sin(sπ)

π
|x|2s−1 = e(2s−1) log |x|+log Γ(1−2s) sin(sπ)/π

=
Γ(1− 2s) sin(sπ)

π

(
1 + (2s− 1) log |x|+ (2s− 1)2(log |x|)2/2 + · · ·

)
,

(6.12)

and then using the fact Γ(1− 2s) ∼ (1− 2s)−1 as s→ 1
2 we get that

T (w2) = τs
Γ(1− 2s) sin(sπ)

π

∫
R
w2(y)dy +O(2s− 1). (6.13)

As a consequence when x is bounded we have

vw ≡ T (w2) = 1 +O(2s− 1) and T (wϕ) =
1∫

Rw
2

∫
R
wϕdy +O(2s− 1), (6.14)

then the nonlinear term of the first equation in (6.8) can be written as

U2

V
=

w2 + 2wϕ+ h.o.t.

vw + 2T (wϕ) + h.o.t.
=
w2

vw
+ 2wϕ− 2

∫
Rwϕdy∫
Rw

2dy
w2 + h.o.t.+O(2s− 1). (6.15)

Substituting it into the first equation of (6.8) we get

L(ϕ) ≡ (−∆)
1
2ϕ+ (1− 2w)ϕ+ 2

∫
Rwϕdy∫
Rw

2dy
w2 = S(w) +N(ϕ), (6.16)

where

S(w) = −(−∆)
1
2w − w +

w2

vw
,

and

N(ϕ) =
(w + ϕ)2

T ((w + ϕ)2)
− w2

vw
− 2wϕ+ 2

∫
Rwϕdy∫
Rw

2dy
w2,

and represents the higher order terms in ϕ.
Concerning the ground state w and the non-local linearized operator L, we have the following

result

Proposition 6.1. Let w be the unique, positive, radially symmetric solution to (6.6).

(a) Let L0 = (−∆)
1
2 + (1− 2w)id. Then we have

Ker(L0) = Span

{
dw

dx

}
.
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(b) Let L be the lineazied operator defined in (6.16) and

L∗ϕ = (−∆)
1
2ϕ+ (1− 2w)ϕ+ 2

∫
Rw

2ϕdx∫
Rw

2dx
w.

Then

Ker(L) = Ker(L∗) = Span

{
dw

dx

}
. (6.17)

Proof. The proof of part (a) is given by [3, Proposition 1.1 and Theorem 2.3]. To prove part (b) we
first notice that L0w = −w2. If ϕ ∈ Ker(L) then

L0ϕ = −c(ϕ)w2, where c(ϕ) = 2

∫
Rwϕdx∫
Rw

2dx
. (6.18)

Therefore, by conclusion (a) we get ϕ− c(ϕ)w ∈ Ker(L0) and in particular

ϕ = β
dw

dx
+ c(ϕ)w,

for some constant β. As a consequence, we have

c(ϕ) = 2c(ϕ)

∫
Rw

2dx∫
Rw

2dx
= 2c(ϕ),

which implies c(ϕ) = 0. Hence, ϕ ∈ Ker(L0) and we get that ϕ ∈ Span
{
dw
dx

}
. Similarly, if

ϕ ∈ Ker(L∗) then

L∗ϕ = −c1(ϕ)w, where c1(ϕ) = 2

∫
Rw

2ϕdx∫
Rw

2dx
.

Using the fact

L0(w + x · ∂xw) = −w,
we have

ϕ− 2

∫
Rw

2ϕdx∫
Rw

2dx
(w + x · ∂xw) ∈ Ker(L0). (6.19)

Then

c1(ϕ) = 2c1(ϕ)

∫
R(w + x · ∂xw)w2dx∫

Rw
2dx

= 2c1(ϕ) = 2c1(ϕ)
2
3

∫
Rw

3dx∫
Rw

2dx
= 2c1(ϕ),

where we used ∫
R
w3dx = 3π,

∫
R
w2dx = 2π.

Thus c1(ϕ) = 0 and ϕ ∈ Span
{
dw
dx

}
which proves the third conclusion. □

In the end of this subsection, we provide the analysis of the linear operator L in a framework of
weighted L∞ spaces. For this purpose we consider the following norm for a function defined on R.
We define

∥ϕ∥∗ = ∥ρ(x)−1ϕ∥L∞(R), where ρ(x) =
1

(1 + |x|)µ
,

1

2
< µ ≤ 2. (6.20)

Given a function h with ∥h∥∗ < ∞, due to the fact that Ker(L) = Span
{
dw
dx

}
, we need to study

the related linear problem in the following form

Lϕ = h+ c
dw

dx
−∞ < x <∞, ϕ(x) → 0 as |x| → ∞, ⟨ϕ, dwdx ⟩ = 0. (6.21)

Our aim is to find (ϕ, c) such that (6.21) holds. Concerning (6.21) we have the following existence
result and a-priori estimate for which a proof can be found in [30, Theorem 4.2].
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Theorem 6.1. If h satisfies ∥h∥∗ < ∞ then problem (6.21) has an unique solution ϕ = T (h) and
c = c(h). Moreover there exists a constant C > 0 such that for any such h

∥T h∥∗ ≤ C∥h∥∗. (6.22)

6.2. The rigorous proof of the existence results. In this section we shall give rigorous proof
of Theorem 1.1.

6.2.1. Error estimates. We begin by studying vw(x) for which we prove improved estimates. By
the definition (6.11) we see that

(−∆)svw = τsw
2, vw(x) → 0 as |x| → +∞, (6.23)

where τs is given in (6.5). We will consider vw(x) in the two disjoint regions x ∈ Is and x ∈ R \ Is
where we define the interval

Is ≡
[
−100(1− 2s)−1, 100(1− 2s)−1

]
. (6.24)

Starting with x ∈ Is we use the Green representation formula (6.11) and the asymptotics (6.12) to
get

vw(x) =τs
Γ(1− 2s) sin(sπ)

π

∫
R
w2(y)dy + (2s− 1)τs

Γ(1− 2s) sin(sπ)

π

∫
R
log |x− y|w2(y)dy

+ (2s− 1)2τs
Γ(1− 2s) sin(sπ)

2π

∫
R
w2(y)(log |x− y|)2dy + o((2s− 1)2)

=1 + (2s− 1)
1∫

Rw
2(y)dy

∫
R
log |x− y|w2(y)dy

+
(2s− 1)2

2

1∫
Rw

2(y)dy

∫
R
(log |x− y|)2w2(y)dy + o((2s− 1)2).

