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Abstract. In this paper we consider a non-local bistable reaction-diffusion equation which is a
simplified version of the wave-pinning model of cell polarization. In the small diffusion limit, a
typical solution u(x, t) of this model approaches one of the stable states of the bistable nonlinearity
in different parts of the spatial domain Ω, separated by an interface moving at a normal velocity
regulated by the integral

∫
Ω
u(x, t) dx. In what is often referred to as wave-pinning, feedback between

mass-conservation and bistablity causes the interface to slow and approach a fixed limit. In the limit
of a small diffusivity ε2 ≪ 1, we prove that for any 0 < γ < 1/2 the interface can be estimated
within O(εγ) of the location as predicted using formal asymptotics. We also discuss the sharpness
of our result by comparing the formal asymptotic results with numerical simulations.

1. Introduction

Scalar reaction-diffusion equations and systems can be useful in the modeling of phase transition
in various physical and biological systems. Of particular interest is the case of bistable reaction
diffusion equations for which Fife and McLeod [9] provided one of the first rigorous treatments.
The problem has since received considerable attention in higher dimensions such as, for example,
the analysis of generation and dynamics of interfaces using comparison principle methods by Chen
[5] and the analysis of interface motion using level set and viscosity solution methods by Barles et.
al. [2, 3]. Generalizations of these classical bistable reaction-diffusion equations that, for example,
incorporate non-local effects or replace the single reaction-diffusion equation with a system, are
also known to exhibit phase transition phenomenon [21, 6, 7], though their rigorous analysis is
considerably less studied. For example, the formal analysis by Rubinstein and Sternberg [21], as
well as the subsequent rigorous analysis by Chen et. al. [6], illustrates that travelling front solutions
to certain non-local scalar reaction-diffusion systems can exhibit many similarities to their classical,
local, counterparts.

In this paper we initiate a rigorous treatment of a non-local bistable reaction-diffusion equation
as an analytically tractable model of cell polarization [15, 16]. This model distills the complex
biochemical circuitry leading to the polarization of Rho GTPases to a two-species mass-conserved
reaction-diffusion system for the concentration of active and inactive GTPases. A delicate interplay
between bistability and mass conservation in this system can lead to the expansion and eventual
halting of an activated GTPase patch, a phenomenon which is commonly referred to as wave-pinning.
The relative simplicity of this two-species model, together with its analytical tractability and the
interpretability of its results, has made it an attractive framework for cell-polarization models. More
recent iterations of the wave-pinning model have incorporated mechanochemical feedback [22] and
bulk-surface coupling [20, 8, 7]. Within the context of bulk-surface coupling Giese et. al. have also
probed the effects of diffusion barriers and cell shape [10]. We remark that alternative models for
cell-polarization specifically and cellular pattern formation in general have also been proposed and
this is an active area of research. See, e.g. the review articles [12, 11, 19, 4].
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In this paper we consider specifically the non-local reaction-diffusion equation
ut(x, t) = ε∆u(x, t) + ε−1f(u(x, t), v(t)), x ∈ Ω, t > 0,

v(t) = M0 − 1
|Ω|

∫
Ω u(x, t)dx, t > 0,

∂nu(x, t) = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

(1.1a)

(1.1b)

(1.1c)

(1.1d)

where Ω ⊂ RN (N ≥ 1) is a bounded domain with smooth boundary, M0 > 0, ε > 0 are constants,
and f(u, v) is a smooth function which is bistable in u with additional properties to be made more
precise below. The well-posedness of solution to (1.1) is discussed in Subsection 1.1 below. This
non-local equation is formally obtained by taking the limit D → ∞, often referred to as the shadow
limit, in the mass-conserved reaction-diffusion system

ut = ε∆u+ ε−1f(u, v), εvt = D∆v − f(u, v), x ∈ Ω, t > 0,

∂nu = ∂nv = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω, t = 0.

Specifically, assuming D ≫ 1 we then consider the asymptotic expansion v(x, t) ∼ v0(x, t)+· · · from
which we deduce the leading order expression ∆v0 = 0. Together with the homogeneous Neumann
boundary conditions this implies that v0(x, t) is spatially constant. Moreover, mass conservation

d

dt

∫
Ω

(
u(x, t) + v(x, t)

)
dx = 0,

then implies that v = v(t) where v(t) is given by (1.1b). The analysis of wave-pinning in these
systems by Mori et. al. [16], as well as of its subsequent iterations (e.g. [7, 22]), primarily rely on
numerical simulations and the use of formal asymptotic methods in the sharp interface limit for
which ε ≪ 1. Our goal in this paper is to initiate a rigorous treatment of front solutions to (1.1) by
rigorously demonstrating that such solutions converge to those obtained using formal asymptotics
as ε → 0+.

The remainder of this paper is organized as follows. We begin by first recalling in §1.2 some
preliminary properties of travelling front solutions in R1 due to Fife and McLeod [9]. After making
precise assumptions about the initial condition u0(x) in §1.3 we will then state in §1.4 the leading
order solution to (1.1) obtained using formal asymptotic methods and describe in more detail the
conditions for wave-pinning to arise. This is accompanied with an illustrative example in §1.5 for
which we numerically simulate (1.1). In §1.6 we precisely state our assumptions on the reaction-
kinetics f(u, v) and state our main result in Theorem 2. In §2 we prove convergence results for the
scalar counterpart of (1.1) where v is a prescribed function, which is subsequently used in the proof
of Theorem 2 in §3.

Before proceeding further, we describe the most important assumptions on the reaction kinetics
f(u, v) in order to establish some common notations. The first assumption we make is that for a
range of v ∈ [vmin, vmax] the function f(u, v) is bistable in u. Specifically this means that f(·, v) has
exactly three zeros h−(v) < h0(v) < h+(v) such that

fu(h
±(v), v) < 0 and fu(h

0(v), v) > 0. (1.2)

These inequalities imply in particular that h±(v) (resp. h0(v)) are stable (resp. unstable) with
respect to the reaction kinetics. In addition we assume that the spatially homogeneous steady
states (u, v) = (h±(v±0 ), v

±
0 ), where v±0 is obtained by substituting u = h±(v±0 ) into (1.1b), noting

that |Ω| = 1, and solving the resulting nonlinear equation v±0 + h±(v±0 ) = M0, are linearly stable.
We can derive an algebraic relation for linear stability by letting u = h±(v±0 ) + ϕj(x)e

λt where ϕj

is the eigenfunction satisfying −∆ϕj = µjϕj in Ω and ∂nϕj = 0 on ∂Ω. Since µ0 = 0 and ϕ0 = 1
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whereas µj > 0 and
∫
Ω ϕjdx = 0 for all remaining j ≥ 1, substituting into (1.1a) and linearizing

yields two cases {
λ = ε−1(fu(h

±(v±0 ), v
±
0 )− fv(h

±(v±0 ), v
±
0 )), j = 0,

λ = −µj + ε−1fu(h
±(v±0 ), v

±
0 ), j ≥ 1.

When j ≥ 1 we immediately deduce that λ < 0 by the bistability of f(·, v) whereas for j = 0 we
deduce the linear stability condition

fu(h
±(v±0 ), v

±
0 )− fv(h

±(v±0 ), v
±
0 ) < 0. (1.3)

1.1. Existence and Uniqueness Result. Note that (1.1) can be rewritten into the following
single, nonlocal parabolic equation

ut(x, t) = ε∆u(x, t) + ε−1f(u(x, t),M0 − 1
|Ω|

∫
Ω u(x, t)dx), x ∈ Ω, t > 0,

∂nu(x, t) = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω.

(1.4a)

(1.4b)

(1.4c)

Since the integral term
∫
Ω u dx has better regularity than u, one can apply the usual semigroup

argument to obtain existence and uniqueness of classical solution.

Theorem 1. For each nonnegative u0 ∈ C(Ω), (1.4) has a unique classical solution u ∈ C(Ω ×
[0,∞)) ∩ C2,1(Ω× (0,∞)).

Proof. Set X = C(Ω) and{
D(−∆) =

{
ϕ ∈

⋂
p>1W

2,p(Ω) : ∆ϕ ∈ C(Ω), ∂nϕ
∣∣
∂Ω

= 0
}
,

X1/2 =
{
ϕ ∈ C1(Ω) : ∂nϕ

∣∣
∂Ω

= 0
}

The existence and uniqueness of a classical solution in the class

C([0, Tmax);X) ∩ C1((0, Tmax);X) ∩ C((0, Tmax);D(−∆))

defined on some maximal time interval [0, Tmax) is a consequence of semigroup theory [14, Theorem
7.1.5 and Proposition 7.1.10]; See also [13, Theorem 5.1.2]. Next, observe that Tmax = +∞ since the
solution remains bounded for all time thanks to the bistable nonlinearity f . Finally, by observing

that u, and the nonlinearity f
(
u,M0 − 1

|Ω|
∫
Ω u dx

)
belongs to Cβ,β/2(Ω×[δ, 1δ ]) for every 0 < δ < 1,

it follows from the Schauder estimates that u ∈ C2,1(Ω× [δ, 1/δ]) for each 0 < δ < 1. □

1.2. Travelling Front Solutions in R1. Let v ∈ (vmin, vmax) and assume that a ∈ R is sufficiently
small so that f(u, v)− a is bistable. Denote by h0(v; a) and h±(v; a) the unstable and stable zeros
of f(·, v)− a respectively. It can then be shown that (see [9] for example)

qrr + αqr + f(q, v)− a = 0, −∞ < r < ∞,

q(0, v; a) = h0(v; a), q(r, v; a) → h∓(v; a), r → ±∞,

(1.5a)

(1.5b)

can be solved for a unique front profile q(r, v; a) and front speed α(v; a). Moreover, it can be shown
that q(r, v; a) is monotone decreasing in r so that multiplying (1.5a) by qr and integrating yields
the explicit expression for the front speed

α(v; a) =
1∫∞

−∞ |qr(r, v; a)|2dr

∫ h+(v;a)

h−(v;a)
(f(u, v)− a)du. (1.6)

In addition to these properties we also have the following ordering property for the front speed
under the additional assumption that ∂f/∂v ≥ 0.
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Lemma 1.1. Let vmin < v1 < v2 < vmax and a ∈ R be such that both f(·, v1) − a and f(·, v2) − a
are bistable. If ∂f/∂v ≥ 0 then α(v1; a) ≤ α(v2; a).

