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Parametric bootstrap procedures for three-factor ANOVA and
multiple comparison procedures with unequal group variances

Sarah Alver and Guoyi Zhang

Department of Mathematics and Statistics, University of New Mexico, Albuquerque, New Mexico, USA

ABSTRACT
The issue of unmet equal variance assumption in multi-factor ANOVA has
been addressed in the literature with several methods, and parametric
bootstrap (PB) has been found in the one-way and two-way cases to out-
perform other methods. We extend previously developed PB procedures
for one- and two-way ANOVA, and illustrate with a three-way ANOVA
model with unequal group variances (heteANOVA model). We develop a
framework for working with these models, analogous to usual multi-factor
ANOVA procedures, where F-tests and Tukey’s simultaneous multiple com-
parison procedures are replaced by PB procedures. Using simulation, we
compare these methods to F-tests for each step in model selection, as well
as to Tukey’s test for multiple comparison procedures (MCP). The results of
our simulations indicate that the PB methods outperform F-tests and
Tukey’s test in terms of Type I error when data are unbalanced.
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1. Introduction

Consider the three-factor ANOVA problem of abc normal populations with unequal population
variances r2ijk, i ¼ 1, :::, a, j ¼ 1, :::, b, k ¼ 1, :::, c, and let Yijk1,Yijk2, :::,Yijkni be the observations

from each group. The full ANOVA model, hereafter called heteANOVA model, is

Yijkm ¼ Gþ Ai þ Bj þ Ck þ ABij þ ACik þ BCjk þ ABCijk þ eijkm

where eijkm � Nð0,r2ijkÞ: The usual F-tests for main and interaction effects in these models assume

equal group variances, and can be smaller or larger in size than the nominal level when this
assumption is violated (Weerahandi 1995; Bao and Ananda 2001; Scheffe 1959). Weerahandi
(Weerahandi 1995) showed examples of this: when there was no particular relationship between
sample size and group variance, the p-value for the conventional F-test was too large (type II
error); however, they provide an additional example where sample sizes were negatively correlated
with the group variances, and the p-value of the conventional F-test was shown to be too small
in this case. Transformed data, such as the log or square root of observed values, may in some
cases meet the equal variance assumption. However, this method does not always work and can
make the results more difficult to interpret. Other approaches such as the generalized F-test have
been proposed (Weerahandi 1995; Ananda and Weerahandi 1997) for one-way and two-way
models, but may not perform well with larger numbers of treatment levels (Xu et al. 2013).

As described in (Christensen 2016) section 4.3, caution is needed when making practical deci-
sions based on differences in means between groups with unequal variances. For example, if a
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lower value of a response is desired, such as blood pressure, a treatment group with a smaller
mean and smaller variance may have a smaller probability of achieving the desired outcome than
a treatment group with a larger mean and also larger variance. Thus, additional consideration of
implications for the practical issue being studied is warranted. Nevertheless, the problem of
unequal variance does arise in practice, so methods of dealing with the problem are desirable.

The parametric bootstrap (PB) approach has been shown to work well for one-way and two-
way heteANOVA models, including cases with unbalanced data (Xu et al. 2013; Krishnamoorthy,
Lu, and Mathew 2007; Zhang 2015a; Zhang 2015b). This work generalizes the approach to a
three-factor model and uses simulations to compare the performance of the PB method with the
usual F-tests.

Another problem in ANOVA models is multiple comparison procedures (MCP’s): pairwise
simultaneous comparisons of all factor levels. The PB approach has been shown to work well for
MCPs in one-way and two-way heteANOVA cases (Zhang 2015a; Zhang 2015b). We again gener-
alize this to the three-factor case, and use simulations to compare the performance of the PB
methods to Tukey’s test.

This paper is organized as follows. In Sec. 2, we describe the overall PB method and show
relationships between PB methods and conventional F-tests, as well as develop an overall proced-
ure for analyzing data under these models, analogous to conventional methods. In Sec. 3, we
illustrate the procedure for a three-way ANOVA model and compare performance of the PB tests
with that of the usual F-tests for each term in the model. Section 4 illustrates MCP using PB.
Section 5 includes discussion of our results, limitations and areas for further research. R code (R
Core Team 2020) is given in the Appendix for the algorithms developed.

2. General PB method for ANOVA models

The overall process for analyzing multi-factor data using PB methods is similar to the usual
ANOVA approach, such as in Christensen 2016 (Christensen 2016) and Kutner et al. 2005
(Kutner et al. 2005) and is shown in Figure 1. For the PB method, a PB test rather than an F-test
is used at each step of testing to determine the terms to be included in the final model, and PB
tests rather than traditional MCP’s are used to examine factor level means. In usual ANOVA
models where the equal variance assumption is met, for testing H0 : Par ¼ 0, where the param-
eter of interest (Par) is a main effects term or an interaction term, our usual F-test statistic, or
general linear test (Kutner et al. 2005), takes the form

ðSSEðRÞ � SSEðFÞÞ=ðdfEðRÞ � dfEðFÞÞ
MSEðFÞ ,

where SSE(R) indicates the sum of square for error (SSE) from the reduced model, SSE(F) indi-
cates SSE from the full model, dfE indicates the degrees of freedom for error for the respective
models, and MSE(F) indicates the mean squared error (MSE) from the full model.

In the following sections, we develop PB algorithms for use at each level of testing that are
analogous to the F-test (general linear test for a three-way ANOVA model). Algorithm 1 will be
used for testing the three-way interaction term, Algorithm 2 for the two-way interaction terms,
and Algorithm 3 for testing main effects when no interaction terms have significant effects.
Algorithm 4 is used when only one two-way interaction term is significant and we want to test
the remaining main effect term that is not involved in the significant interaction. Algorithms 5
and 6 will pertain to MCP’s. Algorithms 1-4 are the same at each step other than the design
matrix specific to the reduced model being tested. For each of algorithms 1-4, the test statistic is
based on the standardized sum of squares for the term under investigation, that is, a function of
the numerator of the F-test shown above. As discussed in (Christensen 2018), this can be written
in matrix form as:
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SI ¼ Y 0ðA� A0Þ0R�1
� ðA� A0ÞY ¼ SSEðRÞ � SSEðFÞ

For our application, R� ¼ diagðr2111, :::, r2111, r2112, :::,r2abcÞ, (i.e., each r2ijk is repeated nijk times

along the diagonal). For equal variances, R� reduces to r2I where I is an n� n identity matrix. In
SI above, A ¼ XðX0R�1

� XÞ�X0R�1
� and A0 ¼ X0ðX0

0R
�1
� X0Þ�X0

0R
�1
� are the projection operators

onto the column spaces of the design matrices X and X0 for the full and reduced models respect-
ively, where X0 indicates the transpose of a matrix X. If variances are known, SI � v2ðrðXÞ �
rðX0ÞÞ, as shown in linear models texts such as (Christensen 2018). We discuss this idea more
specifically to each parameter of interest in the following sections. In general, variances are
unknown, so the true distribution of this test statistic is also unknown. When group variances are
equal (but unknown), the usual F-test statistic follows an F distribution since it is equivalent to:

Y 0ðA�A0ÞY
r2 = rðXÞ � rðX0Þ½ �

N�rðXÞ½ �MSEðFÞ
r2 = N � rðXÞ½ �

¼
v2rðXÞ�rðX0Þ= rðXÞ � rðX0Þ½ �

v2N�rðXÞ= N � rðXÞ½ � � F rðXÞ�rðX0Þ,N�rðXÞ½ �,

where r(X) refers to the rank of the X matrix and N is the total number of observations for all
groups. When variances are equal so that R� ¼ r2I, A and A0 reduce to XðX0XÞ�X0 and

Figure 1. Overall process: three-way ANOVA using parametric bootstrap.
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X0ðX0
0X0Þ�X0

0, respectively, so in this case, Y 0ðA� A0Þ0R�1
� ðA� A0ÞY ¼ Y 0ðA�A0ÞY

r2 : In the above
F-statistic equation, the r2 cancel since they are equal, so unknown r2 is not a problem.
However, as we see in our simulation results, the pooled variance estimate that we use for the
MSE will not be accurate for all groups and can lead to test statistics being too large or too small,
and thus decisions to reject or not reject hypotheses can be too liberal or too conservative, similar
to results illustrated by Weerahandi (Weerahandi 1995).

The X and X0 matrices above are the design matrices corresponding to a Y vector with all
responses. The PB method here uses design matrices corresponding to the vector of group means,
e.g., for a three-way ANOVA model with a¼ 3, b¼ 2 and c¼ 2, �Y ¼ ð�y111,�y112,�y121, :::,�y322Þ,
where �yijk ¼

Pnijk
m¼1 yijk=nijk: It can be shown that SI ¼ Y 0ðA� A0Þ0R�1

� ðA� A0ÞY ¼ SSEðRÞ �
SSEðFÞ ¼ �Y 0R�1�Y � �Y 0R�1X�ðX0

�R
�1X�Þ�X0

�R
�1�Y , where R ¼ diagðr2111=n111, r2112=n112, :::

r2abc=nabcÞ and X� is a matrix of indicators corresponding to each group mean, discussed further
for each parameter in the upcoming sections.

For a three-factor ANOVA model, if r2ijk’s are known, R ¼ diagðr2111=n111,r2112=
n112, :::r2abc=nabcÞ, and the null hypothesis H0 : Par ¼ 0 is true (under the null hypothesis, the v2

non-centrality parameter is 0), then a natural test statistic for testing H0 is SI, the standardized
sum of squares for the term being tested, which as discussed above, follows a v2 distribution with
rðXÞ � rðX0Þ degrees of freedom. In general, variances are unknown, so we replace SI with the

test statistic ~SI ¼ �Y 0S�1�Y � �Y 0S�1X�ðX0
�S

�1X�Þ�X0
�S

�1�Y , where S ¼ diagðs2111=n111,
s2112=n112, :::s

2
abc=nabcÞ, and s2ijk ¼ 1

nijk�1

Pnijk
m¼1 ðyijkm � �yijkÞ2:

In this case, since the variances are unequal and unknown, the test statistic no longer follows a
known distribution. The overall idea of a PB approach to this problem is to simulate a distribu-
tion for ~SI under the null hypothesis.

Each of Algorithms 1-4 follows the same procedure for testing each null hypothesis H0 : Par ¼
0, with Par the applicable parameter. This procedure involves (1) calculate the test statistic ~SI above,
(2) simulate a distribution for ~SI under H0, and (3) calculate a Monte Carlo estimate of a p-value:
the proportion of our simulated null distribution that is at least as extreme as our test statistic. This
p-value can be used in the typical manner to reject or not reject the null hypothesis pertaining to the
model term (parameter) we are investigating. In each algorithm 1-4, the X� matrix in ~SI changes to
reflect each reduced model; otherwise these algorithms are the same at each step.

For multiple comparisons of levels of a factor, Algorithms 5 and 6 are analogous to Tukey’s
test, but again, Tukey’s test is intended for cases where the equal variance assumption is met and
group sizes are equal. The Tukey-Kramer procedure does allow for different sample sizes (Kutner
et al. 2005), and the documentation for the ‘TukeyHSD’ procedure in R (R Core Team 2020)
states that the results are valid for mildly unbalanced data. When the equal variance assumption
is met, Tukey’s test statistic can be compared to the studentized range distribution, but if not, the
test statistic no longer follows a standard distribution for comparison, so we simulate a distribu-
tion using the PB method. Figure 1 depicts the overall procedure for a three-factor heteANOVA
problem using these PB algorithms.

3. Illustration of PB for three-factor ANOVA

Consider the three factor ANOVA full model, with all interactions and main effects:

yijkm ¼ Gþ Ai þ Bj þ Ck þ AB½ �ij þ AC½ �ik þ BC½ �jk þ ABC½ �ijk þ eijkm, (1)

where G indicates the grand mean, A, B, and C indicate main effects, ½AB�, ½AC�, and ½BC� indi-
cate two-way interaction terms, and ½ABC� indicates the three-way interaction term. Also, we
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assume eijkm independent � Nð0, r2ijkÞ, and for identifiability, we assume the constraintsP
i wiAi ¼ 0,

P
j vjBj ¼ 0,

P
k ukCk ¼ 0, … ,

P
i wi½ABC�ijk ¼ 0,

P
j vj½ABC�ijk ¼ 0,P

k uk½ABC�ijk ¼ 0, where the w’s, v’s, and u’s are non-negative weights, not all zero. Define the

vector of means, �Y ¼ ð�y111,�y112, :::,�y121,�y122, :::,�yabcÞ0, indicating the sample means of the obser-
vations from each factor level and combination of factor levels. Define the vector of sample var-
iances for each combination of factor levels to be s2ijk ¼ ðs2111, s2112, :::s2abcÞ0, and the matrix

Sabc�abc ¼ diagðs2111=n111, s2112=n112, :::s2abc=nabcÞ
Following the procedure in Figure 1, we test each term in the model (1), from highest order to

lowest order. Reduced models for each stage of testing are shown below. For each term in the model,
if r2ijk’s are known, R ¼ diagðr2111=n111, r2112=n112, :::r2abc=nabcÞ, and the null hypothesis is true (under

the null hypothesis, the v2 non-centrality parameter is 0), then a natural test statistic for testing H0 is
the standardized sum of squares for the term being tested (and higher order terms):

�Y 0R�1�Y � �Y 0R�1X�ðX0
�R

�1X�Þ�X0
�R

�1�Y � v2abc�rðX�Þ, where X� refers to e.g., XABC for the

three-way interaction term, XBC for the BC interaction term, and XC for the main effects for fac-
tor C as described below.