(6.25)

Next we define

Hi(x) =

∫
Rw

2(y)(log |x− y|)idy∫
Rw

2(y)dy
, (6.26)

and readily deduce that Hi(x) is even since w(y) is even. Furthermore, as |x| is sufficiently large,
by standard potential analysis we can write

Hi(x) = (log |x|)i + f(x), (6.27)

where f is an even function and itself with its first derivative are uniformly bounded.
While for |x| ≥ 100(1− 2s)−1, using the potential analysis, we get that

vw(x) ≥ cτs|x|2s−1 for |x| ≥ 100(1− 2s)−1. (6.28)

Summarizing the above estimates, we have the following conclusion.

Lemma 6.2. Letting vw be defined as in (6.11) we have the following estimates:

(a). If x ∈ Is, then

vw(x) = 1 + (2s− 1)H1(x) +
(2s− 1)2

2
H2(x) + o((1− 2s)3). (6.29)

(b). If x ∈ R \ Is, then

vw(x) ≥ cτs|x|2s−1 (6.30)

for some constant c > 0.
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We now focus on estimating the quantity S(w) = −(−∆)
1
2w−w+ v−1

w w2 which, using (6.6), can
be rewritten as

S(w) =
w2

vw
− w2.

Let us first analyze the term S(w) in the interval Is introduced in (6.24). It is easy to see that in
this region we have

vw(x) = 1 +O
(
(1− 2s)1−δ

)
,

where δ is any small positive number, and therefore

1− vw
vw

w2 = O
(
(1− 2s)1−δw2

)
.

Writing

S(w) =
1− vw
vw

w2. (6.31)

we deduce that for x ∈ Is

|S(w)| = O
(
(1− 2s)1−δρ(x)

)
for |1− 2s| ≪ 1. (6.32)

On the other hand, by Lemma 6.2 we find that for x ∈ R \ Is

|S(w)| ≤ C(1− 2s)−1|x|1−2sw2 = C(1− 2s)−1|x|−2ρ(x) = O(1− 2s)ρ(x). (6.33)

In conclusion, we have

Lemma 6.3. Let µ = 2 in the definition of ∥ · ∥∗. If 1− 2s is sufficiently small then we have

∥S(w)∥∗ ≤ C(1− 2s)1−δ,

where C is some constant independent of ε and δ is any small positive number independent of ε.

6.2.2. The existence of solution. Recall that the original problem was cast in the form

(−∆)
1
2U + U − U2

T (V 2)
= 0. (6.34)

Rather than solving (6.34) directly we consider instead the problem of finding A satisfying

(−∆)
1
2A+A− A2

T (A2)
= c

dw

dx
, (6.35)

for a certain constant c, and such that ⟨A − w,Z⟩ = 0. Rewriting A = w + ϕ we get that this
problem is equivalent to

(−∆)
1
2ϕ+ ϕ− 2wϕ+ 2w2

∫
Rwϕdx∫
Rw

2dx

= −(−∆)
1
2w − w +

w2

vw
+

(w + ϕ)2

T ((w + ϕ)2)
− w2

vw
− 2wϕ+ 2w2

∫
Rwϕdx∫
Rw

2dx
+ c

dw

dx

= S(w) +N(ϕ) + c
dw

dx

(6.36)

and

N(ϕ) =
(w + ϕ)2

T ((w + ϕ)2)
− w2

vw
− 2wϕ+ 2w2

∫
Rwϕdx∫
Rw

2dx
. (6.37)

Using the operator T introduced in Theorem 6.1, we see that the problem is equivalent to finding
a ϕ ∈ H so that

ϕ = Q(ϕ) ≡ T (S(w) +N(ϕ)).
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We shall show that this fixed point problem has a unique solution in the region of the form

D =
{
ϕ ∈ H | ∥ϕ∥∗ ≤ C(1− s)1−δ

}
, (6.38)

for any small positive constant δ, provided that 1− 2s is sufficiently small. Here

H =
{
ϕ ∈ L∞∣∣〈ϕ, dwdx 〉 = 0

}
. (6.39)

We have already proved that ∥S(w)∥∗ ≤ C(1 − 2s)1−δ. In the following lemma we estimate the
higher order error term N(ϕ).

Lemma 6.4. Assume that ϕ ∈ D, then for 1− 2s sufficiently small, we have

∥N(ϕ)∥∗ ≤ C(∥ϕ∥∗ + σ(1− 2s))∥ϕ∥∗, (6.40)

where σ(1− 2s) ≤ C(1− 2s)1−δ as 1− 2s→ 0.

Proof. Let us assume first x ∈ R \ Is. In this region we have w(x) ≤ Cρ(x). Combined with the
standard potential analysis one can show that

T ((w + ϕ)2) ≥ C(1− 2s)|x|2s−1,

T (wϕ) ≤ C(1− 2s)|x|2s−1∥ϕ∥∗,

T (ϕ2) ≤ C(1− 2s)2−δ|x|2s−1∥ϕ∥∗.
As a consequence,

|N(ϕ)| ≤
(
2wvwϕ+ vwϕ

2 − 2w2T (wϕ)− w2T (ϕ2)

vwT ((w + ϕ)2)
− 2wϕ+ 2w2

∫
Rwϕdx∫
Rw

2dx

)
≤ C

(
ρ(x)

(1− 2s)(1 + |x|)2s+1
+

ρ(x)

(1− 2s)(1 + |x|)2s+1
∥ϕ∥∗

)
∥ϕ∥∗ + Cρ(x)2∥ϕ∥∗.

