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Abstract

This article considers inference on correlation coefficients of bivariate log-normal

distributions. We developed generalized confidence intervals and hypothesis tests for

the correlation coefficient, and extended the results for comparing two independent

correlations. Simulation studies show that the suggested methods work well even for

small samples. The methods are illustrated using two practical examples.

Key Words: bivariate log-normal, correlation coefficient, generalized confidence inter-
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1 Introduction

Log-normal distribution is a continuous probability distribution of a random variable whose

logarithm is normally distributed. It is widely used to describe the distribution of positive

random variables that exhibit skewness. The Pearson product-moment correlation is a well

known measure of the strength and direction of linear relationship between two continuous

random variables. This research concerns inference on correlation coefficients of bivariate

log-normal distributions. Consider daily return of silver and gold funds following bivariate

log-normal distribution during some period, we want to answer the question: what is the

correlation between silver and gold? If in the following bear market, gold and silver started

declines, are the correlation between silver and gold different from the past?
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Most research in literature concerns inference of a single log-normal mean, or comparing

two independent log-normal means. Zhou, Li, Gao, and Tierney (2001) addressed the prob-

lem of comparing the means of a bivariate log-normal distribution. Krishnamoorthy and

Mathew (2003) used generalized variables (GV) approach to compare two independent log-

normal means. Chen and Zhou (2006) compared different methods for obtaining confidence

intervals for the ratio (or difference) of two independent log-normal means, and concluded

that the GV approach works better than other methods in providing the intended cover-

age. Using GV approach, Bebu and Mathew (2008) developed procedures of constructing

a confidence interval for the ratio of bivariate log-normal means regardless of sample sizes.

Recently, Lin (2014) compared the mean vectors of two independent multivariate log-normal

distributions using GV approach.

The theory and application of Pearson correlation is well documented for normal and

multivariate normal distributions. Inference on a correlation with a bivariate normal distrib-

ution can be tested by an exact t procedure or Fisher (1921)’s z transformation. When there

are two samples, a common interest is to compare two independent or dependent correlations

from the two samples. Olkin and Finn (1995) proposed a normal-based asymptotic result

that can be used for testing two independent correlations. The problem of comparing two

overlapping dependent correlations is relatively complicated. Hotelling (1940) first provided

an exact conditional test. Williams (1959) proposed an unconditional method by modifying

Hotelling’s conditional test. Based on Neill and Dunn (1975)’s simulation studies, William’s

test was the best among 11 methods suggested in literature. Olkin and Finn (1990) derived

an asymptotic result for hypothesis testing and confidence limits for the difference between

two dependent correlations. Meng, Rosenthal, and Rubin (1992) proposed an asymptotic

result for hypothesis testing based on Fisher’s z transformations of the sample correlation

coefficients. The test for comparing non-overlapping dependent correlations is first discussed

by Pearson and Filon (1898). Tsui and Weerahandi (1989) introduced the concept of general-

ized p-value using GV approach for hypothesis testing. Later, Weerahandi (1993) discussed

generalized confidence limits. Krishnamoorthy and Xia (2006) discussed inference on the
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correlation coefficients of a multivariate normal distribution using GV approach.

On the other hand, because of skewness, inferences on correlation of a bivariate log-normal

distribution face with difficulties. There is little research found in literature. Lai, Cwrayner,

and Hutchinson (1999) studied robustness of the sample correlation for the bivariate log-

normal case. Their simulation studies indicated that the bias in estimating population

correlation coefficient ρ of the bivariate log-normal distribution was very large if ρ 6= 0,

and the bias could be reduced substantially only after three to four million of observations.

Despite the difficulties, our research intends to fill the gap by providing a valid confidence

interval and hypothesis tests for correlation coefficients of bivariate log-normal distributions.

This paper is organized as follows. In Section 2, we review notations and generalized pivotal

quantities for the elements of a variance-covariance matrix. In Section 3, we developed

generalized confidence intervals (GCI) and hypothesis tests for correlation coefficient of a

single sample and extend the results for comparing two independent correlations. In Section

4, we perform simulation studies. In Section 5, we give two examples to illustrate the use of

the proposed methods. Finally, Section 6 gives the conclusion.