The matrix X� consists of a column of 1’s for the grand mean and (0, 1) indicators for member-
ship in each factor level and combination of factor levels. Note that this matrix is indicating the lev-
els for the group means, not each observation, so it should not be confused with the design matrix
for the full data, which could include replications. X� can be expressed using Kronecker products.
Let Jn indicate a column vector of n 1’s, and In indicate an n� n identity matrix. Then, for example,

XABC ¼ ð½Jabc, Ia � Jbc, Ja � ðIb � JcÞ, Ja � ðJb � IcÞ�, ½Iab � Jc�, ½Ia � ðJb � IcÞ�, ½Ja � Ibc�Þ
In general, variances are unknown, so we replace R with S to form the test statistic introduced

earlier: ~SI ¼ �Y 0S�1�Y � �Y 0S�1X�ðX0
�S

�1X�Þ�X0
�S

�1�Y :
The test statistic ~SI is location invariant (Xu et al. 2013), so without loss of generality, take

EðYÞ ¼ 0: The PB variable can then be developed as follows. For a given

ð�y111,�y112, :::,�yabc; s2111, s2112, :::, s2abcÞÞ, �yBijk � Nð0, s2ijk=nijkÞ, and S2Bijk �
s2ijk

nijk�1

� �
v2nijk�1, i ¼

1, :::a, j ¼ 1, :::, b, k ¼ 1, :::c:
Let �YB ¼ ð�yB111,�yB112, :::,�yBabcÞ0 and SB ¼ diagðs2B111=n111, s2B112=n112, :::s2Babc=nabcÞ:
Then we can construct the PB pivot variable based on the test statistic ~SI , replacing �Y with

�YB and S with SB:
~SIB ¼ �Y 0

BS
�1
B

�YB � �Y 0
BS

�1
B X�ðX0

�S
�1
B X�Þ�X0

�S
�1
B

�YB: For a given level a, there is evidence that the

main effects or interaction effects exist when Pð~SIB > ~sIÞ < a, where ~sI is an observed value of
~SI: This probability can be estimated by Algorithms 1-4 depending on the term being tested.
Note that while model parameter estimates depend on the chosen weights, the tests considered
here do not. This is discussed for the two-way case in (Xu et al. 2013) and proofs are given by
Arnold (Steven F, 1981). These ideas can be extended to the three-way case. As discussed by
Arnold (Steven F, 1981), when testing the main effects and two-way interactions, we are perform-
ing not quite a test for e.g., Ai ¼ 0, but a test for Ai þ ½AB�ij þ ½AC�ik þ ½ABC�ijk ¼ 0, that is, the

main effect plus the higher order terms involving it, which does not involve the weights.
Additionally, we do not suggest testing a main effect term if the interaction terms involving it are
found significantly different from zero. Further, the tests presented here are based on the differ-
ences in sums of squares for error between models, not the parameter estimates themselves (see
e.g. (Searle 1971), Sec. 5.2). The specific tests of a main or two-way term plus the higher order
terms that involve it are shown in the null and alternative hypotheses for each Algorithm 1-4.
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3.1. Testing three-way interaction

For the three-way interaction term, consider model (1) and:
H0ABC : ½ABC�ijk ¼ 0 for i ¼ 1, :::a, j ¼ 1, :::, b, k ¼ 1, :::c vs

HaABC : ½ABC�ijk 6¼ 0 for some i, j, k.

If r2ijk’s are known, as discussed previously, a natural test statistic for testing H0 is the standar-

dized sum of squares for the three way interaction, a function of ð�Y � Ĝ � Â � B̂ � Ĉ � cAB �cAC � cBCÞ, where the terms Ĝ, :::,cBC are the parameter estimates from fitting all terms from
model (1) other than the ABC term:

�Y 0R�1�Y � �Y 0R�1XABCðX0
ABCR

�1XABCÞ�X0
ABCR

�1�Y � v2abc�rðXabcÞ (1.1)

In general, variances are unknown, so we replace (1.1) with the following test statistic:

~SI ¼ �Y 0S�1�Y � �Y 0S�1XABCðX0
ABCS

�1XABCÞ�X0
ABCS

�1�Y : (1.2)

This test statistic is location invariant (Xu et al. 2013), so without loss of generality, take
EðYÞ ¼ 0: We construct the PB pivot variable based on test statistic (1.2), replacing �Y with �YB

and S with SB:

~SIB ¼ �Y 0
BS

�1
B

�YB � �Y 0
BS

�1
B XABCðX0

ABCS
�1
B XABCÞ�X0

ABCS
�1
B

�YB (1.3)

For a given level a, the test rejects H0ABC when Pð~SIB > ~sIÞ < a, where ~sI is an observed value
of ~SI in (1.2). This probability can be estimated by Algorithm 1.

Algorithm 1:
For a given ðn111, n112, :::, nabcÞ, ð�y111,�y112, :::,�yabcÞ, and ðs2111, s2112, :::s2abcÞ, compute ~SI ¼
�Y 0S�1�Y � �Y 0S�1XABCðX0

ABCS
�1XABCÞ�X0

ABCS
�1�Y and call it ~sI:

For l ¼ 1, :::, L :

Generate �yBijk � Nð0, s2ijk=nijkÞ, and

S2Bijk �
s2ijk

nijk � 1

 !
v2nijk�1, i ¼ 1, :::a, j ¼ 1, :::, b, k ¼ 1, :::c,

Compute ~SIB ¼ �Y 0
BS

�1
B

�YB � �Y 0
BS

�1
B XABCðX0

ABCS
�1
B XABCÞ�X0

ABCS
�1
B

�YB,
If ~SIB > ~sI , set Ql ¼ 1,
(end loop)
1
L

PL
l¼1 Ql is a Monte Carlo estimate of the p-value Pð~SIB > ~sIÞ:

3.2. Testing two-way interaction terms

For the two-way interaction terms, if we do not reject H0 for the ABC interaction term, we drop
this term and consider the model:

yijkm ¼ Gþ Ai þ Bj þ Ck þ AB½ �ij þ AC½ �ik þ BC½ �jk þ eijkm: (2)

Note that if the three-way interaction term ½ABC�ijk is equal to zero for all i, j, k, this model

(2) is equivalent to the full model (1). Additionally, if we do not reject H0 for the ABC interaction
term, the term would not be significantly different from zero, but weak/non-significant effects
could be present. As discussed by Xu et al (Xu et al. 2013), when the three-way interaction is pre-
sent, each two-way effect alone, for example BC, cannot reflect the effects of B and C because it
depends on the level of the ABC interaction. So rather than testing H0BC : ½BC�jk ¼ 0, we are
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actually testing H0BC : ½BC�jk þ ½ABC�ijk ¼ 0 as shown below. In testing the two-way interaction

term ½BC�, the sum of squares for the BC and ABC interaction will be a function of ð�Y � Ĝ �
Â � B̂ � Ĉ � cAB � cACÞ, where the terms Ĝ, :::, cAC are the parameter estimates from fitting all
terms from model (2) other than the BC term, i.e., from fitting the reduced model:

yijkm ¼ Gþ Ai þ Bj þ Ck þ AB½ �ij þ AC½ �ik þ eijkm (3)