Therefore we have

|ρ−1N(ϕ)| ≤ C(∥ϕ∥∗ + (1− 2s)6s−2)∥ϕ∥∗, (6.41)

provided s→ 1
2 .

Considering next the case x ∈ Is we decompose N(ϕ) in the form

N(ϕ) = N1(ϕ) +N2(ϕ),

where

N1(ϕ) = (w + ϕ)2
[ 1

T ((w + ϕ)2)
− 1

vw
+

2T (wϕ)

v2w

]
− (2w + ϕ)ϕ

2T (wϕ)

V 2

and

N2(ϕ) = −2ϕw

(
1− 1

vw

)
+ 2U2

(∫
Rwϕdx∫
Rw

2dx
− T (wϕ)

v2w

)
+
ϕ2

vw
.

It is known that

vw(x) = 1 +O((1− 2s)1−δ)

and

T (wϕ) =

∫
Rwϕdx∫
Rw

2dx
+O((1− 2s)1−δ).

and in particular |T (wϕ)| = O(∥ϕ∥∗). Likewise, T (ϕ2) = O(∥ϕ∥2∗). Combining these facts we obtain

|N1(ϕ)| ≤ C(w + ϕ)2T (ϕ2) + C
(
2wϕ+ ϕ2

)
T (wϕ) ≤ Cρ(x)∥ϕ∥2∗.

A similar analysis yields

|N2(ϕ)| ≤ C(1− 2s)1−δ
(
|ϕ|w + ρ2∥ϕ∥∗

)
+ C|ϕ|2,



30 D. GOMEZ, M. MEDEIROS, J. WEI, AND W. YANG

and therefore

∥N(ϕ)∥∗ ≤ C(∥ϕ∥2∗ + σ(1− 2s)∥ϕ∥∗)
for x ∈ Is. Together with (6.41) this proves the lemma. □

With Lemma 6.4 we are able to give the proof of Theorem 1.1.

Proof of Theorem 1.1. Using the definition of the corresponding norms, repeating almost the same
arguments as Lemma 6.4 one can prove that if ∥ϕi∥∗ ≤ C(1− 2s)1−δ for i = 1, 2, then, given any
small κ ∈ (0, 1), we have the following inequality

∥N(ϕ1)−N(ϕ2)∥∗ ≤ κ∥ϕ1 − ϕ2∥∗, (6.42)

provided 1− 2s is sufficiently small. As a consequence, we get that the operator Q is a contraction
mapping in the set D defined in (6.38). On the other hand, we also get from Lemma 6.4 that Q
maps D into itself. Thus, by using the Banach fixed point theorem, we get the existence of a unique
fixed point of Q in D, that is,

(−∆)
1
2ϕ+ ϕ− 2wϕ+ 2w2

∫
Rwϕdx∫
Rw

2dx
= S(w) +N(ϕ) + c

dw

dx
. (6.43)

Next, we notice that S(w) is an even function and the linearized problem can be solved in the even
symmetric function class. Without loss of generality, we can pose the further restriction on the set
H that all the perturbations ϕ are even symmetric functions. As a consequence, we see that apart
for the term dw

dx all the remaining terms are even symmetric and this implies that c = 0. Hence
w + ϕ is a solution to the original Gierer-Meinhardt system (6.1). □

6.3. Stability Analysis: large and small eigenvalues. In this section we characterize the linear
stability of the ground state solution constructed in §6.2 above by considering both large and small
eigenvalues.

6.3.1. Large eigenvalue. Linearizing (6.1) about the equilibrium solution (u, v) we obtain the fol-
lowing eigenvalue problem{

(−∆)
1
2ϕ+ ϕ− 2V −1Uϕ+ V −2U2ψ + λsϕ = 0, −∞ < x <∞,

(−∆)sψ − 2Uϕ+ τλsψ = 0, −∞ < x <∞,

(6.44a)

(6.44b)

where λs ∈ C, ϕ ∈ H1(R), and ψ ∈ H2s(R). Let

Û = τ−1
s U, V̂ = τ−1

s V.

Then (6.44) can be rewritten as(−∆)
1
2ϕ+ ϕ− 2V̂ −1Ûϕ+ V̂ −2Û2ψ + λsϕ = 0, −∞ < x <∞,

(−∆)sψ − 2τsÛϕ+ τλsψ = 0, −∞ < x <∞.

(6.45a)

(6.45b)

Our aim is to study the large eigenvalues, i.e. those for which we may assume that there exists c > 0
such that |λs| ≥ c > 0 for 1 − 2s is small. If ℜ(λs) < −c then we are done and we therefore may
assume that ℜ(λs) ≥ −c. For a subsequence 1 − 2s → 0 and λs → λ0 we shall derive a limiting
NLEP satisfied by λ0.

To simplify our argument, we shall assume τ = 0 and the general case can be proved by a
perturbation argument. When x ∈ Is, we calculate

ψ(x) = 2τs

∫
R
G(x− y)Û(y)ϕ(y)dy = 2

∫
Rwϕdy∫
Rw

2dy
+O((1− 2s)1−δ)∥ϕ∥H1(R). (6.46)
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Substituting this into (6.45a), and letting 2s − 1 → 0, we derive the following nonlocal eigenvalue
problem

(−∆)
1
2ϕ+ ϕ− 2wϕ+ 2

∫
Rwϕdx∫
Rw

2dx
w2 + λ0ϕ = 0. (6.47)

By Theorem 3.2 in [7] we see that λ0 < 0, which implies that the large eigenvalues are stable.

6.3.2. Small eigenvalue. We next consider the small eigenvalues of (6.45), i.e. those for which

λs → 0 as s→ 1
2 . In last section, we have already shown the existence of solutions (Û , V̂ ) to (6.8).

We notice that this equation is translation invariant. By differentiating (6.8) we derive that
(−∆)

1
2
dÛ

dx
+
dÛ

dx
− 2

Û

V̂

dÛ

dx
+
Û2

V̂ 2

dV̂

dx
= 0, −∞ < x <∞,

(−∆)s
dV̂

dx
− 2τsÛ

dÛ

dx
= 0, −∞ < x <∞.