2 Notations and generalized pivotal quantities for the

elements of a variance-covariance matrix

Let Y1, · · · ,Yn be a random sample from a bivariate log-normal distribution, and let Xi =

lnYi for i = 1, 2, · · · , n. By definition, X1,X2, · · · ,Xn is a sample from a bivariate normal

distribution with mean vector µ = (µ1, µ2)
′, and variance-covariance matrix Σ, i.e,.

Xi
iid∼ N





 µ1

µ2


 ,Σ =


 σ2

11 σ2
12

σ2
12 σ2

22





 .

Let ρX = σ2
21/

√
σ2

11σ
2
22 be the population correlation of the bivariate normal distribution

(note that ρ is used to denote the population correlation of the bivariate log-normal distri-
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bution), and leet S be the matrix of sums of squares of the cross-products,

S =
n∑

i=1

(Xi − X̄)(Xi − X̄)′ =


 S11 S12

S12 S22


 . (1)

Consider the problem of testing population correlation coefficient ρ of a bivariate log-

normal distribution,

H0 : ρ ≤ ρ0 vs. Hα : ρ > ρ0, (2)

where ρ0 is a specified value of ρ. We shall now give the definitions of generalized pivotal

statistic T1(X;x, ρ; η) and generalized test statistic T2(X;x, ρ; η). Note that η denotes the

nuisance parameter and may be more than one, and x is the observed value of X.

Definition 1: To define a generalized confidence interval for parameter ρ, a generalized

pivotal statistic T1(X;x, ρ, η) should satisfy the following two conditions:

(1) the distribution of the generalized pivotal statistic T1 is free of any unknown parameters;

(2) the observed pivotal statistic T1(x;x, ρ, η) is the parameter of interest ρ.

The percentiles of T1(X;x, ρ, η) are used to construct a generalized confidence interval for ρ.

Definition 2: For the purpose of hypothesis testing, the generalized test variable for ρ is

defined as T2 = T1 − ρ. The generalized test variable T2 should satisfy the following three

conditions:

(a) the distribution of T2 is free of any unknown parameter;

(b) the observed value of T2 is free of any unknown parameters;

(c) the distribution of T2 is stochastically monotone in ρ.

If T2 is stochastically increasing in ρ, The generalized p-value for testing the hypotheses

in (2) is defined by P = P [T2(X;x, ρ, η) ≥ T2(x;x, ρ, η)|ρ = ρ0]. If T2 is stochastically

decreasing in ρ, The generalized p-value for testing the hypotheses in (2) is defined by

P = P [T2(X;x, ρ, η) ≤ T2(x;x, ρ, η)|ρ = ρ0].

As pointed out by Weerahandi (1993), the problem of finding an appropriate generalized

pivotal quantity is a non-trival task. There is no systematic approach that can be used to

find pivotal quantities for all problems. Interested readers may refer to Iyer and Patterson

(2002) for generalized pivotal quantities of a large class of practical problems.
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In the following, we will review generalized pivotal quantities for Σ (Bebu & Mathew,

2008). Note that the matrix of sums of squares of the cross-products S in (1) has a Wishart

distribution with Σ = (σij) and degrees of freedom of n − 1. Let σ∗11 = σ11 − σ2
12/σ22 and

S∗11 = S11−S2
12/S22. Using the fact that S ∼ W2(Σ, n− 1), the following three variables are

independent and have either χ2 or standard normal distribution (Johnson & Wichern, 2008):

V22 = S22/σ22 ∼ χ2
n−1, V ∗

11 = S∗11/σ
∗
11 ∼ χ2

n−2, and Z = (S12 − σ12

σ22

S22)/
√

σ∗11S22 ∼ N(0, 1).

Let s = (sij) be the observed S. We define

b22 =
σ22

S22

s22 =
s22

V22

, (3)

b12 =
σ22

S22

s12 − [
√

s∗11s22

S12 − σ12

σ22

S22

√
σ∗11S22

√
σ∗11

S∗11

σ22

S22

(4)

=
s12

V22

−
√

s∗11s22
Z√
V ∗

11

1

V22

,

and

b11 =
σ∗11

S∗11

s∗11 +
b2
12

b22

(5)

=
s∗11

V ∗
11

+
b2
12

b22

.