Similarly to the three-way interaction case, a natural test statistic for testing
H0BC : ½BC�jk þ ½ABC�ijk ¼ 0 for i ¼ 1, :::, a, j ¼ 1, :::, b, k ¼ 1, :::c vs HaBC : ½BC�jk þ ½ABC�ijk 6¼

0 for some i, j, k
is the standardized sum of squares for the BC and ABC interaction term:
�Y 0R�1�Y � �Y 0R�1XBCðX0

BCR
�1XBCÞ�X0

BCR
�1�Y � v2abc�rðXBCÞ, where

XBC ¼ ð Jabc, Ia � Jbc, Ja � ðIb � JcÞ, Ja � ðJb � IcÞ½ �, Iab � Jc½ �, Ia � ðJb � IcÞ½ �Þ
For unknown R, the test statistic will be:

~SI ¼ �Y 0S�1�Y � �Y 0S�1XBCðX0
BCS

�1XBCÞ�X0
BCS

�1�Y (1.4)

The test statistic (1.4) is analogous to the general linear test of the reduced model (3) above,
vs the biggest model (1). The PB pivot variable for H0BC is constructed based on test statistic
(1.4), replacing �Y with �YB and S with SB:

~SIB ¼ �Y 0
BS

�1
B

�YB � �Y 0
BS

�1
B XBCðX0

BCS
�1
B XBCÞ�X0

BCS
�1
B

�YB (1.5)

For a given level a, the test rejects H0BC when Pð~SIB > ~sIÞ < a, where ~sI is an observed value

of ~SI in (1.4). This probability can be estimated by Algorithm 2. Algorithm 2 should be used
three times to test each two-way interaction term and is similar for each term. The X-matrix in
1.4 and 1.5 should be replaced to reflect the term under testing as follows:

XAC ¼ Jabc, Ia � Jbc, Ja � ðIb � JcÞ, Ja � ðJb � IcÞ, Iab � Jc, Ja � Ibc½ �:
XAB ¼ Jabc, Ia � Jbc, Ja � ðIb � JcÞ, Ja � ðJb � IcÞ, Ia � ðJb � IcÞ, Ja � Ibc½ �:

Algorithm 2 is identical to Algorithm 1 except that XBC, XAC or XAB replaces XABC in the cal-

culation of ~SI and ~SIB:

3.3. Testing main effects w/no significant interaction terms

If we do not reject H0 for any of the interaction terms, we drop these terms and consider the
model

yijkm ¼ Gþ Ai þ Bj þ Ck þ eijkm: (4)

In testing the main effect term C, the sum of squares for C and the interactions will be a func-

tion of ð�Y � Ĝ � Â � B̂Þ, where the terms Ĝ, Â and B̂ are the parameter estimates from fitting
all terms from model (4) other than the C term, i.e., from fitting the reduced model:

yijm ¼ Gþ Ai þ Bj þ eijm (5)
A natural test statistic for testing
H0C : Ck þ ½AB�ij þ ½AC�ik þ ½BC�jk þ ½ABC�ijk ¼ 0 for i ¼ 1, :::, a, j ¼ 1, :::, b, k ¼ 1, :::c vs HaC :

Ck þ ½AB�ij þ ½AC�ik þ ½BC�jk þ ½ABC�ijk 6¼ 0 for some i, j, k

is the standardized sum of squares for C and the interaction terms: �Y 0R�1�Y �
�Y 0R�1XCðX0

CR
�1XCÞ�X0

CR
�1�Y � v2abc�rðXCÞ: Again note that this is not quite a test for Ck ¼ 0

alone, but a test for Ck and the interaction terms, which does not involve the weights.
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For unknown R, the test statistic will be:

~SI ¼ �Y 0S�1�Y � �Y 0S�1XCðX0
CS

�1XCÞ�X0
CS

�1�Y , (1.6)

where XC ¼ ½Jabc, Ia � Jbc, Ja � ðIb � JcÞ�:(1.6)
The PB pivot variable for H0C is constructed based on the test statistic (1.6), replacing �Y with

�YB and S with SB:

~SIB ¼ �Y 0
BS

�1
B

�YB � �Y 0
BS

�1
B XCðX0

CS
�1
B XCÞ�X0

CS
�1
B

�YB (1.7)

For a given level a, the test rejects H0BC when Pð~SIB > ~sIÞ < a, where ~sI is an observed value
of ~SI in (1.6). This probability can be estimated by Algorithm 3. Algorithm 3 should be used
three times to test each main effect term and is similar for each term. The X-matrix in 1.6 and
1.7 should be replaced to reflect the term under testing as follows:

XA ¼ Jabc, Ja � ðIb � JcÞ, Ja � ðJb � IcÞ
XB ¼ Jabc, Ia � Jbc, Ja � ðJb � IcÞ

Algorithm 3 is identical to Algorithm 1 except that we use XA, XB or XC in place of XABC in
the calculation of ~SI and ~SIB:

3.4. Testing one main effect in presence of one significant Two-Way interaction

If we do not reject H0 for two of the interaction terms, but do reject for one of them, say AB, we
drop the non-significant terms and consider the model

yijkm ¼ Gþ Ai þ Bj þ Ck þ ½AB�ij þ eijkm (6)

which would be equivalent to model (1) if all interaction terms other than AB are zero. Again we
are performing a test for C and the higher order interaction terms that involve it together, which
does not involve the weights, rather than C alone, after already finding the higher order terms
not significantly different from zero.

In testing the main effect term C when the AB interaction term is not significantly different

from 0, the sum of squares for C and the remaining interactions will be a function of ð�Y � Ĝ �
Â � B̂ � cABÞ, where the terms Ĝ, Â, B̂ and cAB are the parameter estimates from fitting all terms
from model (6) other than the C term, i.e., from fitting the reduced model:

yijkm ¼ Gþ Ai þ Bj þ AB½ �ij þ eijkm (7)

Similarly to the previous cases, a natural test statistic for testing
H0C� : Ck þ ½AC�ik þ ½BC�jk þ ½ABC�ijk ¼ 0 for i ¼ 1, :::, a, j ¼ 1, :::, b, k ¼ 1, :::c vs HaC� :

Ck þ ½AC�ik þ ½BC�jk þ ½ABC�ijk 6¼ 0 for some i, j, k

is the standardized sum of squares for C and the interaction terms other than AB: �Y 0R�1�Y �
�Y 0R�1XC�ðX0

C�R
�1XC�Þ�X0

C�R
�1�Y � v2abc�rðXC�Þ, where XC� ¼ ½Jabc, Ia � Jbc, Ja � ðIb � JcÞ, Iab � Jc�

For unknown R, the test statistic will be:

~SI ¼ �Y 0S�1�Y � �Y 0S�1XC�ðX0
C�S

�1XC�Þ�X0
C�S

�1�Y (1.8)

Similarly to the previous terms, for H0C�, we can construct the PB pivot variable based on test
statistic (1.8), replacing �Y with �YB and S with SB:

~SIB ¼ �YT
BS

�1
B

�YB � �YT
BS

�1
B XC�ðXT

C�S
�1
B XC�Þ�XT

C�S
�1
B

�YB (1.9)

For a given level a, the test rejects H0C� when Pð~SIB > ~sIÞ < a, where ~sI is an observed value
of ~SI in (1.8). This probability can be estimated by Algorithm 4. Algorithm 4 could be used for
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to test any main effect term that is not involved in an interaction. To do so, the X-matrix in 1.8
and 1.9 should be replaced to reflect the term being tested, as follows:

XA� ¼ ½Jabc, Ja � ðIb � JcÞ, Ja � ðJb � IcÞ, Ja � Ibc�, where the reduced model is yijkm ¼ Gþ Bjþ
Ck þ ½BC�jk þ eijkm;

XB� ¼ ½Jabc, Ia � Jbc, Ja � ðJb � IcÞ, Ia � ðJb � IcÞ�, where the reduced model is yijkm ¼ Gþ Aiþ
Ck þ ½AC�ik þ eijkm:

Algorithm 4 is identical to Algorithm 1 except that we use XA�, XB� or XC� in place of XABC in
the calculation of ~SI and ~SIB:

3.5. Simulations for testing interaction and main effects terms

For each term being tested, we again consider model (1) and reduced models shown in the previ-
ous corresponding sections. For each simulation, datasets were generated under the reduced
model with eijkm � Nð0,r2ijkÞ, i ¼ 1, :::, a, j ¼ 1, :::, b, k ¼ 1, :::, c, G ¼ 0, and to meet the con-

straints
Pa

i¼1 Ai ¼ 0,
Pb

j¼1 Bj ¼ 0,
Pc

k¼1 Ck ¼ 0,
Pb

j¼1 ABij ¼ 0,
Pc

k¼1 ACik ¼ 0, andPc
k¼1 BCjk ¼ 0: The sample mean and sample variance vectors ð�y111,�y112, :::,�yabcÞ, and

ðs2111, s2112, :::s2abcÞ were calculated from each simulated dataset. The simulation was performed with:
(1) a ¼ b ¼ c ¼ 2 to form 8 combinations;

(2) population standard deviation ri ¼ ðr111,r112, :::,r222Þ :
r21 ¼ (1, 1, 1, 1, 1, 1, 1, 1), r22 ¼ (0.1, 0.1, 0.1, 0.1, 0.5, 0.5, 0.5, 0.5), r23 ¼ (1,1,1,1,0.5, 0.5,

0.5, 0.5), r24 ¼ (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 1), r25 ¼ (0.1, 0.3, 0.9, 0.4, 0.7, 0.5, 0.6, 1), r26 ¼
(0.01, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 1);

(3) significance level a ¼ 0:05 and a ¼ 0:1;
(4) group sizes ni ¼ ðn111, n112, :::, n222Þ : n1 ¼ (5,5,5,5,5,5,5,5), n2 ¼ (10, 10, 10, 10, 10, 10, 10,

10), n3 ¼ (3,3,4,5,4,5,6,6), n4 ¼ (4, 6, 8,12, 14, 16, 18, 20). For a given sample size and population
variance configuration, we generated 2500 datasets, calculated the observed vectors
ð�y111,�y112, :::,�yabcÞ, and ðs2111, s2112, :::s2abcÞ from the datasets, and used 5000 PB runs to estimate the
p-value using Algorithms 1-4 as indicated. The p-value for the F-test (general linear test discussed
in Sec. 2) for each term was also calculated for each simulated dataset using the ‘lm’ function in
R (R Core Team 2020). The tests were considered to reject if the p-value was less than a, and the
proportions rejected out of the 2500 datasets were calculated for both the algorithm and the F-
test, and shown in Tables 1–4.

For simulations for the three-way interaction, datasets were generated under the reduced
model (2). Algorithm 1 was used to calculate the simulated p-value for the PB test, and the F-test
comparing the reduced model with model (1) was calculated as described above; results shown in
Table 1. Similarly: for the BC interaction term, model (3) was the reduced model and Algorithm
2 was used - results shown in Table 2; for the main effect C, model (5) was the reduced model
and Algorithm 3 was used - results shown in Table 3; and for simulations of testing one main
effect when one two-way term is significant, model (7) was the reduced model and Algorithm 4
was used - results shown in Table 4. We see from these tables that the F-test does not work well
for some cases, but the PB test is robust; simulation results are discussed further in Sec. 5.

4. Multiple comparisons

For our three-way ANOVA illustration, if the highest order term (i.e., the three-factor interaction
term) is found to have a significant effect, or if two or more of the two-factor interaction terms
are found to be significant, we can approach the problem as a one-way ANOVA problem with
abc levels, and then perform multiple comparisons of factor level means. Approaching this
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problem using PB methods is described in detail by Zhang (2015b), which performs all pairwise
comparisons of factor level means analogously to Tukey’s test, but uses PB methods to allow for
unequal variances. If there are no significant interaction terms but some main effects are found
to be significant, all pairwise comparisons of the factor level means of the significant main effects
may be of interest.

4.1. Multiple comparisons for main effects only

Consider simultaneous comparisons of the factor A level means when no interactions are present,
i.e., in model (4). An estimator of the factor A level means, similar to the estimator described in
(Zhang 2015b) is a weighted average of the corresponding cell means:

�Yi::: ¼
P

j

P
k vjk�Y ijkP

j

P
k vjk

, (1.10)

where vjk ¼
P

i
nijk

N , with N the total number of observations.