Proof. First, we assume in addition that ∂f/∂v > 0. Let qi(r) ≡ q(r, vi; a) and αi ≡ α(vi; a) for each
i = 1, 2. Observe that ∂f/∂v > 0 implies that h±(v1; a) < h±(v2; a). Since q is strictly decreasing
in r and q(±∞; v2; a) > q(±∞; v1; a), we can perform a translation to find values r1 and r2 such
that

q1(r1) = q2(r2), q′1(r1) = q′2(r2), q′′1(r1) ≤ q′′2(r2).

From (1.5a) we then obtain

q′′2(r2)− q′′1(r1) + (α2 − α1)q
′
1(r1) = f(q1(r1), v1)− f(q2(r2), v2) ≤ 0, (1.7)

which implies α2 − α1 ≥ 0.
For the general case ∂f/∂v ≥ 0, choose δ > 0 small and repeat the above arguments to f + δv,

and then let δ → 0. □

Remark 1.1. By differentiating f(h±(v; a), v) − a = 0 with respect to a we readily deduce that
dh±

da < 0. On the other hand we similarly calculate dh0

da > 0.

Remark 1.2. The a-dependent reaction kinetics f(u, v)−a are important for the convergence proof
in Section 2; see also [3]. When a = 0 we will write α(v), h0(v), and h±(v) instead of α(v; 0),
h0(v; 0), and h±(v; 0) respectively.

1.3. Well-Prepared Initial Conditions. By replacing x, t, ε with x/|Ω|1/N , t/|Ω|1/N , and

ε/|Ω|1/N , respectively, we may assume without loss of generality that Ω is of unit volume, e.g.
|Ω| = 1. We will be making this assumption for the remainder of the paper.

Throughout this paper we will also assume that the initial condition u0(x) is well-prepared in the
following sense. We fix Ω0 ⊂ Ω and define the initial interface Γ0 = ∂Ω0 \ ∂Ω which we assume to
be a Lipschitz surface intersecting ∂Ω transversally. More precisely, we assume that there exists a
constant M0 > 1 such that the following two conditions hold:

(L) For each x0 ∈ Γ0 there exists a neighborhood N ⊂ Ω of x0 such that the surface Γ0 ∩ N
can be represented as the graph of a Lipschitz function. Specifically, up to an orthogonal
change of coordinates

Γ0 ∩N = {(x′, xN ) ∈ N ′ × R |xN = Gx0(x
′)},

where Gx0 : N ′ ⊂ RN−1 → R satisfies |Gx0(x)−Gx0(y)| ≤ M0|x− y| for all x, y ∈ N ′.
(T) For each x0 ∈ Γ0 ∩ ∂Ω, using the same local coordinates as above, we have

|n∂Ω(x0) · (0, · · · , 0, 1)T | ≤ M−1
0 ,

where n∂Ω(x0) denotes the outer unit normal vector of ∂Ω at the point x0. Note that (T)
holds trivially if Γ0 ∩ ∂Ω is empty.

Next we let v0 solve the algebraic equation

v0 + |Ω0|h+(v0) + (1− |Ω0|)h−(v0) = M0, (1.8a)

where we assume that Ω0 and M0 are chosen in such a way that (1.8a) has a solution in v0 ∈
(vmin, vmax). In terms of this value of v0 and the geometric constraints on Ω0 we then define the
initial condition u0(x) by

u0(x) =

{
h+(v0), x ∈ Ω0,

h−(v0), x ∈ Ω \ Ω0.
(1.8b)

Remark 1.3. With this choice of well-prepared initial conditions we bypass the question of front
generation and focus instead exclusively on front propagation.
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Figure 1. Illustration of Lemma 1.2. The sets ∂Ω and Γ0 are represented by the
solid and dash curves respectively. For given x′ ∈ Γ0 and ρ > 0, the choice of B(x0, ρ)
and B(x̂0, ρ) are displayed.

Remark 1.4. The geometric constraints on the initial interface Γ0 are needed for the proofs of
Theorems 2 and 3. If Γ0 is a smooth surface, then we only need

|n∂Ω(x0) · nΓ0 | < 1 for all x0 ∈ Γ0 ∩ ∂Ω,

where nΓ0 is the normal vector with respect to Γ0.

We state, without proof, the following consequence of the geometric constraints on Ω0 and Γ0

(see Figure 1 for an illustration).

Lemma 1.2. Let Ω0 ⊂ Ω and its boundary Γ0 = ∂Ω satisfy the geometric constraints (L) and (T)
above. Then there exist ρ > 0 and K̄0 > 1 such that for any x′ ∈ Γ0 and ρ ∈ (0, ρ], there exists

x0 ∈ Ω0, x̂0 ∈ Ω \ Ω0 such that

B(x0, ρ) ⊂ Ω0, B(x̂0, ρ) ⊂ Ω \ Ω0,

and
|x′ − x0|+ |x′ − x̂0| ≤ K̄0ρ.

Here B(x0, ρ0) = {x ∈ RN
∣∣|x− x0| < ρ0} and K̄0 only depends on ∂Ω and the constant M0.

1.4. Leading order Solution and Wave-Pinning. Using the method of matched asymptotic
expansions we can formally derive a leading-order approximation of solutions to (1.1) under the
assumptions of a well-prepared initial condition. We first state the following definition of a signed
distance function which we will use throughout the remainder of paper.

Definition 1. Let S ⊂ RN be arbitrary. The signed distance from ∂S = S ∩ Ω \ S is then defined
by

dist(x, ∂S) =

{
infy∈∂S |x− y|, x ∈ Ω \ S,
− infy∈∂S |x− y|, x ∈ S.

(1.9)

Let Γ0 = ∂Ω0 be the interface described in §1.3. For each t, we define the domain Ω̂(t) and value
v̂(t) by solving the systemΩ̂(t) ≡

{
x ∈ Ω |dist(x,Γ0) <

∫ t
0 α(v̂(τ))dτ

}
,

v̂(t) = M0 − |Ω̂(t)|h+(v̂(t))−
(
1− |Ω̂(t)|

)
h−(v̂(t)),

(1.10a)

(1.10b)

where α(·) is the front-speed given by (1.6) with a = 0. Note that Ω̂(0) = Ω0.
Equations (1.10a) and (1.10b) together constitute a differential algebraic equation (DAE) which

can in general be solved for v̂(t) and Ω̂(t) uniquely. We refer the reader to Appendix A for a
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reformulation of this DAE which more readily lends itself to numerical calculation. Note that
v̂(0) = v0 coincides with the value of v0 chosen in §1.3 above. The leading order asymptotic

approximation for uε when ε ≪ 1 is then given in terms of Ω̂(t) and v̂(t) by

û(x, t) = h+(v̂(t))χΩ̂(t)(x) + h−(v̂(t))χΩ\Ω̂(t)(x), (1.10c)

where χS(x) is the indicator function for any S ⊂ RN .

Remark 1.5. If v(t) is prescribed independently of u in (1.1) then one can define Ω̂(t) by (1.10a)
and the same leading-order solution (1.10c) can be obtained; see §2.

The formal construction of the approximation (1.10) relies solely on the bistability of the reaction
kinetics and the well-preparedness of the initial condition. If we assume in addition that α′(v) ≥ 0
and the existence of a vc ∈ (vmin, vmax) such that α(vc) = 0, then solutions to (1.1) may exhibit
wave-pinning (WP) in which the front slows and approaches a fixed interface. The possibility of
this behaviour is readily seen by differentiating (1.10b) with respect to t to get

dv̂

dt
= − h+(v̂(t))− h−(v̂(t))

1 + |Ω̂(t)|dh+

dv

∣∣
v̂(t)

+
(
1− |Ω̂(t)|

)
dh−

dv

∣∣
v̂(t)

|∂Ω̂(t) \ ∂Ω|α(v̂(t)). (1.11)

Observe that the denominator is strictly positive as a consequence of the linear stability of the
homogeneous steady states. Indeed, by differentiating the identity f(h±(v), v) = 0 with respect to
v and using the stability condition (1.3), we obtain

0 = fu(h
±(v), v)dh

±

dv + fv(h
±(v), v) > fu(h

±(v), v)
(
dh±

dv + 1
)
. (1.12)

In view of (1.2), it follows that dh±/dv > −1.
By (1.11), we deduce that dv̂/dt is negatively proportional to the front speed which in particular

implies that dv̂/dt ≶ 0 for v̂(t) ≷ vc and this suggests three distinct outcomes for the dynamics of

the leading order solutions to (1.1): (I) Ω̂(t) → ∅ in finite time, (II) Ω̂(t) → Ω in finite time, or (III)

α(v̂(t)) → 0 and Ω̂(t) → Ω∞ ⊂ Ω as t → ∞. The particular outcome depends on the properties
of the well-prepared initial condition and, ignoring boundary effects, can be heuristically classified
solely by the values |Ω0| and M0. To do so, we start by defining

M(v, w) = v + wh+(v) + (1− w)h−(v) for v ∈ [vmin, vmax], w ∈ [0, 1], (1.13)

in terms of which (1.10b) is equivalent to M(v̂(t), |Ω̂(t)|) = M0. Next, we calculate

∂M

∂v
= 1 + w

dh+

dv
+ (1− w)

dh−

dv
,

∂M

∂w
= h+(v)− h−(v),

both of which we observe to be positive. Since the dynamics of |Ω̂(t)| and v̂(t) are restricted to the

contours M(v̂(t), Ω̂(t)) = M0 we can immediately deduce a criteria for each outcome (I), (II), and

(III) based on whether v0 < vc or v0 > vc and whether the contour intersects |Ω̂| = 0 or |Ω̂| = 1
(see Figure 2c for an example). We summarize this classification in the following proposition.