It is easy to show that bijs are free of any parameters, and the observed value of bijs are σijs.

Therefore, B = (bij) are the generalized pivotal quantities of the covariance matrix Σ = (σij).

If h(Σ) is a real-valued function of Σ, it is easy to show that h(B) is a generalized pivotal

variable and h(B) − ρ is a generalized test variable for ρ if the distribution of h(Σ) − ρ is

stochastically monotone in ρ.

3 Inference on a single correlation coefficient

In this section, we consider hypothesis tests and interval estimation for the population corre-

lation coefficient ρ from a bivariate log-normal distribution. We shall concern ourselves first

on inference of a single correlation, then on comparison of two independent correlations.

5



3.1 Inference on a single correlation coefficient

Let Yi = (Yi1, Yi2)
′ iid∼ bivariate log-normal distribution, i.e,


 Xi1

Xi2


 =


 lnYi1

lnYi2


 iid∼ N





 µ1

µ2


 ,Σ =


 σ2

11 σ2
12

σ2
12 σ2

22





 .

Let ρ be the correlation coefficient between Yi1 and Yi2, i.e,

ρ =
cov(Yi1, Yi2)√

Var(Yi1)Var(Yi2)
.

Using the facts that E(Yi1) = eµ1+σ2
11/2, E(Yi2) = eµ2+σ2

22/2, V (Yi1) = e(2µ1+σ2
11)(eσ2

11 − 1) and

V (Yi2) = e(2µ2+σ2
22)(eσ2

22 − 1), we can show that

Cov(Yi1, Yi2) = eµ1+µ2+(σ2
11+σ2

22)/2(eσ2
12 − 1),

and
√

Var(Yi1)Var(Yi2) = e(µ1+µ2)+(σ2
11+σ2

22)/2

√
(eσ2

11 − 1)(eσ2
22 − 1).

Therefore,

ρ =
eσ2

12 − 1√
(eσ2

11 − 1)(eσ2
22 − 1)

. (6)

The generalized pivotal variable Gρ is given by

Gρ = h(B) = (eb12 − 1)/
√

(eb11 − 1)(eb22 − 1). (7)

The generalized test variable for ρ is Gt
ρ = Gρ − ρ, which is stochastically decreasing in ρ.

It is easy to show that the generalized p-value for testing the hypotheses in (2) is the same

as P (Gρ ≤ ρ0). Reject H0 in (2) when the generalized p-value is less than α. The following

algorithm is developed to estimate the generalized confidence limits and the generalized p-

values.

Algorithm 1:

1. For a given value of (y1, · · · ,yn) (yi is the observed value of Yi), compute (x1, · · · ,xn) =

(lny1, · · · , lnyn) and

s =
n∑

i=1

(xi − x̄)(xi − x̄)′ =


 s11 s12

s21 s22


 ;
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2. For l = 1, 2, · · · , L, generate V22 ∼ χ2
n−1, V

∗
11 ∼ χ2

n−2, Z ∼ N(0, 1), compute b22, b12, b11

and Gρ by Equations (3), (4), (5) and (7) respectively;

3. Let Ql = 1 if Gρ ≤ ρ0;

(end loop)
∑L

l=1 Ql/L is a Monte carlo estimate of the generalized p-value for testing (2). Similarly we

can derive the generalized p-value for right-sided test. The generalized two-sided confidence

interval for the correlation coefficient ρ can be constructed by using 100(α/2)th and 100(1−
α/2)th percentiles of Gρ as the confidence limits. Similarly, the 100(1 − α)th percentile of

the Gρ is a 100(1 − α)th lower limit for ρ. The 100αth percentile of the Gρ is a 100(α)th

upper limit for ρ.