Table 1. Simulation results for testing ABC interaction.Numbers in the table are simulated p-values. We consider four different
sizes and six different variance vectors: n1 ¼ ð5, 5, 5, 5, 5, 5, 5, 5Þ; n2 ¼ ð10, 10, 10, 10, 10, 10, 10, 10Þ;n3 ¼ ð3, 3, 4, 5, 4, 5, 6, 6Þ; n4 ¼
ð4, 6, 8, 12, 14, 16, 18, 20Þ; r21 ¼ ð1, 1, 1, 1, 1, 1, 1, 1Þ; r22 ¼ ð0:1, 0:1, 0:1, 0:1, 0:5, 0:5, 0:5, 0:5Þ; r23 ¼ ð1, 1, 1, 1, 0:5, 0:5, 0:5, 0:5Þ;
r24 ¼ ð0:1, 0:2, 0:3, 0:4, 0:5, 0:6, 0:7, 1Þ;r25 ¼ ð0:1, 0:3, 0:9, 0:4, 0:7, 0:5, 0:6, 1Þ; r26 ¼ ð0:01, 0:1, 0:1, 0:1, 0:1, 0:1, 0:1, 1Þ, and the
two different a levels shown.

a ¼ 0:05 a ¼ 0:1

r21 F-test Algorithm F-test Algorithm
n1 0.0576 0.0528 0.1104 0.1080
n2 0.0504 0.0492 0.1096 0.1092
n3 0.0556 0.0536 0.1068 0.0988
n4 0.0528 0.0476 0.1056 0.1020

r22 F-test Algorithm F-test Algorithm
n1 0.0412 0.0348 0.1088 0.1012
n2 0.0568 0.0556 0.0936 0.0944
n3 0.0248 0.0412 0.0572 0.0848
n4 0.0088 0.0528 0.0256 0.0972

r23 F-test Algorithm F-test Algorithm
n1 0.0492 0.0468 0.1060 0.1008
n2 0.0504 0.0500 0.0992 0.0984
n3 0.0688 0.0456 0.1252 0.0960
n4 0.1060 0.0544 0.1400 0.0940

r24 F-test Algorithm F-test Algorithm
n1 0.0556 0.0500 0.1028 0.0968
n2 0.0504 0.0496 0.1044 0.1032
n3 0.0232 0.0416 0.0580 0.0928
n4 0.0100 0.0636 0.0252 0.1000

r25 F-test Algorithm F-test Algorithm
n1 0.0552 0.0504 0.0900 0.0832
n2 0.0560 0.0548 0.0960 0.0940
n3 0.0340 0.0460 0.0816 0.1032
n4 0.0176 0.0484 0.0464 0.1056

r26 F-test Algorithm F-test Algorithm
n1 0.0696 0.0576 0.1180 0.1036
n2 0.0564 0.0500 0.1192 0.1124
n3 0.0244 0.0452 0.0472 0.0904
n4 0.0060 0.0404 0.0160 0.1048
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The variance of these estimators is found to be Vð�Yi:::Þ ¼ 1
ð
P

j, k vjkÞ
2

P
j

P
k v

2
jk

r2ijk
nijk

with the esti-

mated variance

V̂ ð�Y i:::Þ ¼ 1

ðPj, k vjkÞ2
X
j

X
k

v2jk
s2ijk
nijk

: (1.11)

Similarly to Tukey’s test, a test statistic for testing H0 : Ai ¼ Ai0 is

qAii0 ¼
j�Y i::: � �Yi0:::jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V̂ ð�Y i:::Þ þ V̂ ð�Y i0:::Þ
q

Since we have unequal variances and possibly also unbalanced data, the studentized range distri-
bution typically used for Tukey’s test is inappropriate. Thus, we use the PB method to simulate a

distribution for the test statistic and for the confidence interval �yi::: �
�yi0:::6qAa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðV̂ ð�Y i:::Þ þ V̂ ð�Y i0:::Þ

q
Þ, where qAa is the 1� a percentile of the simulated distribution of

q. The PB pivot variable for this procedure is based on the test statistic qAii0 , and can be developed
as follows.

Table 2. Simulation results for testing BCþABC interaction.Numbers in the table are simulated p-values. We consider four different
sizes and six different variance vectors: n1 ¼ ð5, 5, 5, 5, 5, 5, 5, 5Þ; n2 ¼ ð10, 10, 10, 10, 10, 10, 10, 10Þ;n3 ¼ ð3, 3, 4, 5, 4, 5, 6, 6Þ; n4 ¼
ð4, 6, 8, 12, 14, 16, 18, 20Þ; r21 ¼ ð1, 1, 1, 1, 1, 1, 1, 1Þ; r22 ¼ ð0:1, 0:1, 0:1, 0:1, 0:5, 0:5, 0:5, 0:5Þ; r23 ¼ ð1, 1, 1, 1, 0:5, 0:5, 0:5, 0:5Þ;
r24 ¼ ð0:1, 0:2, 0:3, 0:4, 0:5, 0:6, 0:7, 1Þ;r25 ¼ ð0:1, 0:3, 0:9, 0:4, 0:7, 0:5, 0:6, 1Þ; r26 ¼ ð0:01, 0:1, 0:1, 0:1, 0:1, 0:1, 0:1, 1Þ, and the
two different a levels shown.

a ¼ 0:05 a ¼ 0:1

r21 F-test Algorithm F-test Algorithm
n1 0.0504 0.0440 0.1040 0.0864
n2 0.0528 0.0496 0.1044 0.1052
n3 0.0500 0.0452 0.1040 0.0920
n4 0.0528 0.0512 0.1008 0.0920

r22 F-test Algorithm F-test Algorithm
n1 0.0784 0.0464 0.1112 0.0936
n2 0.0688 0.0456 0.1152 0.0948
n3 0.0496 0.0452 0.0864 0.0832
n4 0.0344 0.0492 0.0644 0.0900

r23 F-test Algorithm F-test Algorithm
n1 0.0568 0.0416 0.0980 0.0908
n2 0.0544 0.0536 0.1020 0.0956
n3 0.0652 0.0424 0.1288 0.0932
n4 0.0812 0.0468 0.1392 0.0996

r24 F-test Algorithm F-test Algorithm
n1 0.0624 0.0480 0.1168 0.0960
n2 0.0640 0.0424 0.0980 0.0908
n3 0.0388 0.0468 0.0720 0.0852
n4 0.0320 0.0420 0.0612 0.0948

r25 F-test Algorithm F-test Algorithm
n1 0.0536 0.0392 0.0984 0.0844
n2 0.0456 0.0420 0.1048 0.1040
n3 0.0432 0.0460 0.0852 0.0972
n4 0.0280 0.0464 0.0604 0.0976

r26 F-test Algorithm F-test Algorithm
n1 0.0816 0.0500 0.1340 0.1008
n2 0.0784 0.0496 0.1160 0.0996
n3 0.0336 0.0448 0.0720 0.0932
n4 0.0188 0.0512 0.0360 0.0972
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For a given ð�y111,�y112, :::,�yabc, s2111, s2112, :::, s2abcÞ, �YBijk � Nð0, s2ijk=nijkÞ, and s2Bijk �
s2ijk

nijk�1 v
2
ðnijk�1Þ:

In Algorithm 5 below, these variables are simulated. Then, �YBi::: and �YBi0::: can be calculated from
�YBijk using (1.10), and the variances Vð�YBi:::Þ and Vð�YBi0:::Þ are as in (1.11) with s2Bijk taking the

place of s2ijk: Thus, the PB pivot variable is

qABii0 ¼
j�YBi::: � �YBi0:::jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V̂ ð�YBi:::Þ þ V̂ ð�YBi0:::Þ
q : (1.12)

Algorithm 5
For a given ð�y111,�y112, :::,�yabcÞ, ðs2111, s2112, :::, s2abcÞ, and ðn111, n112, :::, nabcÞ :
For l ¼ 1, :::, L

Generate �YBijk � Nð0, s2ijk=nijkÞ and s2Bijk �
s2ijk

nijk�1 v
2
nijk�1

Compute qABii0 using (1.12) for i ¼ 1, :::, a� 1, i0 ¼ iþ 1, :::a
Find ql ¼ maxðqABii0 Þ
(end loop)
qAa is the 1� a percentile of the simulated distribution of q.