Proposition 1.1. The dynamics of the leading order solution (1.10) have the following three out-
comes depending on the parameters v0 and |Ω0| and are determined by the value of M(v0, |Ω0|)
defined by (1.13):

(I) if vmin + h−(vmin) < M(v0, |Ω0|) < vc + h−(vc) then Ω̂(t) → ∅ in finite time,

(II) if vc + h+(vc) < M(v0, |Ω0|) < vmax + h+(vmax) then Ω̂(t) → Ω in finite time, and

(III) if vc+h−(vc) < M(v0, |Ω0|) < vc+h+(vc) then α(v̂(t)) → 0 and Ω̂(t) → Ω∞ ⊂ Ω as t → ∞.

Note that in Case (III) above it is possible that Ω∞ = ∅ or Ω∞ = Ω, but the convergence is not
achieved in finite time. In particular, regardless of the outcome in the above proposition we deduce
the following properties of v̂(t) and α(v̂(t)).
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Figure 2. (A) Plot of the wave-pinning threshold (solid blue) for the nonlinearity
specified in (1.14). wave-pinning is formally known to occur for values of κ0 and
κ1 below the solid blue curve. The rigorous results in this paper are restricted to
choices of κ0 and κ1 below the dashed orange curve. The dot indicates the values of
κ1 = 0.2 and κ0 = 0.01 used in (B) and (C) and for the simulations in the example

of §1.5. (B) Zeros h−(v), h0(v), and h+(v) of (1.14). (C) Color plot of M(v̂, |Ω̂|)
showing trajectories of the leading order solution (1.10) along its contours with each
label coinciding with the possible outcomes of Proposition 1.1.

Lemma 1.3. Let v̂(t) solve (1.10a)-(1.10b) where Γ0 satisfies the geometric assumptions in §1.3
and v̂(0) = v0 ∈ (vmin, vmax). Then vmin < v̂(t) < vmax and α(v̂(t)) is of one sign for all t ≥ 0.

1.5. Example. In this subsection, we illustrate the wave-pinning phenomenon in a two-dimensional
domain by numerically simulating (1.1) using the finite element method software FlexPDE7 [18].
Throughout our simulations we let the reaction kinetics be of the commonly used form

f(u, v) =

(
κ0 +

κ1u
2

1 + u2

)
v − u. (1.14)

These reaction kinetics are known to satisfy the conditions for wave-pinning provided that κ0 < κ1/8
[16]. Our proof of Theorem 2 applies in the more restrictive parameter regime indicated in Figure
2a needed to satisfy assumption (1.16) below. This region was numerically computed by enforcing
that |dh±/dv| < 1 at v = vc which guarantees the existence of a neighborhood (vmin, vmax) of vc
for which, in addition to the bistability condition, assumption (1.16) holds. Fixing κ1 = 0.2 and
κ0 = 0.01 we can then calculate h±(v) and h0(v) which we plot in Figure 2b together with the
numerically calculated values vc ≈ 9.4422, vmin ≈ 9.1151, and vmax ≈ 11.486. In Figure 2c we plot
M(v0, |Ω0|) together with the critical value vc (dashed vertical line) and three sample trajectories of

|Ω̂(t)| versus v̂(t) labelled according to the three possible outcomes (I), (II), and (III) in Proposition
1.1.

To demonstrate the wave-pinning mechanism, and the accuracy of the leading order solution
(1.10), we consider an illustrative example for which we numerically solve (1.1) using FlexPDE7
[18] with ε = 0.001 and Ω ⊂ R2 being a disk of unit area centred at the origin. We use (1.8b) as the
initial condition where Ω0 is an ellipse centered at the origin with major- and minor-axis lengths
of a = 0.50777 and b = 0.24520 respectively. Choosing M0 = 9.7 then gives a value of v0 ≈ 9.2
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Figure 3. Comparison of numerical and leading order asymptotic solutions. Pa-
rameter values used found in the main body. (A) Numerically computed trajectory

(vnum(t), |Ωnum(t)|) (dashed red) superimposed on a colorplot ofM(v̂, |Ω̂|). (B) Com-
parison of vnum(t) (solid blue curve) and v̂(t) (dashed orange curve). The horizontal
orange dotted line indicates the value of vc = v̂(+∞) (note that vc = v̂(+∞) and

|Ω̂(∞)| are uniquely determined by (1.10b)). The horizontal blue dotted line indi-
cates the O(ε) corrected vεc after taking the mean curvature dynamics into account

and determined by solving by α(vεc) = εR−1
c , where πR2

c = |Ω̂(∞)|. (C) Comparison

of |Ωnum(t)| (solid blue) and |Ω̂(t)| (dashed orange).

which is less than vc so that the leading-order theory predicts that vε will increase toward vc and
the area of the activated region will decrease. In Figure 3a we indicate by a green and red dot
the, respectively, initial and final (obtained by the formal leading order theory) values of vε and
the volume of the activated region. We henceforth denote the numerically computed solution by
unum(x, y, t) and vnum(t) in terms of which we define the numerical activated region by

Ωnum(t) =

{
(x, y) ∈ Ω

∣∣∣∣unum(x, y, t) > 1
2

(
max

(x,y)∈Ω
unum(x, y, t) + min

(x,y)∈Ω
unum(x, y, t)

)}
.

The numerically calculated values of vnum(t) and |Ωnum(t)| thus obtained are indicated by the dashed
red curve in Figure 3a which shows good agreement with the expected behaviour of the leading order
solution in that it follows a contour of M(v̂, |Ω̂|). Similarly, we compare vnum(t) and |Ωnum(t)| to
their leading order counterparts in Figures 3b and 3c respectively. In the top row of Figure 4 we
plot, at the indicated values of t, a colorplot of the numerically computed solution unum(x, y, t)
with the leading order trajectory of the front superimposed and indicated by the dashed white line.
The remaining rows of Figure 4 show cross sections of unum (solid blue) and û (dashed orange)
along y = 0 (middle row) and x = 0 (bottom row). Finally, in Figure 6 we show the evolution
of the activated region over a longer timescale which suggests the front evolves according to a
volume-conserved mean curvature flow.

While Figures 3 and 4 show good qualitative agreement between the numerically computed
solution and the leading order asymptotic theory, there are some clear quantitative discrepancies.
Although subtle, we first note that there appears to be a slight mismatch when comparing the
numerical and leading order asymptotic solutions in Figures 3b and 3c. This discrepancy is due to
higher-order corrections to the leading-order asymptotic theory which we expect to be of order O(ε).
Indeed, based on numerical experiments (see Figure 6) as well as past results on travelling front
solutions to bistable reaction-diffusion systems (e.g. [21, 3]), we expect that as vε(t) approaches
its limiting value, the front will undergo a volume-conserved mean curvature flow over a slower
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0,
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0.5

1.0
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y

0.5

1.0
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y
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Figure 4. Comparison of the numerically calculated solution unum(x, y, t) and the
leading order asymptotic theory. The top row shows a colorplot of unum(x, y, t) with
the leading order trajectory superimposed as the dashed white curve. In the middle
and bottom rows we plot cross sections of unum(x, y, t) (solid blue) and û(x, y, t)
(dashed orange) along y = 0 (middle) and x = 0 (bottom). The time of each
snapshot and cross section is indicated at the top of each column.
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(c)

Figure 5. Relative error between the numerically computed solution and the lead-
ing order asymptotic theory.
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Figure 6. Long time behaviour of the numerical solution considered in the example
demonstrating volume-preserving mean curvature flow.

timescale. As a consequence, we anticipate that the mismatch observed in Figure 3 is of order ε
and sufficient to counteract the tendency of the mean curvature flow to shrink the activated region
further. An approximation to the corrected limiting value of vε(t) can be obtained by first noting
that, to leading order, the limiting volume of the activated region can be found by substituting
v̂(t) = vc into (1.10b) and solving for |Ω̂(∞)| = limt→∞ |Ω̂(t)|. Since the subsequent volume-

preserving mean-curvature flow ultimately leads to a ball of radius Rc = (|Ω̂(∞)|/π)1/2, we deduce
vεc = limt→∞ vε(t) must solve α(vεc) = εR−1

c . In Figure 3b we plotted both vc (dotted orange) and vεc
(dotted blue) showing good agreement with the limiting behaviour of v̂ and vε respectively. Finally,
in Figures 5a and 5b we show the results of repeating our numerical calculations for additional
values of ε = 0.002, 0.005, 0.006, 0.008, 0.01 to calculate the relative error with the leading order
asymptotic theory. We observe that while the relative error increases for larger values of t, it still
remains O(ε). However, this is not the case for Figure 5c.