3.2 Comparison between two independent correlation coefficients

The problem of comparing correlations of different groups also attracts a lot of interest. For

example, it may be of interest to see if the correlation between silver and gold is lower in a

bull market than that of a bear market. In the following, we use superscript (k) to denote

group k, k = 1, 2. A general hypotheses test between correlations ρ(1) and ρ(2) from the two

groups can be described as

H0 : ρ(1) − ρ(2) ≤ c vs. Hα : ρ(1) − ρ(2) > c, (8)

where c is a constant. In this section, we extend the results in Section 3.1 to two independent

bivariate log-normal distributions.

Let Y
(k)
i = (Y

(k)
i1 , Y

(k)
i2 )′ iid∼ bivariate log-normal distribution for k = 1, 2 and i = 1, 2, · · · , nk,


 X

(k)
i1

X
(k)
i2


 =


 logY

(k)
i1

logY
(k)
i2


 ∼ N





 µ

(k)
1

µ
(k)
2


 ,Σ(k) =


 σ

(k)
11 σ

(k)
12

σ
(k)
21 σ

(k)
22





 .

The matrix of sums of squares and cross-products S(k) is

S(k) =

nk∑
j=1

(X
(k)
j − X̄(k))(X

(k)
j − X̄(k))′, k = 1, 2.
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Let G
(k)
ρ be a generalized pivotal variable for ρ(k), k = 1, 2. The generalized pivotal variable

for ρ(1) − ρ(2) can be obtained using the results in Equation (7) as the following

Gρ12 = G(1)
ρ −G(2)

ρ =
eb

(1)
12 − 1√

(eb
(1)
11 − 1)(eb

(1)
22 − 1)

− eb
(2)
12 − 1√

(eb
(2)
11 − 1)(eb

(2)
22 − 1)

,

where b
(1)
ij is the pivotal quantities calculated from group 1, and b

(2)
ij is the pivotal quantities

calculated from group 2. The generalized test variable for ρ(1) − ρ(2) is Gt
ρ12

= G
(1)
ρ −G

(2)
ρ −

(ρ(1)−ρ(2)), which is stochastically decreasing in ρ(1)−ρ(2). The generalized p-value for testing

the hypotheses in (8) is the same as P (Gρ12 ≤ c). Reject H0 in (8) when the generalized

p-value is less than α. The following algorithm is developed to estimate the percentiles of

Gρ12 and generalized p-values:

Algorithm 2:

1. For a given (y
(1)
1 , · · · ,y

(1)
n ) and (y

(2)
1 , · · · ,y

(2)
m ), compute (x

(1)
1 , · · · ,x

(1)
n ) = (lny

(1)
1 , · · · , lny

(1)
n ),

(x
(2)
1 , · · · ,x

(2)
m ) = (lny

(2)
1 , · · · , lny

(2)
m ) and s(k) =

∑
(x

(k)
i − x̄(k))(x

(k)
i − x̄(k))′, k = 1, 2;

2. For l = 1, 2, · · · , L, generate V
(1)
22 ∼ χ2

n−1, V
(2)
22 ∼ χ2

m−1, V
∗(1)
11 ∼ χ2

n−2, V
∗(2)
11 ∼ χ2

m−2,

Z(1) ∼ N(0, 1), Z(2) ∼ N(0, 1);

3. For k = 1, 2, compute

b
(k)
22 =

s
(k)
22

V
(k)
22

, b
(k)
12 =

s
(k)
12

V
(k)
22

−



√
s
∗(k)
11 s

(k)
22

Z(k)

√
V
∗(k)
11

1

V
(k)
22




b
(k)
11 =

s
∗(k)
11

V
∗(k)
11

+
b
(k)
12

2

b
(k)
22

G(k)
ρ =

eb
(k)
12 − 1√

(eb
(k)
11 − 1)(eb

(k)
22 − 1)

and Gρ12 = G(1)
ρ −G(2)

ρ ;

4. Let Cl = 1 if Gρ12 ≤ c;

(end loop)
∑L

l=1 Cl/L is a Monte carlo estimate of the generalized p-value for testing (8). Similarly we
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can derive the generalized p-value for right-sided test. The generalized two-sided confidence

interval for ρ(1)−ρ(2) can be constructed by using 100(α/2)th and 100(1−α/2)th percentiles of

Gρ12 as the confidence limits. The generalized left-sided and right-sided confidence intervals

for ρ(1) − ρ(2) can be constructed by using 100(1 − α)th and 100(α)th percentiles of Gρ12

respectively as the confidence limits.