Table 3. Simulation results for testing main effect C and interactions.Numbers in the table are simulated p-values. We con-
sider four different sizes and six different variance vectors: n1 ¼ ð5, 5, 5, 5, 5, 5, 5, 5Þ;n2 ¼ ð10, 10, 10, 10, 10, 10, 10, 10Þ; n3 ¼
ð3, 3, 4, 5, 4, 5, 6, 6Þ; n4 ¼ ð4, 6, 8, 12, 14, 16, 18, 20Þ; r21 ¼ ð1, 1, 1, 1, 1, 1, 1, 1Þ; r22 ¼ ð0:1, 0:1, 0:1, 0:1, 0:5, 0:5, 0:5, 0:5Þ; r23 ¼
ð1, 1, 1, 1, 0:5, 0:5, 0:5, 0:5Þ;r24 ¼ ð0:1, 0:2, 0:3, 0:4, 0:5, 0:6, 0:7, 1Þ;r25 ¼ ð0:1, 0:3, 0:9, 0:4, 0:7, 0:5, 0:6, 1Þ; r26 ¼
ð0:01, 0:1, 0:1, 0:1, 0:1, 0:1, 0:1, 1Þ, and the two different a levels shown.

a ¼ 0:05 a ¼ 0:1

r21 F-test Algorithm F-test Algorithm
n1 0.0484 0.0404 0.0996 0.0920
n2 0.0468 0.0460 0.1056 0.1016
n3 0.0400 0.0376 0.1040 0.0900
n4 0.0520 0.0524 0.1048 0.1084

r22 F-test Algorithm F-test Algorithm
n1 0.0672 0.0420 0.1232 0.0984
n2 0.0652 0.0480 0.1092 0.0872
n3 0.0496 0.0400 0.0780 0.0876
n4 0.0264 0.0508 0.0524 0.0956

r23 F-test Algorithm F-test Algorithm
n1 0.0560 0.0424 0.1084 0.0936
n2 0.0644 0.0540 0.1160 0.0972
n3 0.0836 0.0400 0.1252 0.0872
n4 0.0988 0.0460 0.1704 0.1008

r24 F-test Algorithm F-test Algorithm
n1 0.0660 0.0432 0.1144 0.0820
n2 0.0708 0.0480 0.1312 0.1084
n3 0.0424 0.0440 0.0620 0.0792
n4 0.0260 0.0532 0.0492 0.0988

r25 F-test Algorithm F-test Algorithm
n1 0.0656 0.0388 0.1100 0.0880
n2 0.0580 0.0460 0.1188 0.0964
n3 0.0440 0.0460 0.1008 0.0920
n4 0.0352 0.0460 0.0688 0.1036

r26 F-test Algorithm F-test Algorithm
n1 0.1152 0.0524 0.1612 0.0968
n2 0.1096 0.0504 0.1540 0.0988
n3 0.0584 0.0488 0.0984 0.0968
n4 0.0316 0.0460 0.0572 0.0896
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The procedure for simultaneous comparisons of the factor B or C level means, when no inter-
actions are present, is analogous to Algorithm 5.

4.2. Multiple comparisons for two-way interaction term

Consider simultaneous comparisons of the levels of the AB interaction term in model (6). An
estimator of the AB level means is a weighted average of the corresponding cell means, similar to
the weights described in (Zhang 2015b):

�Y ij:: ¼
X
k

vk�Y ijk, (1.13)

where vk ¼
P

i, j nijk
N , with N the total number of observations.

The variance of these estimators is found to be Vð�Yij::Þ ¼
P

k v
2
k

r2ijk
nijk

with the estimated variance

V̂ ð�Y ij::Þ ¼
P

k v
2
k

s2ijk
nijk

: Similarly to Tukey’s test, a test statistic for testing H0 : ABij ¼ ABi0j0 is

qABiji0j0 ¼
j�Y ij:: � �Yi0j0::jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V̂ ð�Y ij::Þ þ V̂ ð�Y i0j0::Þ
q (1.14)

Table 4. Simulation results for testing main effect C when AB interaction present.Numbers in the table are simulated p-values.
We consider four different sizes and six different variance vectors: n1 ¼ ð5, 5, 5, 5, 5, 5, 5, 5Þ; n2 ¼ ð10, 10, 10,
10, 10, 10, 10, 10Þ;n3 ¼ ð3, 3, 4, 5, 4, 5, 6, 6Þ; n4 ¼ ð4, 6, 8, 12, 14, 16, 18, 20Þ; r21 ¼ ð1, 1, 1, 1, 1, 1, 1, 1Þ; r22 ¼ ð0:1, 0:1, 0:1, 0:1, 0:5,
0:5, 0:5, 0:5Þ; r23 ¼ ð1, 1, 1, 1, 0:5, 0:5, 0:5, 0:5Þ; r24 ¼ ð0:1, 0:2, 0:3, 0:4, 0:5, 0:6, 0:7, 1Þ; r25 ¼ ð0:1, 0:3, 0:9, 0:4, 0:7, 0:5, 0:6, 1Þ;
r26 ¼ ð0:01, 0:1, 0:1, 0:1, 0:1, 0:1, 0:1, 1Þ, and the two different a levels shown.

a ¼ 0:05 a ¼ 0:1

r21 F-test Algorithm F-test Algorithm
n1 0.0480 0.0404 0.1096 0.0888
n2 0.0472 0.0468 0.0952 0.0972
n3 0.0512 0.0412 0.0908 0.0812
n4 0.0428 0.0404 0.1036 0.0940

r22 F-test Algorithm F-test Algorithm
n1 0.0704 0.0396 0.1164 0.0832
n2 0.0668 0.0504 0.1204 0.0956
n3 0.0576 0.0344 0.0940 0.0756
n4 0.0384 0.0568 0.0680 0.0948

r23 F-test Algorithm F-test Algorithm
n1 0.0540 0.0472 0.1100 0.0908
n2 0.0592 0.0528 0.1076 0.1032
n3 0.0824 0.0376 0.1292 0.0768
n4 0.0888 0.0472 0.1484 0.0904

r24 F-test Algorithm F-test Algorithm
n1 0.0600 0.0400 0.1168 0.0908
n2 0.0668 0.0424 0.1160 0.0972
n3 0.0420 0.0428 0.0732 0.0840
n4 0.0284 0.0472 0.0580 0.0956