In addition to the discrepancies in Figure 3 discussed above, we also observe in Figure 4 that
when t = 5 there is a mismatch between the numerical and leading-order asymptotic solutions near
the extremities of the activated region along y = 0. This mismatch is in part due to the higher-
order mean curvature effects discussed above, though we expect this to play only a secondary role.
Instead, we expect that this mismatch is primarily due to the formation of a cusp in the leading
order front evolution which first occurs around t = 2. Indeed, at points where such a cusp emerges
the asymptotic solution obtained using the method of matched asymptotic expansions is no longer
valid. This discrepancy is in fact captured in our main result of Theorem 2 for which the error to
the leading-order asymptotic theory is proven to be O(εγ) for any γ ∈ (0, 1/2). In Figure 5c we
plot the relative error between the numerically calculated location of the front along y = 0 and
the leading order location of the front given by x = a + ŝ(t) where ŝ(t) is the solution to (A.1).
Interestingly, we observe from these plots that the relative error is of order ε for smaller values of t
whereas it becomes sub-linear as t increases before becoming approximately of order

√
ε at t = 5.

1.6. The Main Result. The above example illustrates that the leading order approximation (1.10)
is in good agreement with direct numerical simulations of (1.1). This example also suggests that
for a fixed T > 0, v̂(t) uniformly approximates vε(t) in [0, T ], while û(x, t) uniformly approximates
uε(x, t) away from the leading order front interface in Ω × [0, T ]. We make these observations
rigorous in Theorem 2 which relies on the following four assumptions:

(A1) There exists a pair vmin < vmax such that for all v ∈ [vmin, vmax] the nonlinearity f(·, v) is
bistable with zeros h−(v) < h0(v) < h+(v) and such that the spatially homogeneous steady
states u = h±(v) are linearly stable.

(A2) There exists a unique value vc ∈ (vmin, vmax) such that α(vc) = 0 where α is the front speed
given by (1.6).
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(A3) The nonlinearity f(u, v) satisfies

∂f/∂v ≥ 0 for all u and v ∈ [vmin, vmax]. (1.15)

(A4) There exists a θ ∈ (0, 1) such that

|h±(v1)− h±(v2)| < (1− θ)|v1 − v2| for all v ∈ [vmin, vmax]. (1.16)

(A5) The domain Ω is convex.

Assumptions (A1)-(A3) are needed for wave-pinning to occur, though we note that (A3) can
be weakened provided α(v1) ≤ α(v2) for all v1, v2 ∈ (vmin, vmax) with v1 ≤ v2. On the other
hand assumption (A4) is a technical assumption that is needed for the proof of Theorem 2. The
convexity of Ω in assumption (A5) is introduced to simplify the treatment of boundary conditions
in our construction of sub- and super-solutions in §2; see Remark 2.3. Finally we choose an A > 0
such that

sup
v1,v2∈(vmin,vmax)

|h+(v1)− h−(v2)| ≤ A and |α(v1)− α(v2)| ≤ A|v1 − v2| (1.17)

for all v1, v2 ∈ [vmin, vmax]. Such an A exists due to the smoothness of h± and α.
The following theorem is our main result and it provides quantitative estimates on the accuracy

of the leading order solution constructed in (1.10).

Theorem 2. Let f(u, v) satisfy assumptions (A1)-(A4), and let Ω satisfy assumption (A5). Suppose
that the initial condition u0 is given by (1.8b) such that the initial activated region Ω0 satisfies the
Lipschitz and transversality conditions (L) and (T) in §1.3. Then, for each T > 0 and γ ∈ (0, 12),

there exists an ε1 > 0 and K̄1 > 0 such that for all ε ∈ (0, ε1] and any solution (uε(x, t), vε) of
(1.1), we have

sup
t∈[0,T ]

|vε(t)− v̂(t)| ≤ K̄1ε
γ , (1.18a)

h−(v̂(t))− K̄1ε
γ ≤ uε(x, t) ≤ h+(v̂(t)) + K̄1ε

γ in Ω× [0, T ], (1.18b)

and|uε(x, t)− h+(v̂(t)| ≤ K̄1ε
γ in {(x, t) | 0 ≤ t ≤ T, dist(x,Γ0) <

∫ t
0 α(v̂(τ)) dτ − K̄1ε

γ},

|uε(x, t)− h−(v̂(t)| ≤ K̄1ε
γ in {(x, t) | 0 ≤ t ≤ T, dist(x,Γ0) >

∫ t
0 α(v̂(τ)) dτ + K̄1ε

γ},

(1.19a)

(1.19b)

where v̂(t) is given by (1.10b).

Note that above theorem treats the regime where the interface is driven by a constant-in-space
normal velocity modulated by the level of vε(t). Such a regime takes place at a faster timescale
then mean curvature and domain geometry effects. In this regime, the activated region at time t is
defined by its distance to the initial interface Γ0. In particular, the initial activated region Ω0 is not
assumed to be be connected. We prove Theorem 2 in Section 3 below. The proof relies crucially on
the local convergence properties of appropriate sub- and super-solutions to a scalar counterpart of
(1.1), which we analyze in §2 below.

2. Local Convergence of a Scalar PDE with Time Dependent Nonlinearity

In this section we consider the following scalar counterpart to (1.1)
ũt = ε∆ũ+ ε−1f(ũ, ṽ(t)), x ∈ Ω, t > 0,

∂nũ = 0, x ∈ ∂Ω, t > 0,

ũ(x, 0) = ũ0(x), x ∈ Ω, t = 0,

(2.1a)

(2.1b)

(2.1c)
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where we assume that the nonlinearity f(u, v) satisfies the bistability assumption (A1) and where
ṽ(t) is a prescribed function satisfying

ṽ ∈ C1([0,∞)) and vmin < ṽ(t) < vmax for all t ≥ 0. (2.2a)

In addition we let Ω0 ⊂ Ω and its boundary Γ0 = ∂Ω0 satisfy the geometric constraints (L) and (T)
set forth in §1.3. We then assume that the initial condition ũ0(x) is given by

ũ0(x) =

{
h+(ṽ(0)), x ∈ Ω0,

h−(ṽ(0)), x ∈ Ω \ Ω0.
(2.2b)

We are here interested in the limiting behaviour of solutions to (2.1) when ε ≪ 1. To precisely
state our main theorem for this section we first state the following definitions.

Definition 2. For a given 0 < σ < 1
2 and ε > 0 we define the following subsets of Ω

Ω̃+
ε,σ(t) ≡ {x ∈ Ω |dist(x,Γ0) <

∫ t
0 α(ṽ(τ))dτ − εσ},

Ω̃−
ε,σ(t) ≡ {x ∈ Ω |dist(x,Γ0) >

∫ t
0 α(ṽ(τ))dτ + εσ},

(2.3)

(2.4)

where dist(x,Γ0) is the signed distance function so that dist(x,Γ0) < 0 in Ω0.

Remark 2.1. Letting ε → 0 in the definition of Ω̃+
ε,σ(t) we obtain an analogue of the leading-

order activated region Ω̂(t) considered in §1.4. Indeed, the same asymptotic methods can be used to

derive a leading order approximation of the form (1.10c) for (2.1). In this sense Ω̃+
ε,σ(t) and Ω̃−

ε,σ(t)
are, respectively, subsets of the leading order activated and inactivated regions which closely (within
O(εσ)) approximate their leading order counterparts.

In terms of these definitions we have the following theorem whose proof will be the focus of the
remainder of this section.

Theorem 3. Let T > 0, Ω a convex subset of RN with smooth boundary, and let Ω0 ⊂ Ω and
assume that its boundary Γ0 ⊂ ∂Ω0 satisfies the Lipschitz and transversality conditions (L) and (T)
in §1.3. If ũε(x, t) satisfies (2.1) where ṽ(t) satisfies (2.2a) and the initial condition ũ0(x) is given
by (2.2b), then for each σ ∈ (0, β) and β ∈ (0, 1/2) there exists an ε2 > 0 and K̄2 > 0 such that for
all ε ∈ (0, ε2]

sup
(x,t)∈Ω̃+

ε,σ,T

|ũε(x, t)− h+(ṽ(t))| < K̄2ε
β,

sup
(x,t)∈Ω̃−

ε,σ,T

|ũε(x, t)− h−(ṽ(t))| < K̄2ε
β,

(2.5)

(2.6)

and

h−(ṽ(t))− K̄2ε ≤ uε(x, t) ≤ h+(ṽ(t)) + K̄2ε for all (x, t) ∈ Ω× [0, T ]. (2.7)

Here Ω̃±
ε,σ,T is given by

Ω̃±
ε,σ,T =

{
(x, t) ∈ Ω× [0, T ]| x ∈ Ω̃±

ε,σ(t)
}
. (2.8)

Remark 2.2. The bounds (2.5) and (2.6) in particular imply that for each σ ∈ (0, 1/2) the interface
of the activated region can be located within an error of O(εσ) from the limiting ε → 0 problem.

Remark 2.3. The convexity assumption here is used in the verification of the subsolution. When
the domain is convex, the spherically symmetric subsolution always has positive outward normal
derivatives, thus satisfying differential inequality on the boundary. If the domain is nonconvex but
is of class C2, then the same holds true provided the subsolution is supported on balls of sufficiently
small radius. In such a case, one can possibly modify the arguments and remove the convexity
assumption in this paper.
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Figure 7. Sketches of (A) the cut-off function w(x, t) defined by (2.10) and (2.13).
(B) The sub-solution Φε

x0,ρ0(x, t) from Lemma 2.2. We remind the reader that ρ1(t) ≡
ρ0 +

∫ t
0 α(ṽ(τ), ε

β) dτ .

Our first lemma addresses the global bounds (2.7).