4 Simulation studies

In this section, a small simulation study was conducted to evaluate the proposed GCI and

hypothesis tests. The simulation set up follows from Bebu and Mathew (2008) with factors:

(1) mean vector µ1 = µ2 = 0; (2) sample sizes: n = 5, n = 10 and n = 20; (3) normal

correlation coefficients: ρX = −0.9, 0.1 and 0.9; (4) variance-covariance diagonal elements:

(σ11, σ22) = (1, 5), (5, 5) and (1, 10) (note that ρX , σ11 and σ22 determine the covariance

matrix Σ, the specified correlation coefficient ρ0 of the bivariate log-normal distribution is

calculated using Equation (6)); (5) tests considered: two-sided, left-sided and right-sided;

and (6) nominal levels: 0.01, 0.05 and 0.1.

Simulation does L = 10000 times for each setting. Algorithms 1 and 2 are used to cal-

culate the GCI and generalized p-values of simple correlation coefficients and comparison

between two correlation coefficients respectively. Tables 1 and 2 report the simulated cov-

erage levels regarding a simple correlation coefficient. Tables 3 and 4 report the simulated

coverage levels from comparison between two independent correlation coefficients. For two-

sided test, we also reported left errors and right errors. Interestingly, left and right errors

are roughly the same when comparing two independent correlations. However, the shape

of error is related to the sign of correlation coefficient when testing for a simple correlation

coefficient. We observe that right error is much larger than left error, when correlation coef-

ficient is positive. For example, under the setting of n = 5, ρX = 0.9, and (σ11, σ22) = (5, 5),

left error is only 0.0004, while right error is 0.0313. On the other hand, if the correlation

coefficient is negative, left error is much larger than the right error. The simulation results
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show that coverage is acceptable when sample sizes are 5 or 10, and the coverage almost

reaches the nominal level when sample size is 20. The proposed methods work well for

correlation coefficients of the bivariate log-normal distributions.

5 Examples

5.1 Example on quantitative assay problem

Hawkins (2002) investigated 56 assay pairs for cyclosporin from blood samples of organ

transplant recipients obtained by a standard approved method: high-performance liquid

chromatography (HPLC) and an alternative radio-immunoassay (RIA) method. Hawkins

(2002) showed that data followed a bivariate log-normal distribution. Using our proposed

method, we want to test if the correlation between the two methods are linearly correlated.

The estimated variance-covariance matrix is found to be

s =


 22.5608 19.3732

19.3732 18.9951


 .

Using algorithm 1, a two sided 95% generalized confidence interval is (0.8732,0.9501), which

doesn’t include 0. We conclude that cyclosporin from the two methods are highly correlated.

5.2 Example on financial data

A popular financial model is the well known geometric Brownian motion process,

P (t) = P0 ∗ eY (t),

where P (t) is the price of a stock at time t, P0 is the initial price of the stock (or fund) and

Y (t) > 0 is a Brownian motion process with drift coefficient µ > 0 and variance parameter

σ2. The interest of study is the correlation of daily return P (t)/P (t− 1) of silver and daily

return of gold. We investigated two exchange traded funds, Shares Silver Trust (SLV) and

SPDR Gold Shares (GLD), whose net assets are 6.6 billion and 33.9613 billion respectively.
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Table 1: The simulated coverage levels of two-sided GCI for a simple correlation coefficient.

“C” denotes the simulated coverage probabilities, “LE” denotes the simulated left error and

“RE” is the simulated right error. “LE + RE = 1-C”.