(6.48a)

(6.48b)

This suggests that (ϕ, ψ) of (6.45) can be written as

ϕ = a
dÛ

dx
+ ϕ⊥, and ψ = a

dV̂

dx
+ ψ⊥, (6.49)

where ϕ⊥ ⊥ dÛ
dx and ψ⊥ satisfy(−∆)

1
2ϕ⊥ + ϕ⊥ − 2V̂ −1Ûϕ⊥ + V̂ −2Û2ψ⊥ + λs

dÛ

dx
+ λsϕ

⊥ = 0, −∞ < x <∞,

(−∆)sψ⊥ − 2τsÛψ
⊥ = 0, −∞ < x <∞.

(6.50a)

(6.50b)

As s→ 1
2 , we know that

Û

V̂
→ w and

Û2

V̂ 2
ψ⊥ → 2

∫
Rwϕ

⊥dy∫
Rw

2dy
w2.

Multiplying (6.50a) by ϕ⊥ we have

λs

∫
R
|ϕ⊥|2dx = −

∫
R

(
(−∆)

1
2ϕ⊥ + ϕ⊥ − 2

Û

V̂
ϕ⊥ +

Û2

V̂ 2
ψ⊥

)
ϕ⊥dx. (6.51)

From Lemma A.2 in [7] we have that

L1(ϕ
⊥, ϕ⊥) =

∫
R

(
|(−∆)

1
4ϕ⊥|2 + |ϕ⊥|2 − 2w|ϕ⊥|2 + 2

∫
Rwϕ

⊥dx
∫
Rw

2ϕ⊥dx∫
Rw

2dx

)

≥
∫
Rw

3dx
(∫

Rwϕ
⊥dx

)2(∫
Rw

2dx
)2 + a1 inf

ψ∈X1

∥ϕ⊥ − ψ∥L2(R),

where a1 > 0 and

X1 = Span

{
w,
dw

dx

}
.

Since ϕ⊥ ⊥ dÛ
dx and Û is well approximated by w, we get from (6.51) that

λs

∫
R
|ϕ⊥|2dx ≤ 0. (6.52)

Hence, we have shown all the small eigenvalues are stable. Thus, Theorem 1.2 follows by combining
the conclusions of the last two sections.
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7. Discussion

In this paper we have used formal asymptotic methods to study the existence and linear sta-
bility of localized solutions for the fractional Gierer-Meinhardt system where the fractional order
of the inhibitor is s2 ∈ (0, 1/2). These results extend those previously obtained in [7] and [15] for
s2 ∈ (1/2, 1) and s2 = 1/2 respectively. Using the method of matched asymptotic expansions the
construction of localized solutions was reduced to solving a system of nonlinear algebraic equations
while the study of their linear stability was reduced to analyzing a globally coupled eigenvalue prob-
lem. We found that when D = O(ε2s1−1) both symmetric and asymmetric multi-spike solutions
can be constructed though the latter were found to always be linearly unstable. On the other hand
symmetric spikes were found to have stability regions outside of which they may undergo either
a competition instability or a Hopf bifurcation. Using a leading order theory we found that the
competition instability threshold is monotone decreasing in s1 and it is either monotone decreasing
in s2 when s1 > 0.5 or non-monotonic (first increasing and then decreasing) when s1 < 0.5. In
addition we found that the Hopf bifurcation threshold increases with 1/4 < s1 < 1 provided s2 and
κ are large enough, whereas it decreases with 0 < s2 < 1/2 for all values of s1 and κ. We also
computed higher-order stability thresholds for specific cases of one- and two-spike solutions and
these were supported by full numerical simulations of the system (1.2). Finally, in addition to the
linear stability over an O(1) timescale we also determined that spike solutions may be susceptible to
drift instabilities leading to mutual repulsion between spikes, though these arise over a much slower
O(ε3−2s2) timescale.

A key component in the formal construction of multi-spike solutions is the core problem (2.2)
which was considered in detail numerically in §2.1 for general s2 ∈ (0, 1/2) and rigorously in §6
for s2 ≈ 1/2. We found that the behaviour of the far-field constant µ(S) shares some properties
with its counterpart in the three-dimensional Gierer-Meinhardt system previously studied in [6]. In
particular we used numerical continuation to deduce the existence of a value S = S⋆ for which the
core problem admits a ground state solution (i.e. one for which µ(S⋆) = 0). The existence and
linear stability of such a ground state was then rigorously established in §6 for s2 ≈ 1/2.

Finally, throughout our paper we have highlighted the similarities between both the analysis and
structure of localized solutions for the one-dimensional fractional Gierer-Meinhardt system when
s2 ∈ (0, 1/2) and the corresponding localized solutions in the three-dimensional Gierer-Meinhardt
system [6]. This connection is a result of the leading order algebraic singularity of the Green’s
function which in particular fixes the far-field behaviour of solutions to the core problem (2.2) and
also plays a key role in the asymptotic matching. In Appendix A we provide an expression for the
Green’s function which makes explicit its singular behaviour, showing in particular that the singular
behaviour consists of multiple algebraic singularities when s2 ∈ (0, 1/2) \ { 1

2r | r ∈ Z, r ≥ 1} (see

Proposition A.1) as well as logarithmic singularities for s2 =
1
2r for r ∈ Z with r ≥ 1 (see Proposition

A.2) We believe that these expressions for the Green’s function will be particularly useful for future
studies of localized solutions in one-dimensional fractional reaction-diffusion systems.