Lemma 2.1. Let T > 0 be given and suppose that ũε satisfies (2.1) with assumptions (2.2). Then
there exists an ε3 > 0 and K̄3 > 0 such that for all ε ∈ (0, ε3]

h−(ṽ(t))− K̄3ε ≤ ũε(x, t) ≤ h+(ṽ(t)) + K̄3ε for all (x, t) ∈ Ω× [0, T ]. (2.9)

Proof. Let g−(t) = h−(ṽ(t))− K̄3ε and g+(t) = h+(ṽ(t))+ K̄3ε where K̄3 > 0 is a large constant to
be specified later. Since fu(h

±(ṽ(t)), ṽ(t)) < 0 we can find γ′ > 0 and ε3 > 0 such that

f(g+(t), ṽ(t)) = f(g+(t), ṽ(t))− f(h+(ṽ(t)), ṽ(t)) ≤ −γ′K̄3ε for 0 ≤ t ≤ T, and ε ∈ (0, ε3].

Using the fact that |dg
+

dt | = |∂h+

∂v
dṽ
dt | is uniformly bounded in ε we may specify K̄3 > 0 sufficiently

large so that
dg+

dt
≥ ε−1f(g+, ṽ),

and therefore g+(t) is a supersolution of (2.1). Since also g+(0) > h+(ṽ(0)) ≥ ũ0(x), we conclude
by the maximum principle that uε(x, t) ≤ g+(t) for all (x, t) ∈ Ω × [0, T ]. The proof of the lower
bound uε(x, t) ≥ g−(t) is similar and is omitted. □

The proof of the bounds (2.5) is more intricate and we proceed by first constructing a class of
radially symmetric sub- and super-solutions to (2.1).

Definition 3. For each δ > 0 we define ηδ(z) to be the smooth real-valued function satisfying
ηδ(z) = z, for z ≥ −δ/2,

−δ ≤ ηδ(z) ≤ −δ/2, for − δ ≤ z ≤ −δ/2,

ηδ(z) = −δ, for z ≤ −δ.

(2.10)

Definition 4. Let β > 0, ρ0 > 0, T > 0, ṽ ∈ C1([0, T ]), and x0 ∈ Ω be given.

(1) Define Tε, T̂ε ∈ [0, T ] by

Tε = sup
{
T ′ ∈ [0, T ]

∣∣ ρ0 + ∫ t
0 α(ṽ(τ), ε

β) dτ > 3εβ for all t ∈ [0, T ′]
}
,

T̂ε = sup
{
T ′ ∈ [0, T ]

∣∣ ρ0 − ∫ t
0 α(ṽ(τ),−εβ) dτ > 3εβ for all t ∈ [0, T ′]

}
,

(2.11)

(2.12)
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where we set Tε and T̂ε to zero if their corresponding sets are empty.
(2) Let δ = εβ and define w(x, t) and ŵ(x, t) by

w(x, t) = ηδ

(
|x− x0| − ρ0 −

∫ t
0 α(ṽ(τ), ε

β) dτ + δ
)

for x ∈ Ω, t ∈ [0, Tε],

ŵ(x, t) = −ηδ

(
|x− x0| − ρ0 +

∫ t
0 α(ṽ(τ),−εβ) dτ + δ

)
for x ∈ Ω, t ∈ [0, T̂ε].

(2.13)

(2.14)

(3) Define Φε
x0,ρ0(x, t) and Φ̂ε

x0,ρ0(x, t) by

Φε
x0,ρ0(x, t) = q

(
ε−1w(x, t), ṽ(t); εβ

)
for (x, t) ∈ Ω× [0, Tε],

Φ̂ε
x0,ρ0(x, t) = q

(
ε−1ŵ(x, t), ṽ(t);−εβ

)
for (x, t) ∈ Ω× [0, T̂ε],

(2.15)

(2.16)

where q(r, v; a) is the travelling front profile satisfying (1.5).

A plot of the function w(x, t) is shown in Figure 7a whereas Figure 7b shows a sketch of Φε
x0,ρ0 .

Lemma 2.2. Let β ∈ (0, 1/2), ρ0 > 0, T > 0, ṽ ∈ C1([0, T ]), and x0 ∈ Ω be given. Then there
exists an ε3 > 0 such that for all ε ∈ (0, ε3] the function Φε

x0,ρ0 defined in (2.15) above satisfies{
∂tΦ

ε
x0,ρ0 − ε∆Φε

x0,ρ0 − ε−1f(Φε
x0,ρ0 , ṽ(t)) ≤ 0 in Ω× [0, Tε],

∂nΦ
ε
x0,ρ0 ≤ 0 on ∂Ω× [0, Tε].

(2.17a)

(2.17b)

Furthermore, the constant ε3 > 0 depends on β but is independent of x0, ρ0.

Proof. Obviously Φε
x0,ρ0(x, t) is smooth in Ω \ {x0}. Moreover, the definition of Tε and w(x, t)

imply that w(x, t) ≡ −εβ in a neighborhood of x0 so that in particular Φε
x0,ρ0(x, t) is smooth for all

(x, t) ∈ Ω× [0, Tε].
From the well known properties of the front profile q (see for instance [9]) we can find an r0 > 0

and ν > 0 such that for all1 v ∈ [vmin, vmax] and a in a neighborhood of zero,

|qr(r, v; a)|+ |qrr(r, v; a)| ≤ e−ν|r| for all |r| ≥ r0. (2.18)

For convenience, we also define the function

ρ1(t) ≡ ρ0 +

∫ t

0
α(ṽ(τ), εβ) dτ, (2.19)

as well as the operator

L[ϕ] ≡ ∂tϕ− ε∆ϕ− ε−1f(ϕ, ṽ(t)). (2.20)

In terms of the radial coordinate ρ(x) = |x− x0| we directly calculate that

L[Φε
x0,ρ0 ] = qv

dṽ
dt + ε−1qr

[
wt − ε

(
wρρ +

N−1
ρ wρ

)
+ α

]
+ ε−1qrr

(
1− |wρ|2

)
− εβ−1. (2.21)

where α = α(ṽ(t); εβ) and that q and all its derivatives are evaluated at (r, v; a) = (ε−1w(x, t), ṽ(t); εβ).
We show (2.17a) by calculating the sign of the right-hand-side of (2.21) in three separate cases.
Throughout the proof we use∣∣qv dṽ

dt

∣∣+ |qr|+ |qrr|+ |α| ≤ C0 everywhere,

where C0 is a generic constant that is independent of ε.

Case 1. ρ(x) − ρ1(t) ≥ −3
2ε

β: In this case w(x, t) = ρ(x) − ρ1(t) + εβ so that wt = −α, wρ = 1,
wρρ = 0, and therefore

L[Φε
x0,ρ0 ] = qv

dṽ

dt
− N − 1

ρ(x)
qr − εβ−1. (2.22)

1By (A1), such an exponent ν exist for each v ∈ [vmin, vmax], and is the root of some quadratic equation. By
continuity argument, ν can be chosen uniformly in v.
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Moreover ρ(x) ≥ ρ1(t)− 3
2ε

β ≥ 3
2ε

β where we have used the definition of Tε for the second inequality.
In particular we deduce from (2.22) that for ε3 > 0 sufficiently small and ε ∈ (0, ε3],

L[Φε
x0,ρ0 ] ≤ C0 +

2
3C0(N − 1)ε−β − εβ−1 ≤ 0 for t ∈ [0, Tε],

where we used 0 < β < 1
2 to deduce the final inequality.

Case 2. ρ(x)− ρ1(t) ≤ −2εβ: In this case w(x, t) ≡ −εβ is a constant so we have

L[Φε
x0,ρ0 ] = qv

dṽ

dt
+ ε−1qrα+ ε−1qrr − εβ−1. (2.23)

For sufficiently small ε > 0 we have |r| = |ε−1w(x, t)| = |εβ−1| ≥ r0 so that (2.18)∣∣ε−1qrα
∣∣+ ∣∣ε−1qrr

∣∣ ≤ ε−1(C0 + 1)e−νεβ−1
,

where the last inequality follows from the choice of 0 < β < 1/2. We can then deduce from (2.23)
that

L[Φε
x0,ρ0 ] ≤ C0 + ε−1(C0 + 1)e−νεβ−1 − εβ−1 ≤ 0,

for ε ∈ (0, ε3], provided ε3 is sufficiently small.

Case 3. −2εβ < ρ(x) − ρ1(t) < −3
2ε

β: In this case from the definition of w(x, t) we deduce that

w(x, t) ≤ −1
2ε

β. Choosing ε > 0 sufficiently small so that |r| = |ε−1w(x, t)| ≥ 1
2ε

β−1 ≥ r0 we deduce

from (2.18) that |qr|+|qrr| ≤ 2e−
1
2νε

β−1

. On the other hand we also have that ρ(x) > ρ1(t)−2εβ > εβ

where the final inequality follows from the definition of Tε. Putting these together into (2.21) we
obtain that

L[Φε
x0,ρ0 ] = C0 + ε−1e−

1
2νε

β−1

− εβ−1 ≤ 0,

for ε ∈ (0, ε3], where the last inequality again follows from the choice of 0 < β < 1/2 and ε3 to be
sufficiently small.

Choosing ε > 0 to be sufficiently small so that Cases 1-3 hold we thus deduce (2.17a). Finally, the
boundary condition (2.17b) follows from ∂nΦ

ε
x0,ρ0(x, t) = ρ−1∂ρΦ

ε
x0,ρ0(x, t)(x−x0) ·n ≤ 0 where the

inequality follows from the convexity of Ω and because Φε
x0,ρ0 is decreasing radially from x0 ∈ Ω. □

An analogous argument also yields the following result.