α = 0.01 α = 0.05 α = 0.1

n ρX σ11 σ22 C LE RE C LE RE C LE RE

5 -0.9 1 5 .9928 .0072 .0000 .967 .0326 .0004 .9371 .0597 .0032

5 5 .9935 .0065 0 .9686 .0311 .0003 .9308 .0675 .0017

1 10 .9930 .00700 0 .9700 .0288 .0012 .9402 .0551 .0047

0.1 1 5 .9849 .0005 .0146 .9397 .0039 .0564 .8845 .0128 .1027

5 5 .9735 .0004 .0261 .9412 .0013 .0575 .8970 .0010 .1020

1 10 .9838 .0001 .0161 .9290 .0039 .0671 .8694 .0088 .1218

0.9 1 5 .9927 .0003 .0070 .9556 .0036 .0408 .9167 .0061 .0772

5 5 .9682 .0004 .0313 .9420 .0019 .0561 .8970 .0061 .0969

1 10 .9945 .0001 .0054 .9686 .0032 .0282 .9278 .0111 .0611

10 -0.9 1 5 .9938 .0057 .0005 .9635 .0289 .0076 .9197 .0547 .0256

5 5 .9936 .0063 .0001 .9628 .0312 .0060 .9209 .0579 .0212

1 10 .9938 .0058 .0004 .9597 .0272 .0131 .9181 .0513 .0306

0.1 1 5 .9886 .0017 .0097 .9446 .0100 .0454 .8998 .0212 .0790

5 5 .9823 .0008 .0169 .9270 .0087 .0643 .8717 .0173 .1110

1 10 .9870 .0003 .0127 .9358 .0056 .0586 .8859 .0120 .1021

0.9 1 5 .9935 .0006 .0059 .9640 .0058 .0302 .9192 .0171 .0637

5 5 .9817 .0015 .0168 .9234 .0054 .0712 .9010 .0123 .0867

1 10 .9921 .0013 .0066 .9589 .0143 .0268 .9093 .0310 .0597

20 -0.9 1 5 .9911 .0050 .0039 .9532 .0263 .0205 .9054 .0528 .0418

5 5 .9926 .0046 .0028 .9511 .0278 .0211 .9036 .0533 .0431

1 10 .9899 .0052 .0049 .9501 .0253 .0246 .9005 .0498 .0497

0.1 1 5 .9900 .0028 .0072 .9450 .0148 .0402 .9031 .0289 .068

5 5 .9870 .0023 .0107 .9392 .011 .0498 .8878 .0256 .0866

1 10 .9871 .0009 .0120 .9479 .0077 .0444 .8861 .0178 .0961

0.9 1 5 .9911 .0021 .0068 .9544 .0149 .0307 .9114 .0306 .0580

5 5 .9830 .0025 .0145 .9382 .0085 .0533 .8849 .0235 .0916

1 10 .9894 .0038 .0068 .9555 .0202 .0243 .9038 .0454 .0508
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Table 2: The simulated coverage levels of one-sided tests for a simple correlation coefficient.

α = 0.01 α = 0.05 α = 0.1

n ρX σ11 σ22 left-sided right-sided left-sided right-sided left-sided right-sided