We conclude by highlighting some outstanding problems and suggestions for future research. One
of the first outstanding problems is to derive a higher-order asymptotic theory in the case when
s2 = 1

2r for r = 1, 2, .... The key hurdle in this direction is the emergence of both logarithmic
and algebraic singularities in the Green’s functions and we believe that a resolution of this would
spark some interesting mathematics. Additionally, it would be interesting to provide a rigorous
justification for the existence and linear stability results we have formally derived for general values
of 0 < s2 < 1/2. Extensions of the current model to incorporate non-periodic boundary conditions
as well as different reaction-kinetics would also be an interesting direction for future research.
Moreover the consideration of such fractional problems in two- and three-dimensional domains will
also lead to interesting mathematical questions.
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Appendix A. A Rapidly Converging Series for the Green’s Function

In this appendix we derive a rapidly converging series expansion of the periodic fractional Green’s
function satisfying (2.14). We begin by formally computing the Fourier series

GD(x) =
1

2
D +

∞∑
n=1

(
1 +

1

D(πn)2s2

)−1 cosπnx

(πn)2s2
, (A.1)

In contrast to the classical Green’s function, the fractional Green’s function contains multiple sin-
gular terms. By identifying and removing these singular terms from the series expansion (A.1) we
can therefore obtain a rapidly converging series expansion.

We will first restrict s2 to be such that s2 ̸= 1
2r for any integers r ≥ 1, returning to the remaining

cases at the end of this appendix. We first note that for any l > 1 and sufficiently large values of
n > 0 such that D(πn)2s2 > 1 we have

(
1 + 1

D(πn)2s2

)−1
=
(
1 + 1

D(πn)2s2

)−1( −1
D(πn)2s2

)l −D(πn)2s2
l∑

k=1

( −1
D(πn)2s2

)k
.

Substituting into (A.1) then gives

GD(x) =
D
2 + (−1)kmax

Dkmax

∞∑
n=1

(
1 + 1

D(πn)2s2

)−1 cosπnx
(πn)2(1+kmax)s2

−D

kmax∑
k=1

(−1)k

Dk

∞∑
n=1

cosπnx
(πn)2ks2

, (A.2)

where we choose kmax to be the smallest positive integer such that 2(1 + kmax)s2 > 1, i.e. kmax =
⌈ 1
2s2

−1⌉. This choice of kmax guarantees the second term in (A.2) converges. We remark that other
choices are also possible. For example, if second order derivatives at x = 0 are needed then it will
be more convenient to choose kmax to be the smallest integer such that kmax >

3
2s2

− 1.

To determine the singular terms from the remaining sum in (A.2) we first let β > 0 and consider
the series expansion

|x|β−1 = 1
β + 2

∞∑
n=1

cβ,n
cosπnx
(πn)β

, cβ,n =

∫ πn

0
xβ−1 cosxdx (A.3)
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Repeated integration by parts yields the identities{
cβ,n = (−1)n(β − 1)(nπ)β−2 − (β − 1)(β − 2)cβ−2,n, β > 2,

cβ,n = −(β − 1)
∫ nπ
0 xβ−2 sinxdx, β > 0.

Letting q ≥ 1 be the largest positive integer such that β − 2(q − 1) > 0 the above identities give

cβ,n = (−1)n+1
q−1∑
r=1

(−1)r(πn)β−2r
2r−1∏
l=1

(β − l) + (−1)q
2q−1∏
l=1

(β − l)

∫ nπ

0
xβ−2q sinxdx. (A.4)

Note that if β > 0 is an integer then (A.4) yields an explicit expression for cβ,n Indeed if β is an
odd integer then β− 2(q− 1) = 1 so that the product in the second term of (A.4) vanishes whereas
if β is an even integer then β − 2(q − 1) = 2 and the integral in the second term of (A.4) evaluates
to 1− (−1)n. In particular when β = 3 we obtain the useful series

|x|2 = 1

3
+ 4

∞∑
n=1

(−1)n
cosπnx

(πn)2
. (A.5)

If instead β > 0 is not an integer then we first write∫ ∞

0
xβ−2q sinxdx =

∫ ∞

0
xβ−2q sinxdx−

∫ ∞

nπ
xβ−2q sinxdx.

Since in this case −1 < β − 2q + 1 < 1 we can use standard properties of the Gamma function (see
equations (5.9.7) and (5.5.3) in [2]) to write∫ ∞

0
xβ−2q sinxdx =

π

2Γ(2q − β) cos(π(β − 2q + 1)/2)
=

(−1)q

2
∏2q−1
l=1 (β − l)

a−1
β/2,

where aβ/2 = −π−1βΓ(−β) sin(πβ/2). Moreover since β − 2q < 0 we can integrate by parts to get∫ ∞

nπ
xβ−2q sinxdx = (−1)n(nπ)β−2q + (β − 2q)

∫ ∞

nπ
xβ−2q−1 cosxdx,

where we remark that the last term is O(nβ−2q−2). In summary, for non-integer values of β > 0 we
have the expression

cβ,n =
1

2aβ/2
+ (−1)n(β − 1)(πn)β−2 + aβ,n, (A.6a)

where

aβ,n ≡ (−1)n+1
q∑
r=2

(−1)r(πn)β−2r
2r−1∏
l=1

(β − l) + (−1)q+1
2q∏
l=1

(β − l)

∫ ∞

nπ
xβ−2q−1 cosxdx. (A.6b)

The constant term appearing in (A.6a) allows us to relate |x|β−1 with the series (A.2) whereas
the decay aβ,n = O(nβ−2q−2) from (A.6b) yields a quickly converging series. Specifically, since our

choice of kmax = ⌈ 1
2s2

− 1⌉ implies that β ≤ 1 − 2s2 we deduce that β = 2ks2 ≤ 1 − 2s2 is not an

integer for all 1 ≤ k ≤ kmax. Therefore for any 0 < s2 < 1/2 we can rewrite the summands in the
rightmost term of (A.2) as

∞∑
n=1

cosπnx

(πn)2ks2
= aks2

(
|x|2ks2−1 − 1

2ks2
− 2ks2 − 1

2

(
x2 − 1

3

)
− 2

∞∑
n=1

a2ks2,n
cosπnx

(πn)2ks2

)
.