Lemma 2.3. Let β ∈ (0, 1/2), ρ0 > 0, T > 0, and ṽ ∈ C1([0, T ]), and x0 ∈ Ω be given. Then there

exists ε3 > 0 small such that for ε ∈ (0, ε3], the function Φ̂ε
x0,ρ0 defined in (2.16) above satisfies{

∂tΦ̂
ε
x0,ρ0 − ε∆Φ̂ε

x0,ρ0 − ε−1f(Φ̂ε
x0,ρ0 , ṽ(t)) ≥ 0 in Ω× [0, T̂ε],

∂nΦ̂
ε
x0,ρ0 ≥ 0 on ∂Ω× [0, T̂ε].

(2.24)

(2.25)

The following result is an immediate consequence of the comparison principle.

Corollary 2.1. Fix β ∈ (0, 12), T > 0, ṽ ∈ C1([0, T ]), and x0 ∈ Ω0. There exists ε4 ∈ (0, ε3] such
that if

ũ0 ≥ h+(ṽ(0); εβ) in B(x0, ρ0) ∩ Ω, and ũ0 ≥ h−(ṽ(0); 0) in Ω \B(x0, ρ0), (2.26)

for some ρ0 ≥ 4εβ and ε ∈ (0, ε4], then there exists a K̄4 > 0 independent of x0 such that

ũε(x, t) ≥ h+(ṽ(t); 0)− K̄4ε
β, (x, t) ∈ B(x0, ρ0 +

∫ t
0 α(ṽ(τ)) dτ − (K̄4 + 2)εβ)× [0, Tε], (2.27)

where Tε is given by (2.11).
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Proof of Corollary 2.1. Let Φε
x0,ρ0(x, t) be given by (2.15). By Lemma 2.2 it follows that L[Φε

x0,ρ0 ] ≤
0 in Ω× [0, Tε], and ∂nΦ

ε
x0,ρ0 ≤ 0 on ∂Ω× [0, Tε]. Note that Tε > 0 since ρ0 ≥ 4εβ.

To apply the comparison principle, it remains to show that

ũ0 ≥ Φε
x0,ρ0(·, 0) in Ω. (2.28)

We have, on the one hand

ũ0(x) ≥ h+(ṽ(0); εβ) ≥ sup
r∈R

q(r, ṽ(0); εβ) ≥ Φε
x0,ρ0(x, 0) for x ∈ B(x0, ρ0).

On the other hand, we have w(x, 0) ≥ εβ in Ω \B(x0, ρ0) so that

Φε
x0,ρ0(x, 0) ≤ q(εβ−1, ṽ(0); εβ) = h−(ṽ(0); εβ) +O(e−νεβ−1

) in Ω \B(x0, ρ0).

Now, because A− = infv∈[vmin,vmax]
d
dah

−(v; a)|a=0 < 0 (see Remark 1.1), we deduce that

Φε
x0,ρ0(x, 0) ≤ h−(ṽ(0); 0) +A−εβ +O(ε2β) +O(e−νεβ−1

) ≤ h−(ṽ(0); 0) ≤ ũ0(x) in Ω \B(x0, ρ0),

for ε ∈ (0, ε4], with ε4 sufficiently small and where we have used β ∈ (0, 1/2) in the second inequality.
This proves (2.28). Having verified the initial conditions, we can apply the comparison principle to
deduce that ũε(x, t) ≥ Φε

x0,ρ0(x, t) in Ω× [0, Tε].
To prove (2.27) we first note that for ε > 0 sufficiently small∫ t

0
α(ṽ(τ); εβ) dτ − 2εβ ≥

∫ t

0
α(ṽ(τ)) dτ − (K̄4 + 2)εβ for t ∈ [0, Tε],

in which we choose any K̄4 ≥ TA where A > 0 is the Lipschitz constant of α(v, a) in a. Hence

B
(
x0, ρ0 +

∫ t
0 α(ṽ(τ)) dτ − (K̄4 + 2)εβ

)
⊂ B

(
x0, ρ0 +

∫ t
0 α(ṽ(τ); ε

β) dτ − 2εβ
)
.

This implies that for any x ∈ B(x0, ρ0 +
∫ t
0 α(ṽ(τ)) dτ − (K̄4 + 2)εβ) we have w(x, t) ≤ −εβ and in

particular

ũε(x, t) ≥ q(−εβ−1, ṽ(t); εβ) ≥ h+(ṽ(t); εβ) +O(e−νεβ−1
)

= h+(ṽ(t); 0) +A+εβ +O(ε2β) +O(e−νεβ−1
),

where A+ = infv∈(vmin,vmax)
d
dah

+(v; a)|a=0 < 0. Increasing K̄4 if necessary so that K̄4 > |A+| and
further reducing ε4 > 0 then proves (2.27). □

Proposition 2.1. Let 0 < σ < β < 1
2 and T > 0 be fixed. Then there exists an ε5 > 0 such that

for all ε ∈ (0, ε1]

inf
Ω̃+

ε,σ(t)

(
ũε(·, t)− h+(ṽ(t); 0)

)
≥ −K̄4ε

β for t ∈ [0, T ], (2.29)

sup
Ω̃−

ε,σ(t)

(
ũε(·, t)− h−(ṽ(t); 0)

)
≤ K̄4ε

β for t ∈ [0, T ], (2.30)

where Ω̃±
ε,σ(t) are given in (2.3)-(2.4).

Proof. We will only prove (2.29) since the proof of (2.30) following analogously. We assume, in

addition, that
∫ t
0 α(ṽ(τ))dτ does not change sign for t ∈ [0, T ]. With some minor modifications,

the same proof can be extended to the case where
∫ t
0 α(ṽ(τ))dτ changes sign finitely many times.

In light of Lemma 1.3 the assumption that
∫ t
0 α(ṽ(τ))dτ does not change sign is enough for our

purpose.
In view of Corollary 2.1 it suffices to show that

Ω̃+
ε,σ(t) ⊂

⋃
B

(
x0, ρ0(x0) +

∫ t

0
α(ṽ(τ)) dτ − (K̄4 + 2)εβ

)
(2.31)
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where ρ0(x0) = max{ρ > 0 | B(x0, ρ) ⊂ Ω0} and the union is taken over all x0 ∈ Ω0 such that

ρ0(x0) ≥ ρεβ, where ρ = max{4, K̄4 + 2}.

The proof is divided into two cases depending on whether
∫ t
0 α(ṽ(τ))dτ is nonnegative or nonpositive

which corresponds, respectively, to an expanding or contracting activated region.

Case 1.
∫ t
0 α(ṽ(τ)) dτ ≥ 0 for t ∈ [0, T ]: To prove (2.31), we first deduce, by the positivity of∫ t

0 α(ṽ(τ))dτ and the definition of Tε, that Tε = T for all (x0, ρ0(x0)) appearing in the union in

(2.31). Now, choose any t1 ∈ [0, T ] and let x1 ∈ Ω̃+
ε,σ(t1) and note that by definition this implies

dist(x1,Γ0) <
∫ t1
0 α(ṽ(τ))dτ − εσ. We have to consider three subcases depending on the range of

dist(x1,Γ0).
Case 1a. If dist(x1,Γ0) ≤ −ρεβ then we can simply choose x0 = x1 for which we clearly have

ρ0(x0) ≥ ρεβ and x1 ∈ B(x0, ρ0(x0) +
∫ t1
0 α(ṽ(τ))dτ − (K̄4 + 2)εβ).

Case 1b. On the other hand if dist(x1,Γ0) ≥ 0 then choose x′ ∈ Γ0 such that |x1 − x′| =
dist(x1,Γ0). By Lemma 1.2 there exists an x0 ∈ Ω0 such that B(x0, ρε

β) ⊂ Ω0 and |x0−x′| ≤ K̄0ρε
β.

In particular, ρ0(x0) ≥ ρεβ. By the triangle inequality we then have, for ε ∈ (0, ε5],

|x1 − x0| ≤ |x0 − x′|+ |x1 − x′| ≤ K̄0ρε
β +

∫ t1

0
α(ṽ(τ))dτ − εσ

≤ ρ0(x0) +

∫ t1

0
α(ṽ(τ))dτ − (K̄4 + 2)εβ,

where the final inequality follows provided ε5 is chosen sufficiently small so that ε5 ≤ [(K̄0 − 1)ρ+

K̄4 + 2]−1/(β−σ) which we remark, importantly, is independent of x0.
Case 1c. Finally, if −ρεβ < dist(x1,Γ0) < 0 then for ε ∈ (0, ε5],

ρεβ +

∫ t1

0
α(ṽ(τ))dτ ≥ −dist(x1,Γ0) +

∫ t1

0
α(ṽ(τ))dτ > εσ > (K̄0 + K̄4 + 3)εβ, (2.32)

where the first strict inequality follows from the definition of Ω̃+
ε,σ(t1) and the second by assuming

ε5 ≤ [(K̄0 + 1)ρ + K̄4 + 2]−1/(β−σ). We then choose x′ ∈ Γ0 such that |x1 − x′| = ρεβ and using
Lemma 1.2 we obtain an x0 ∈ Ω0 such that B(x0, ρε

β) ⊂ Ω0 and |x0 − x′| ≤ K̄0ρε
β. As above we

may assume that in fact ρ0(x0) = ρεβ. By the triangle inequality and (2.32) above we deduce

|x1 − x0| ≤ |x0 − x′|+ |x1 − x′| ≤ (1 + K̄0)ρε
β ≤ ρεβ +

∫ t1

0
α(ṽ(τ))dτ − (K̄4 + 2)εβ

In summary, the inclusion (2.31) holds for all ε ∈ (0, ε5] where ε5 = [(K̄0 + 1)ρ+ K̄4 + 2]−1/(β−σ).