5 -0.9 1 5 1.0000 .9885 .9959 .9385 .9847 .8753

5 5 1.0000 .9892 .9989 .9295 .9887 .8649

1 10 1.0000 .9879 .9968 .9452 .9744 .8837

0.1 1 5 .9739 .9981 .8913 .9868 .8091 .9693

5 5 .9558 .9989 .9044 .9883 .8500 .9748

1 10 .9702 .9994 .9006 .9919 .8830 .9744

0.9 1 5 .9868 .9993 .9283 .9927 .8504 .9780

5 5 .9486 .9991 .9004 .9902 .8567 .9775

1 10 .9891 .9994 .9432 .9893 .8855 .9652

10 -0.9 1 5 .9991 .9875 .9744 .9456 .9287 .8897

5 5 .9991 .9861 .9762 .9396 .9343 .8795

1 10 .9976 .9882 .9683 .9475 .9146 .8960

0.1 1 5 .9809 .9971 .9164 .9807 .8483 .9500

5 5 .9717 .9981 .8775 .9833 .8632 .9561

1 10 .9775 .9981 .8973 .9878 .8107 .9665

0.9 1 5 .9887 .9982 .9384 .9833 .8767 .9576

5 5 .9689 .9982 0.9398 .9822 0.8890 .9615

1 10 .9900 .9967 .9453 .9679 .8919 .9229

20 -0.9 1 5 .9923 .9905 .9560 .9469 .9032 .8906

5 5 .9921 .9876 .9560 .9421 .9107 .8887

1 10 .9916 .9892 .9529 .9468 .8994 .8958

0.1 1 5 .9838 .9960 .9418 .9624 .8699 .9123

5 5 .9803 .9948 .9481 .9594 .8980 .9152

1 10 .9788 .9983 .9468 .9776 .8959 .9114

0.9 1 5 .9887 .9961 .9403 .9709 .8822 .9103

5 5 .9795 .9968 .9464 .9700 .8900 .9057

1 10 .9903 .9904 .9448 .9552 .8983 .8997
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Table 3: The simulated coverage levels of two-sided GCI for a comparison between two

independent correlation coefficients. “C” denotes the simulated coverage probabilities, “LE”

denotes the simulated left error and “RE” is the simulated right error. “LE + RE = 1-C”.

α = 0.01 α = 0.05 α = 0.1

n ρX1 = ρX2 σ11 σ22 C LE RE C LE RE C LE RE

5 -0.9 1 5 .9999 .0001 0 .9974 .0016 .0010 .9850 .0067 .0083

5 5 1 0 0 .9970 .0017 .0013 .9881 .0056 .0063

1 10 .9998 .0002 0 .9963 .0013 .0024 .9805 .0093 .0102

0.1 1 5 .9968 .0016 .0016 .9748 .0129 .0123 .9376 .0304 .0320

5 5 .9963 .0019 .0018 .9703 .0152 .0145 .9384 .0322 .0294

1 10 .9978 .0010 .0012 .9813 .0108 .0079 .9487 .0254 .0259

0.9 1 5 .9986 .0007 .0007 .9862 .0071 .0067 .9655 .0178 .0167

5 5 .9966 .0015 .0019 .9775 .0117 .0108 .9443 .0292 .0265

1 10 .9992 .0004 .0004 .9885 .0060 .0055 .9681 .0140 .0179

10 -0.9 1 5 .9980 .0008 .0012 .9761 .0132 .107 .9311 .0341 .0348

5 5 .9983 .0005 .0012 .9749 .0128 .0123 .9318 .0340 .0342

1 10 .9979 .0010 .0011 .9684 .0155 .0161 .9210 .0388 .0402

0.1 1 5 .9963 .0020 .0017 .9697 .0145 .0158 .9281 .0369 .0350

5 5 .9958 .0015 .0027 .9706 .0141 .0153 .9359 .0320 .0321

1 10 .9983 .0006 .0011 .9772 .0115 .0113 .9479 .0257 .0264

0.9 1 5 .9965 .0015 .0020 .9756 .0124 .0120 .9436 .0298 .0266

5 5 .9949 .0028 .0023 .9666 .0166 .0168 .9255 .0377 .0368

1 10 .9962 .002 .0018 .9650 .0175 .0175 .9247 .0358 .0395

20 -0.9 1 5 .9913 .0041 .0046 .9515 .0235 .0250 .9043 .0467 .0490

5 5 .9907 .0048 .0045 .9511 .0251 .0238 .9081 .0462 .0457

1 10 .9907 .0053 .0040 .9527 .0226 .0247 .8984 .0499 .0517

0.1 1 5 .9941 .0028 .0031 .9630 .0196 .0174 .9151 .0421 .0428

5 5 .9943 .0026 .0031 .9646 .0166 .0188 .9185 .0431 .0384

1 10 .9976 .0012 .0012 .9754 .0124 .0122 .9397 .0304 .0299

0.9 1 5 .9938 .0029 .0033 .9637 .0171 .0192 .9265 .0356 .0379

5 5 .9918 .0037 .0045 .9566 .0214 .0220 .9143 .0438 .0419

1 10 .9903 .0051 .0046 .9554 .0202 .0244 .9033 .0476 .0491
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Table 4: The simulated coverage levels of one-sided tests for a comparison between two

independent correlation coefficients.