Substituting this back into (A.2) we reach our final result.
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Proposition A.1. Let s2 ∈ (0, 12) \ {
1
2r | r ∈ Z, r ≥ 1}. Then the Green’s function satisfying (2.14)

is given by

GD(x) =

kmax∑
k=1

(−1)k−1aks2
Dk−1

|x|2ks2−1 +RD(x) (A.7a)

where kmax = ⌈ 1
2s2

− 1⌉ and the regular part RD(x) is given by

RD(x) =
1

2
D +

(−1)kmax

Dkmax

∞∑
n=1

(
1 +

1

D(πn)2s2

)−1 cosπnx

(πn)2(1+kmax)s2
+

1

2s2

kmax∑
k=1

(−1)kaks2
kDk−1

+

kmax∑
k=1

(−1)k(2ks2 − 1)aks2
2Dk−1

(
x2 − 1

3

)
+ 2

∞∑
n=1

(kmax∑
k=1

(−1)kaks2a2ks2,n
Dk−1(πn)2ks2

)
cosπnx,

(A.7b)

where a2ks2,n is given by (A.6b) with β = 2ks2 and q = ⌈ks2⌉, while aks2 is given by

aks2 = −2ks2
π

Γ(−2ks2) sin(πks2). (A.7c)

We conclude this appendix by revisiting our restriction that s2 ̸= 1
2r for all integers r ≥ 1. If in-

stead s2 =
1
2r for some integer r ≥ 1, then kmax = r and we see that akmaxs2 = −2kmaxs2πΓ(−1) sin(π/2)

is undefined. This extends beyond a technical difficulty and is closely tied to the singular behaviour
of the Green’s function (2.15). Indeed when s2 > 1/2 the Green’s function has no singular terms,
but if 1/4 < s2 < 1/2 then it has one singular term, when 1/6 < s2 < 1/2 it has two, and
so on. At the transition points, i.e. s2 = 2−1, 4−1, 6−1, etc., the Green’s function has an addi-
tional logarithmic singularity. One way to see this formally is to observe that if s2 → 1

2r then

|x|2rs2−1 ∼ (2rs2− 1) log |x| whereas ars2 ∼ π−1(1− 2rs2)
−1 so that the k = kmax = r term in (A.7)

behaves like (−1)rD1−rπ−1 log |x|. To make this more precise we can calculate the Fourier series of
log |x| and integrate by parts to get

∞∑
n=1

cosnπx

nπ
= − 1

π
log |x| − 1

π
− 2

π

∞∑
n=1

(
Si(nπ)− π

2

)
cosnπx

nπ
(A.8)

where Si(z) ≡
∫ z
0

sin t
t dt is the Sine integral. Note that the rightmost term converges for all −1 <

x < 1 since Si(z) ∼ π/2 +O(z−1) as z → +∞. Comparing (A.8) with the rightmost term in (A.2)
we readily deduce our next result.

Proposition A.2. Let s2 =
1
2r for some integer r ≥ 1. Then the Green’s function satisfying (2.14)

is given by

GD(x) =

r−1∑
k=1

(−1)k−1aks2
Dk−1

|x|2ks2−1 +
(−1)r

πDr−1
log |x|+RD(x) (A.9a)

where RD(x) is given by

RD(x) =
1

2
D +

(−1)r

Dr

∞∑
n=1

(
1 +

1

D(πn)1/r

)−1 cosπnx

(πn)1+1/r
+ r

r−1∑
k=1

(−1)kak/(2r)

kDk−1

+
r−1∑
k=1

(−1)k(k/r − 1)ak/(2r)

2Dk−1

(
x2 − 1

3

)
+ 2

∞∑
n=1

(r−1∑
k=1

(−1)kak/(2r)ak/r,n

Dk−1(πn)k/r

)
cosπnx

+
(−1)r

πDr−1

(
1 + 2

∞∑
n=1

(
Si(nπ)− π

2

)cosnπx
nπ

)
,

(A.9b)

where Si(z) is the sine integral and where ak/r,n and ak/(2r) are defined as in (A.7).
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Appendix B. Numerical Implementation

In this appendix we outline the numerical methods used for the numerous computations in this
paper. Specifically we first describe the numerical implementation of the fractional Laplacian in
both R with a prescribed far-field behaviour as well as in the interval −1 < x < 1 with periodic
boundary conditions. We then outline the key steps in the numerical continuation used to construct
solutions to the core problem (2.2). This is followed by a discussion of the numerical computation
of the spectrum of the nonlocal operator M defined in (3.6b) as well as its adjoint M ⋆ from §4.
We then outline the implementation of IMEX methods for numerically simulating (1.2).

B.1. Numerical Computation of The Fractional Laplacian. To numerically solve the core
problem (2.2) as well as to determine the spectrum of the nonlocal operator M defined in (3.6b)
and its adjoint M ∗ considered in §4 we must first calculate an appropriate discretization of the
fractional Laplacian in R. On the other hand to numerically simulate the full system (1.2) we must
discretize the fractional Laplacian on −1 < x < 1 with periodic boundary conditions.

B.1.1. The Fractional Laplacian in R. We use the finite-difference method of Huang and Oberman
[10] to calculate the discretized fractional Laplacian. For completeness we include here the most
important details in the implementation. To simplify our presentation we consider the problem of
discretizing (−∆)sφ for 0 < s < 1/2 when φ satisfies the far-field behaviour φ ∼ a± + b±|y|−β for
constants a±, b±, and β > 0. We first introduce the truncated domain −L < y < L and consider
the approximate boundary conditions φ(y) ≈ a± + b±|y|−β for ±y ≥ L. Next we introduce the
discretization yi = ih for i = −2N, ..., 2N where h = L/N . This leads to the computational domain
−2L < y < 2L which has been expanded from the original truncated domain to account for nonlocal
contributions. For each i > N we impose a fixed value for φ±i ≡ φ(y±i) that depends on its value
at i = ±N in one of two ways{

if a± = 0 then b± = φ±NL
β and φ±i = φ±N |y±i/L|−β, (Case 1),

if b± is given then a± = φ±N − b±L
−β and φ±i = φ±N + b±(|y±i|−β − L−β), (Case 2).