Case 2.
∫ t
0 α(v(τ)) dτ ≤ 0 for t ∈ [0, T ]: Let t1 ∈ [0, T ] and x1 ∈ Ω̃+

ε,σ(t1) be given. It follows that
x1 ∈ Ω0 and moreover letting x0 = x1 and ρ0 = |dist(x1,Γ0)| we observe from (2.3) that

ρ0 > εσ −
∫ t1

0
α(ṽ(τ))dτ. (2.33)

In particular, since σ < β, by choosing a sufficiently small value of ε we can guarantee that ρ0 ≥ ρ.
We claim that it is enough to show that

ρ0 +

∫ t

0
α(ṽ; εβ) dτ > (K̄4 + 2)εβ for t ∈ [0, t1]. (2.34)

Indeed, if we suppose that (2.34) is true for the moment, then t1 ≥ Tε, and

x1 = x0 ∈ B

(
x0, ρ0(x0) +

∫ t1

0
α(ṽ(τ)) dτ − (K̄4 + 2)εβ

)
.
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To show (2.34), observe that for t ∈ [0, t1], we have

ρ0 +

∫ t

0
α(ṽ; εβ) dτ >

∫ t

0
[α(ṽ(τ); εβ)− α(ṽ(τ)] dτ + εσ

≥ −AεβT +O(ε2β) + εσ > (K̄4 + 2)εβ for all t ∈ [0, t1],

where we used (2.33) to get the first inequality, A is the Lipschitz constant of α(v; a) in a, and
where ε ∈ (0, ε1) is chosen to get the final inequality, with ε5 > 0 being reduced further from Case
1 above if necessary. □

Proof of Theorem 3. We again assume that
∫ t
0 α(ṽ(τ)) dτ does not change sign in [0, T ]. The global

bounds (2.7) are proved in Lemma 2.1 above. To prove (2.5) it therefore suffices to show there exist
K̄2 > 0 so that

ũε(x, t) ≥ h+(ṽ(t))− K̄2ε
β for (x, t) ∈ Ω̃+

ε,σ,T , (2.35)

and

ũε(x, t) ≤ h−(ṽ(t)) + K̄2ε
β for (x, t) ∈ Ω̃−

ε,σ,T . (2.36)

These are direct consequences of Proposition 2.1. This completes the proof of Theorem 3. □

3. Proof of Theorem 2

Having established Theorem 3 in §2 above we turn now to the proof of Theorem 2. Let T > 0
and γ ∈ (0, 1/2) be given, and fix β, σ such that 0 < γ < σ < β < 1/2. In addition, fix

B =
8K(A+ 2K̄2ε2)

2

θ
, (3.1)

where ε2 is the (T -dependent) constant in Theorem 3, θ ∈ (0, 1) is the constant in (1.16) of assump-
tion (A4), A > 0 is the constant in (1.17), and where we define

K = sup
s∈R

|{x ∈ Ω |dist(x,Γ0) = s}| . (3.2)

In view of Lemma 1.3 we have vmin < v̂(t) < vmax for all t ≥ 0 and hence there exists an 0 < ε1 ≤
min{ε2, ε3, ε4, ε5} such that for all ε ∈ (0, ε1]

vmin < v̂(t)± εγeBt < vmax for all t ∈ [0, T ].

Define

T (ε) ≡ sup{t ∈ [0, T ]
∣∣ |vε(τ)− v̂(τ)| < εγeBτ for all 0 ≤ τ ≤ t}. (3.3)

and note that T (ε) > 0 for all ε ∈ (0, ε1] since vε(0) = v̂(0). We will show that in fact T (ε) = T .
Let uε±(x, t) be the unique solution of

∂tu
ε
± = ε∆uε± + ε−1f(uε±, v̂(t)± εγeBt), in Ω× (0, T ],

∂nu
ε
± = 0, on ∂Ω× (0, T ],

uε±(x, 0) = u0(x), in Ω.

(3.4)

For each t ∈ [0, T ], define Ω̂+
ε (t), Ω̂

−
ε (t), and Ω̂0

ε(t) by

Ω̂+
ε,σ(t) ≡ {x ∈ Ω |dist(x,Γ0) <

∫ t
0 α(v̂(τ)− εγeBτ )dτ − εσ}, for t ∈ [0, T ],

Ω̂−
ε,σ(t) ≡ {x ∈ Ω |dist(x,Γ0) >

∫ t
0 α(v̂(τ) + εγeBτ )dτ + εσ}, for t ∈ [0, T ],

Ω̂0
ε,σ(t) ≡ Ω \ [Ω̂+

ε,σ(t) ∪ Ω̂−
ε,σ(t)], for t ∈ [0, T ].

(3.5)

(3.6)

(3.7)
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We refer the reader to Figure 8 for an illustration of these three regions. Reducing ε1 further if
needed, we may apply Theorem 3 to uε± to deduce that for all t ∈ [0, T ] and ε ∈ (0, ε1],

sup
Ω̂+

ε,σ(t)

|uε+(·, t)− h+(v̂(t) + εγeBt)|+ sup
Ω̂+

ε,σ(t)

|uε−(·, t)− h+(v̂(t)− εγeBt)| ≤ K̄2ε
β. (3.8)

Next we observe that assumption (A3) and the definition of T (ε) imply that for all ε ∈ (0, ε3] and
t ∈ [0, Tε] we have {

f(uε−(x, t), v
ε(t)) > f(uε−(x, t), v̂(t)− εγeBt),

f(uε+(x, t), v
ε(t)) < f(uε+(x, t), v̂(t) + εγeBt).

(3.9)

By regarding uε(x, t) as the solution of a single parabolic equation with Neumann boundary con-
ditions (with vε(t) being a given parameter), and regarding uε+, u

ε
− as the super and subsolution of

the same equation (thanks to (3.9)), we may apply the comparison principle to obtain

uε−(x, t) ≤ uε(x, t) ≤ uε+(x, t) for all (x, t) ∈ Ω× [0, T (ε)] and ε ∈ (0, ε1]. (3.10)

The definition of vε(t) in (1.1) together with definition (1.10b) of v̂(t) and (1.10c) then imply that
for all ε ∈ (0, ε1] and t ∈ [0, T (ε)]

|vε(t)− v̂(t)| =
∣∣∣∣∫

Ω
(uε(x, t)− û(x, t)) dx

∣∣∣∣
≤

∫
Ω̂+

ε,σ(t)
|uε − û| dx+

∫
Ω̂−

ε,σ(t)
|uε − û| dx+

∫
Ω̂0

ε,σ(t)
|uε − û| dx

= I+ + I− + I0. (3.11)

We now estimate each term in (3.11), starting with I+. By (3.8) and (3.10) we deduce that for
all ε ∈ (0, ε1] and t ∈ [0, T (ε)]

h+(v̂(t)− εγeBt)− K̄2ε
β ≤ uε(x, t) ≤ h+(v̂(t) + εγeBt) + K̄2ε

β for x ∈ Ω̂+
ε,σ(t).

Note that û(x, t) = h+(v̂(t)) for x ∈ Ω̂+
ε,σ(t) since Ω̂(t) ⊂ Ω̂+

ε,σ(t) by Lemma 1.1. In particular

sup
x∈Ω̂+

ε,σ(t)

|uε − û| ≤ max
{
|h+(v̂(t)− εγeBt)− K̄2ε

β − h+(v̂(t))|, |h+(v̂(t) + εγeBt) + K̄2ε
β − h+(v̂(t))|

}
≤ (1− θ)εγeBt + K̄2ε

β for t ∈ [0, T (ε)] and ε ∈ (0, ε1],

h (v(t) eBt)
h (v(t))

h (v(t) + eBt)

h + (v(t) eBt)
h + (v(t))

h + (v(t) + eBt)

+
, (t) 0

, (t) , (t)

Sketch of u + (x, t), u (x, t), and u(x, t)
u + (x, t)
u(x, t)
u (x, t)

Figure 8. Sketch of the leading order solution û(x, t) given by (1.10c), ε-dependent

solutions uε±(x, t) satisfying (3.4), and the regions Ω̂+
ε,σ(t), Ω̂

0
ε,σ(t), and Ω̂−

ε,σ(t) used
in the proof of Theorem 2.
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where we used (1.16) in assumption (A4). Since β > γ > 0, and possibly reducing ε1 so that

ε1 ≤ (K̄−1
2 θeBT /3)

1
β−γ , we deduce that for all ε ∈ (0, ε1] and t ∈ [0, T (ε)]

sup
x∈Ω̂+

ε,σ(t)

|uε(x, t)− û(x, t)| ≤ (1− 2
3θ)ε

γeBt.