α = 0.01 α = 0.05 α = 0.1

n ρX1 = ρX2 σ11 σ22 left-sided right-sided left-sided right-sided left-sided right-sided

5 -0.9 1 5 .9996 .9999 .9951 .9928 .9670 .9659

5 5 1.0000 1.0000 .9943 .9938 .9722 .9717

1 10 .9999 .9998 .9893 .9923 .9617 .9601

0.1 1 5 .9956 .9968 .9715 .9691 .9319 .9269

5 5 .9952 .9963 .9652 .9669 .9280 .9253

1 10 .9973 .9976 .9772 .9779 .9413 .9365

0.9 1 5 .9982 .9986 .9848 .9835 .9535 .9547

5 5 .9967 .9970 .9690 .9677 .9266 .9328

1 10 .9993 .9990 .9843 .9820 .9503 .9488

10 -0.9 1 5 .9970 .9974 .9630 .9616 .9177 .9154

5 5 .9978 .9978 .9647 .9672 .9176 .9172

1 10 .9963 .9969 .9614 .9617 .9092 .9101

0.1 1 5 .9946 .9944 .9666 .9609 .9205 .9187

5 5 .9943 .9940 .9648 .9635 .9187 .9199

1 10 .9976 .9977 .9740 .9737 .9327 .9318

0.9 1 5 .9967 .9965 .9715 .9720 .9269 .9297

5 5 .9927 .9936 .9614 .9625 .9151 .9121

1 10 .9949 .9923 .9618 .9636 .9157 .9123

20 -0.9 1 5 .9897 .9918 .9495 .9526 .9053 .9032

5 5 .9912 .9913 .9518 .9530 .9039 .9023

1 10 .9902 .9884 .9524 .9507 .9012 .9038

0.1 1 5 .9936 .9927 .9599 .9581 .9137 .9152

5 5 .9935 .9932 .9589 .9641 .9125 .9132

1 10 .9973 .9970 .9716 .9690 .9309 .9331

0.9 1 5 .9937 .9938 .9578 .9631 .9138 .9115

5 5 .9928 .9924 .9580 .9555 .9100 .9097

1 10 .9907 .9907 .9522 .9505 .9045 .9039
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The first period we studied is from August 27th 2010 to April 18th 2011 with n = 161

trading days, when the bull market was observed. The sequence of daily return of each fund

consists 160 records. It is well understood that the two sequences of daily returns follow

bivariate log-normal distributions. The estimated variance-covariance matrix is found to be

s(1) =


 0.06272876 0.02584196

0.02584196 0.01405631


 .

Using algorithm 1, a two sided 95% confidence interval is computed as (0.8271, 0.9027).

The correlation between silver and gold when the bubble of commodities precious metals

happened is significantly different from zero. As we can see from the confidence interval, the

correlation is quite high.

After crash in May 2011, gold and silver started declines. The second period we studied

is from February 18th 2013 to December 15th 2013 when a bear market was observed. We

are wondering if the correlation between silver and gold during the bull market period will

be different from the bear market period. The estimated variance-covariance during this

period is found to be

s(2) =


 0.10307072 0.06233194

0.06233194 0.04480097


 .

Using algorithm 1, a 95% CI is found to be (0.8918, 0.9354). The correlation between silver

and gold after the market crash is still pretty high. Using algorithm 2, a comparison of

correlations between these two periods ρ(2) − ρ(1) gives a two sided confidence interval as

(0.0061, 0.0941). These finding are interesting. In both bull and bear market, silver and

gold have high correlations, and the correlation is stronger in a bear market than in a bull

market.

6 Conclusions

The skewness of the log-normal distribution brings difficulty on inference of correlation coeffi-

cients of bivariate log-normal distributions, particularly for small samples. Our research fills
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this gap by providing GCIs and hypothesis tests using a GV approach. We also developed

tests for comparing two independent correlations. The properties of the suggested methods

are evaluated by simulation studies and have been shown to be satisfactory even for small

samples. Example on quantitative assay problem shows that correlation between cyclosporin

from a standard approved method high-performance liquid chromatography (HPLC) and an

alternative radio-immunoassay (RIA) method are pretty high. Another example on finan-

cial daily return data shows that for silver and gold, the correlation is quite high, and the

correlation is stronger in a bear market than in a bull market.
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