(B.1)

These two cases account, respectively, for the activator and inhibitor in the core problem (2.2). We

next let νs(y) ≡ Cs|y|−(1+2s) and for each |i| ≤ N we decompose (1.1) as

(−∆)sφ(yi) =

∫ 2L

−2L

(
φ(yi)− φ(yi − y)

)
νs(y)dy︸ ︷︷ ︸

Ii

+φi

∫
|y|>2L

νs(y)dy︸ ︷︷ ︸
II

−
∫
|y|>2L

φ(yi − y)νs(y)dy︸ ︷︷ ︸
IIIi

. (B.2)

The first integral in (B.2) is approximated by performing a piecewise quadratic interpolation of
φ which gives us

Ii ≈
2N∑

j=−2N

(φi − φi−j)w
Q
j , (B.3)

where wQj (j = −2N, ..., 2N) are the quadratic interpolation weights calculated using Definition 3.2

of [10] with α = 2s and explicitly given by

wQj =
Cs
h2s


1

2−2s −G′′(1)− 1
2(G

′(3) + 3G′(1)) +G(3)−G(1), j = ±1,

2(G′(j + 1) +G′(j − 1)−G(j + 1) +G(j − 1)), j = ±2,±4, ...,

−1
2(G

′(j + 2) + 6G′(j) +G′(j − 2)) +G(j + 2)−G(j − 2), j = ±3,±5, ...,

(B.4a)

where

G(t) ≡

{
1

2s(2−2s)(2s−1) |t|
2−2s, s ̸= 1/2,

t− t log |t|, s = 1/2.
(B.4b)

Note that some of the entries in (B.3) will have |i− j| > N and for these we use (B.1).
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Next, by using the definition of νs(y) we readily calculate

II =
Cs

s(2L)2s
. (B.5)

To calculate IIIi we first consider the portion of the integral for which y > 2L and hence yi− y <
−L so that by using (B.1) we calculate∫ ∞

2L
φ(yi − y)νs(y)dy =

{
φ−NL

β
∫∞
2L |yi − y|−βνs(y)dy, (Case 1),

1
2

(
φ−N − b−L

−β)II + b−
∫∞
2L |yi − y|−βνs(y)dy, (Case 2).

The rightmost integral in both cases can be written in terms of the Gauss Hypergeometric function

2F1(a, b, c, z) which we recall has the integral representation (see (9.111) in [8])

2F1(a, b, c, z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1

(1− zt)a
dt, (b, c > 0).

A simple change of variables then immediately yields that for any β and α with β + α > 0∫ ∞

2L
|yi − y|−β|y|−1−αdy =

1

(2L)α+β(α+ β)
2F1(β, α+ β, α+ β + 1, (2L)−1yi), (B.6)

with an analogous result for the integration over −∞ < y < −2L. Thus for Case 1 and Case 2 we
respectively obtain

IIIi ≈ Cs
φ−N 2F1(β, β + 2s, β + 2s+ 1, (2L)−1yi) + φN 2F1(β, β + 2s, β + 2s+ 1,−(2L)−1yi)

2β+2sL2s(β + 2s)
(B.7a)

and

IIIi ≈ 1
2

(
φ−N + φN − (b− + b+)L

−β
)
II

+ Cs
b−2F1(β, β + 2s, β + 2s+ 1, (2L)−1yi) + b+2F1(β, β + 2s, β + 2s+ 1,−(2L)−1yi)

(2L)β+2s(β + 2s)
.

(B.7b)

Substituting equations (B.3), (B.5), and (B.7) into (B.2) thus yields a discretization of the frac-
tional Laplacian incorporating the relevant far-field behaviour for the core problem and spectrum
calculations. We conclude by remarking that in Case 1 this discretization leads to multiplication by
a dense matrix whereas for Case 2 the discretization involves both multiplication by a dense matrix
as well as the addition of an inhomogeneous term that captures the far-field behaviour.

B.1.2. The Periodic Fractional Laplacian in −1 < x < 1. We now consider the discretization of
(−∆)sφ(x) in −1 < x < 1 with periodic boundary conditions. In contrast to the discretization of
the fractional Laplacian in R considered above, periodic boundary conditions lead to a significantly
simpler implementation. We discretize the domain −1 < x < 1 by letting xi = −1 + 2ih for
i = 0, ..., N − 1 where h = 1/N . By approximating φ with a piecewise quadratic interpolator and
letting φi ≡ φ(xi) we then get

(−∆)sφ(xi) ≈
N−1∑
j=0

(φi − φi−j)W
Q
i−j , WQ

n = wQn +
∞∑
k=1

(wQk+Nn + wQk−Nn), (B.8)

where wQi are again the quadratic weight functions found in [10]. This discretization is readily

implemented and leads to a dense matrix. To compute WQ
n we truncate the sum by taking the first

103 terms.
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B.2. Solving the Core Problem. In this section we outline the key steps for calculating µ(S)
and ν(S) for S > 0. This computation has two main steps. In the first step we numerically compute
the fractional homoclinic ws1 satisfying (2.9) for values of 1/4 < s1 < 1. In the second step we use
the S ≪ 1 asymptotics (2.8a) to initiate a numerical continuation in S to solve (2.2) from which
µ(S) and ν(S) can then be computed from (2.7).

The fractional homoclinic solution to (2.9) was previously numerically computed for values of
1/4 < s1 < 1 in Appendix B of [7] and therefore we provide only an outline here and refer the reader
to that paper for more details. The first step is to discretize (2.9) using the method in Appendix
B.1.1. This yields a nonlinear system for the discretized solution which we can solve using Newton’s
method. Next we note that the exact solution to (2.9) when s1 = 1/2 is w1/2(y) = 2/(1 + y2).
Letting (s1)0 = 1/2 < (s1)1 < ... < (s1)M < 1 for a large M > 0 we can then numerically solve the
discretized nonlinear system for s1 = (s1)i when i = 1, · · · ,M by using the solution for s1 = (s1)i−1

as an initial guess where the exact solution is used for i = 1. A similar continuation is likewise
performed for values of 1/4 < s1 < 1/2.