In particular, for all ε ∈ (0, ε1] we have

|I+| ≤ |Ω̂+
ε,σ(t)|(1− 2

3θ)ε
γeBt for t ∈ [0, T (ε)], (3.12)

and similarly also

|I−| ≤ |Ω̂−
ε,σ(t)|(1− 2

3θ)ε
γeBt for t ∈ [0, T (ε)]. (3.13)

Next we estimate I0. To this end we first observe that for ε ∈ (0, ε1], and t ∈ [0, T (ε)] we have

sup
x∈Ω

|uε(x, t)− ûε(x, t)| ≤ |h+(v̂(t) + εγeBt)− h−(v̂(t)− εγeBt)|+ 2K̄2ε ≤ A+ 2K̄2ε1, (3.14)

where the first inequality follows from (3.10), (2.7), and the triangle inequality while the second
inequality follows from (1.17). Moreover, by the definition of Ω0

ε we have that

|Ω̂0
ε,σ(t)| ≤ K

[∫ t

0
[α(v̂(τ) + εγeBτ )− α(v̂(τ)− εγeBτ )] dτ + 2εσ

]
≤ KA

∫ t

0
2εγeBτ dτ + 2Kεσ

≤ θ

4(A+ 2K̄2ε1)
εγeBt + 2Kεσ for t ∈ [0, T ] and ε ∈ (0, ε1],

where we used the definition (3.2) of K for the first inequality, the bound (1.17) in the second
inequality, and the definition (3.1) of B for the final inequality. Reducing ε1 further if necessary we
deduce that for all ε ∈ (0, ε1],

|Ω̂0
ε,σ(t)| ≤

θ

3(A+ 2K̄2ε1)
εγeBt for t ∈ [0, T (ε)],

and in particular

|I0| ≤
∫
Ω̂0

ε,σ(t)
|uε − û| dx ≤ |Ω̂0

ε,σ(t)|(A+ 2K̄2ε1) ≤
θ

3
eγeBt for t ∈ [0, T (ε)], (3.15)

where we used (3.14) in the second inequality.
Substituting (3.12), (3.13) and (3.15) into (3.11), we deduce that

|vε(t)− v̂| ≤
(
|Ω|(1− 2

3θ) +
θ
3

)
εγeBt ≤ (1− 1

3θ)ε
γeBt for t ∈ [0, T (ε)], (3.16)

where we used the fact that |Ω+
ε (t)|+ |Ω−

ε (t)| ≤ |Ω| = 1. The definition (3.3) of T (ε), together with
(3.16) above, imply that T (ε) = T for otherwise it would be inconsistent with the maximality of
T (ε). In particular this establishes (1.18a) with K̄1 = eBT . Furthermore, the bounds (3.10) hold
for all t ∈ [0, T ] so that applying the global estimate (2.7) of Theorem 3 to uε+(x, t) and uε−(x, t)
then yields the global estimate (1.18b).

Finally, we prove (1.19). Using (1.17), and enlarging K̄1 if necessary, we have{
x ∈ Ω

∣∣ dist(x,Γ0) <

∫ t

0
α(v̂(τ)) dτ − K̄1ε

γ

}
⊂ Ω̂+

ε,σ(t) for all t ∈ [0, T ], ε ∈ (0, ε1], (3.17)

where we remind the reader that 0 < γ < σ < β < 1
2 . By the Lipschitz continuity of h+(v) and

(3.8) we deduce that for all t ∈ [0, T ] and ε ∈ (0, ε1]

|uε+ − h+(v̂(t))|+ |uε− − h+(v̂(t))| ≤ K̄1ε
γ when dist(x,Γ0) <

∫ t
0 α(v̂(τ)) dτ − K̄1ε

γ , (3.18)
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where we have also used the set inclusion (3.17). Having already established that T (ε) = T we see
that the inequalities in (3.10) hold for Ω× [0, T ] provided ε ∈ (0, ε1]. Combining (3.10) and (3.18),
we therefore deduce that for all t ∈ [0, T ] and ε ∈ (0, ε1]

|uε − h+(v̂(t))| ≤ K̄1ε
γ when dist(x,Γ0) <

∫ t
0 α(v̂(τ)) dτ − K̄1ε

γ , t ∈ [0, T ], (3.19)

which proves the first estimate of (1.19). The second one can be established in an analogous manner
and we omit the details.

4. Discussion

In this paper we have initiated a rigorous study of the limiting behaviour of solutions to the non-
local problem (1.1) when ε ≪ 1. Formal asymptotic calculations suggest that this system exhibits
growing or shrinking activated regions with a common normal velocity α (depending on the level
of v(t)) over an O(1) timescale. For spatial dimension N ≥ 2, it is expected that, over a slower
O(ε−1) timescale, higher order effects lead to a volume-preserving mean curvature flow (see Figure
6) that possibly interacts with the boundary ∂Ω; see [6] for a discussion on volume-preserving mean
curvature flow in the volume-preserving Allen-Cahn equation, as well as [17] and the references
therein for the mathematical aspects of volume-preserving mean curvature flow. In this paper we
have focused on the leading order dynamics over an O(1) timescale. Specifically, in Theorem 2, we
have shown that for any T > 0 and γ ∈ (0, 1/2) the values of uε(x, t) and vε(t) are within O(εγ) of
those predicted by the formal asymptotics for all t ∈ [0, T ] and x ∈ Ω outside of an O(εγ) boundary
layer near the interface between activated and inactivated regions. In particular, these quantitative
results rigorously locate the front interface within O(εγ). These results also rigorously justify the
wave-pinning behaviour previously predicted by formal asymptotics and numerical simulations.

One of the key steps in the proof of Theorem 2 was the construction of two bounding solutions
uε±(x, t) satisfying the scalar equation (2.1). For a bistable potential that is independent of (x, t),
Chen [5] proved the generation of interface and the motion by normal velocity via super/subsolution
method. On the other hand for a bistable potential with (x, t) dependence, the limiting behavior
of solutions has been previously established in [3] using viscosity solutions methods; see also Alfaro
et al. [1]. Our contribution in §2 is to obtain a quantitative estimate of the transition between the
two stable states within O(εγ) distance of the limiting interface when ε → 0.

An interesting feature of (1.1) is that the leading order interface may potentially lose regularity
by forming cusps, even if the initial interface is smooth. This happens when the interface touches
the boundary or when the curvature of the interface blows up at an interior point. In such a case the
error of order εγ with γ ∈ (0, 1/2) seems to be sharp. Here we refer to Figure 5c, which measures
roughly the maximum distance dmax of the reaction-diffusion interface with the one predicted by
the leading order theory. For t = 0.2, 0.5, 1 the leading order interface is regular and dmax = O(ε),
whereas for t = 2, 5 the leading order interface has a cusp and dmax is of fractional order in ε.

Next, we discuss the assumption on the initial data to be of bang-bang type for our results. For
Theorem 3 it is possible to relax the initial data to ũ0 ∈ C1(Ω) and

|∇xũ0| > 0 when ũ0 = h0(ṽ(0)).

In this case, one can define Γ0 = {x ∈ Ω
∣∣ ũ0(x) = h0(ṽ(0))}, and follow the arguments in [5] to

prove the generation of interface. For Theorem 2 concerning the nonlocal equation (1.1), however,
the situation is more complicated. Although one might also expect the generation of interface to
be valid, it is not clear in general how to characterize the exact initial location of the generated
interface in terms of the initial data u0(x) and v(0) = M0− 1

|Ω|
∫
Ω u0(x) dx. This is the main reason

we required that the initial data being of bang-bang type in Theorem 2.
In contrast, the assumption (A5) on the domain convexity is not necessary. In fact, our arguments

can be adapted to treat nonconvex domains with C2 boundary. This can be done by enforcing an
upper bound on the radius of the super/subsolutions constructed in §1.5. Finally we conclude by
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drawing attention to assumption (A4) that is necessary for proving Theorem 2 but is not necessary
for wave-pinning. We suggest the weakening of this assumption as a further open problem for which
different techniques than those used in this paper may be needed.
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Appendix A. The Differential Algebraic Equation and its Solvability

In this appendix we reformulate the system (1.10) as a differential algebraic equation (DAE) that
more easily lends itself to numerical calculations and analysis. To this end we first define

W (s) ≡ |{x ∈ Ω |dist(x,Γ0) < s}|.

Since s is the distance of the interface from its initial position, it is easy to see that ds/dt indicates
its speed which, by the method of matched asymptotic expansions, corresponds to α. Specifically,
we deduce that (1.10) is equivalent to the system

ds

dt
= α(V (s)), t > 0; s(0) = 0,

V (s) +W (s)h+(V (s)) + (1−W (s))h−(V (s)) = M0.

(A.1a)

(A.1b)

It is then straightforward to recover v̂(t) and Ω̂(t) by using

v̂(t) = V (s(t)), Ω̂(t) =
{
x ∈ Ω |dist(x,Γ0) < s(t)

}
,

from which û(x, t) is then obtained using (1.10c). While solving the DAE (A.1) is a relatively simple
task, the calculation of W (s) may be more difficult depending on properties of the initial interface
Γ0. However, this reformulation has the benefit that once the initial interface Γ0 is known, W (s)
can be precomputed for a sufficiently large range of s values.

In addition to simplifying numerical calculation of the leading order solution, it is also easier to
deduce the existence of solutions to (A.1). It suffice to show that the right hand side of (A.1a) is
Lipschitz in s. To show this we first define G : (vmin, vmax)× (0, 1) → R by

G(x, y) ≡ x+ yh+(x) + (1− y)h−(x) = y
(
h+(x) + x

)
+ (1− y)

(
h−(x) + x

)
Then for x2 > x1 we calculate

G(x2, y)−G(x1, y) =y(x2 − x1)
∫ 1
0

(
1 + dh+

dv |sx2+(1−s)x1

)
ds

+ (1− y)(x2 − x1)
∫ 1
0

(
1 + dh−

dv |sx2+(1−s)x1

)
ds

>C0y(x2 − x1) + C0(1− y)(x2 − x1) = C0(x2 − x1),

where the first inequality follows from (1.12) and in particular dh±/dv > −1. On the other hand

G(x, y2)−G(x, y1) ≤ |h+(x)− h−(x)||y2 − y1| ≤ A|y2 − y1|.

Now let s1 and s2 satisfy (A.1b) and assume that V (s2) > V (s1). Then

G(V (s2),W (s1))−G(V (s1),W (s1)) = G(V (s2),W (s1))−G(V (s2),W (s2)),

with which the above inequalities give

C0|V (s2)− V (s1)| < A|W (s2)−W (s1)|. (A.2)

Now from the definition of W (s) we deduce |W (s2)−W (s1)| < C1|s2−s1| for some constant C1 > 0
depending only on Γ0.From (1.17) we then deduce

|α(V (s2))− α(V (s1))| ≤ A|V (s2)− V (s1)| ≤
A2C1

C0
|s2 − s1|. (A.3)
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