The numerical solution of the core problem (2.2) follows a similar procedure. Numerically dis-
cretizing both the fractional Laplacians appearing in (2.2) using the method in (B.1.1) yields a
nonlinear system for the discretized solutions. Note that when performing the discretization the
far-field condition for Case 1 and Case 2 (see Equation (B.1)) is used for Uc and Vc respectively. It
is then straightforward to perform a numerical continuation in S > 0 by slowly incrementing it and
using the small S asymptotics (2.8a) as the initializing guess.

B.3. Computing the Spectrum of M . In this section we consider the numerical computation
of the spectrum of the nonlocal operator M defined in (3.6b). This is done by discretizing M and
then calculating the spectrum of the resulting matrix operator using standard eigenvalue libraries
(we used the eig function from the SciPy linalg library). In this section it therefore suffices
to describe the discretization of M . The operator M consists of two nonlocal contributions: the
fractional Laplacian (−∆)s1 and the convolution with the fractional Green’s function. The numerical
discretization of the former was considered in detail in Appendix B.1.1 and so it remains only to
discuss the discretization of the latter.

To simplify (and generalize) our presentation we henceforth focus on numerically approximating

J [φ](y) ≡
∫ ∞

−∞

φ(z)

|y − z|1−2s
dz, (B.9)

where 0 < s < 1/2 and φ is assumed to have the far-field behaviour

φ(y) ∼ φ±∞|y|−β as y → ±∞, (B.10)

where φ±∞ are unknown. Note that we use s = s2 in the discretization of both M and M ⋆ whereas
we use φ(y) = Uc(y;S)Φ

λ
c (y;S) so that β = 2+2s1 in the former and φ(y) = (Uc(y;S)/Vc(y;S))

2P (y)
so that β = 3+ 3s1 in the latter. We fix our notation by introducing the discretization yi = ih and
letting Φi = φ(yi) for i = −2N, ..., 2N where h = L/N . Then we decompose

J [φ](yi) =

∫
|z|<h

φ(yi − z)

|z|1−2s
dz︸ ︷︷ ︸

J1[φ](yi)

+

∫
h<|z|<2L

φ(yi − z)

|z|1−2s
dz︸ ︷︷ ︸

J2[φ](yi)

+

∫
|z|>2L

φ(yi − z)

|z|1−2s
dz︸ ︷︷ ︸

J3[φ](yi)

. (B.11)

The first integral is easily approximated using a Taylor series as

J1[φ](yi) =

∫ h

−h

φ(yi − z)

|z|1−2s
dz =

∫ h

−h

φ(yi)− φ′(yi)z +O(z2)

|z|1−2s
dz =

h2s

s
φi +O(h2+2s). (B.12)

The approximation of the remaining two integrals proceeds as for the fractional Laplacian above.
Specifically imposing that φj = φ±N |yj/L|−β for all ±j > N we first approximate J2 with the finite
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sum

J2[φ](yi) ≈
∑

1≤|j|≤2N

φi−jw̃
Q
j , (B.13)

where w̃Qj (j = −2N, ..., 2N) are the quadratic interpolation weights given by

w̃Qj = h2s


−G′′(1)− 1

2(G
′(3) + 3G′(1)) +G(3)−G(1), j = ±1,

2(G′(j + 1) +G′(j − 1)−G(j + 1) +G(j − 1)), j = ±2,±4, ...,

−1
2(G

′(j + 2) + 6G′(j) +G′(j − 2)) +G(j + 2)−G(j − 2), j = ±3,±5, ...,

(B.14)

where G(t) is given by (B.4b). Observe that the multiplicative factor Cs as well as the (2 − 2s)−1

term for the j = ±1 case present in (B.4) are omitted in (B.14). The former is omitted because it
is specific to the definition of the fractional Laplacian while the latter is omitted because it arises
from a finite difference approximation for the singular part of the fractional Laplacian which in the
present case is contained in the J1 contribution.

The remaining integral contributions J3 are then computed using (B.6) which yields

J3[φ](yi) ≈ L2sφ−N 2F1(β, β − 2s, β − 2s+ 1, yi

2L ) + φN 2F1(β, β − 2s, β − 2s+ 1,− yi

2L )

2β−2s(β − 2s)
. (B.15)

B.4. Time Stepping of the Fractional Gierer-Meinhardt System. We performed full numer-
ical simulations of (1.2) by first discretizing the system using the methods in §B.1.2 which yields a
system of 2N ordinary differential equations of the form

dΦ

dt
+AΦ+N (Φ) = 0. (B.16)

In this expression Φ(t) = (u(x0, t), · · · , u(xN−1, t), v(x0, t), · · · , v(xN−1, t))
T approximates the so-

lution at the discretization points xi = −1 + 2ih for i = 0, ..., N − 1 as in §B.1.2. The 2N × 2N
block-diagonal matrix A then has entries corresponding to the discretization (B.8) while the 2N
dimensional vector N (Φ) accounts for the nonlinearities in (1.2). We integrate the ODE system
using a second-order semi-implicit backwards difference scheme (2-SBDF) [21] which leads to the
linear system

(3I − 2∆tA)Φn+1 = 4Φn −Φn−1 + 4∆tN (Φn)− 2∆tN (Φn−1), (B.17)

where ∆t > 0 is the time-step size and Φn = Φ(n∆t). The initial condition is given by Φ0 and
since 2-SBDF is second-order we also need Φ1. We obtain this second initial value by integrating
(B.16) using the first-order semi-implicit backward difference scheme (1-SBDF) with a smaller time

step ∆t/Ñ for Ñ > 0 steps. Specifically, we do this by solving

(I − ∆t
Ñ
A)Φ(n+1)/Ñ = Φn/Ñ + ∆t

Ñ
N (Φn/Ñ ),
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for n = 1, ..., Ñ . For our numerical simulations we used N = 2000, Ñ = 5, and ∆t = 0.01. Moreover
in the spatial discretization of the fractional Laplacian we truncated the infinite sum appearing in
(B.8) after 250 terms.
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