r25 F-test Algorithm F-test Algorithm
n1 0.0612 0.0408 0.1068 0.0916
n2 0.0620 0.0520 0.1196 0.1080
n3 0.0504 0.0392 0.0944 0.0888
n4 0.0376 0.0436 0.0736 0.1016

r26 F-test Algorithm F-test Algorithm
n1 0.1108 0.0452 0.1496 0.0988
n2 0.0916 0.0572 0.1524 0.1064
n3 0.0696 0.0500 0.1052 0.0948
n4 0.0336 0.0444 0.0512 0.0984
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Since the variances are unequal and the data possibly unbalanced, the studentized range distribu-
tion typically used for Tukey’s test is inappropriate. Thus, we use the PB method to simulate a

distribution for the test statistic and for the confidence interval �yij:: �
�yi0j0::6qABa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðV̂ ð�Y ij::Þ þ V̂ ð�Y i0j0::Þ

q
Þ, where qABa is the 1� a percentile of the simulated distribution

of q. The PB pivot variable for this procedure is based on the test statistic qABiji0j0 , and can be devel-

oped as follows.

For a given ð�y111,�y112, :::,�yabc, s2111, s2112, :::, s2abcÞ, �YBijk � Nð0, s2ijk=nijkÞ, and s2Bijk �
s2ijk

nijk�1 v
2
ðnijk�1Þ:

In Algorithm 6 below, these variables are simulated. Then, �YBij:: and �YBi0j0:: can be calculated
from �YBijk using (1.15), and the variances Vð�YBij::Þ and Vð�YBi0j0::Þ are as above with s2Bijk taking

the place of s2ijk: Thus, our PB pivot variable is:

qABBiji0j0 ¼
j�YBij:: � �YBi0j0::jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V̂ ð�YBij::Þ þ V̂ ð�YBi0j0::Þ
q : (1.15)

Algorithm 6
For a given ð�y111,�y112, :::,�yabcÞ, ðs2111, s2112, :::, s2abcÞ, and ðn111, n112, :::, nabcÞ :
For l ¼ 1, :::, L

Generate �YBijk � Nð0, s2ijk=nijkÞ and s2Bijk �
s2ijk

nijk�1 v
2
nijk�1

Compute qABBiji0j0 using (1.15) for all pairs ðij, i0j0Þ where ij 6¼ i0j0:

Take ql to be the max of the qABBiji0j0 for the lth run.

(end loop)
qABa is the 1� a percentile of the simulated distribution of q. Reject H0 : ABij ¼ ABi0j0 if the

test statistic (1.14) is greater than qABa :

4.3. MCP simulations

Datasets were generated under model (4) for simulating MCP for levels of Factor A and under
model (6) for MCP for levels of the AB interaction term, assuming EY¼ 0 for all factor levels
(such that H0 : Ai ¼ Ai0 is true or H0 : ABij ¼ ABi0j0 is true, respectively). For both simulations,
the sample mean and sample variance vectors ð�y111,�y112, :::,�yabcÞ, and ðs2111, s2112, :::s2abcÞ were cal-
culated from each simulated dataset. The simulations were performed with a ¼ 3, b ¼ 2, c ¼ 4 to
form 24 combinations, and the population variances and sample size scenarios as:

r21 ¼ ð1, 1, :::, 1Þ, r22 ¼ ð0:1, 0:1, :::, 0:1, 0:5, 0:5, :::, 0:5Þ, r23 ¼ ð1, 1, :::, 1, 0:5, 0:5, :::, 0:5Þ,
r24 ¼ 0:1, 0:1, 0:1, 0:2, 0:2, 0:2, 0:3, 0:3, 0:3, 0:4, 0:4, 0:4, 0:5, 0:5, 0:5, 0:6, 0:6, 0:6,ð
0:7, 0:7, 0:7, 1, 1, 1Þ, r25ð0:1, 0:1, 0:1, 0:3, 0:3, 0:3, 0:9, 0:9, 0:9, 0:4, 0:4, 0:4, 0:7,

0:7, 0:7, 0:5, 0:5, 0:5, 0:6, 0:6, 0:6, 1, 1, 1Þ, r26 ¼ 0:01, 0:01, 0:01, 0:1, 0:1, 0:1,ð
0:1, 0:1, 0:1, 0:1, 0:1, 0:1, 0:1, 0:1, 0:1, 0:1, 0:1, 0:1, 0:1, 0:1, 0:1, 1, 1, 1Þ,
and n1 ¼ ð5, 5, :::, 5Þ, n2 ¼ ð10, 10, :::, 10Þ, n3 ¼ 3, 3, 3, 3, 3, 3, 4, 4, 4, 5, 5,ð
5, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, 6, 6Þ, n4 ¼ 4, 4, 4, 6, 6, 6, 8, 8, 8, 12, 12, 12, 14,ð
14, 14, 16, 16, 16, 18, 18, 18, 20, 20, 20Þ:
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Each scenario was simulated for a ¼ 0:05 and a ¼ 0:1: For the factor A MCP simulation,
Tukey’s test was also performed on factor A for each dataset using the ‘TukeyHSD’ function in R,
and on factor AB for the simulation for the AB term MCP. The smallest p-value for Tukey’s test
was checked and the test was considered to reject if this p-value was less than a. For the algo-
rithms, the 1� a percentile was taken from the simulated PB distribution, and the test was con-
sidered to reject if the test statistic for the simulated dataset was greater than this percentile. The
proportions rejected out of the 2500 datasets were calculated for both the algorithm and Tukey’s
test, and shown in Table 5 for the factor A MCP simulation and Table 6 for the AB simulation.

5. Discussion

As shown in Table 1, under equal variances and equal sample sizes, the F-test and the algorithm
perform similarly, with overall p-values near the nominal level. In particular, with equal variances
for all groups (r21), both tests are near the nominal level for all simulated sample sizes. However,
for the other simulated (unequal) variances, the F-test begins to over-reject or under-reject the
null hypothesis for those sample sizes with unbalanced data (n3 and n4).

For r22, r
2
4, r

2
5, and r26, the F-test rejects the null hypothesis less often than would be expected

when we have unbalanced data, indicating the F-statistic is artificially small due to the pooled
variance estimate being artificially large. This is particularly true for n4, where the largest group
size has the largest variance (recall that calculating an estimate of pooled variance involves
weighting each sample variance by the sample sizes of the respective groups). On the other hand,

Table 5. Results of simulations for testing multiple comparisons for factor A.Numbers in the table are simulated p-values. We
consider four different sizes and six different variance vectors as shown in Section 4.3, with the two different a levels shown.

a ¼ 0:05 a ¼ 0:1

r21 Tukey Algorithm Tukey Algorithm
n1 0.0564 0.0544 0.0968 0.0972
n2 0.0448 0.0432 0.0972 0.1012
n3 0.0584 0.0512 0.0892 0.0864
n4 0.0488 0.0524 0.1016 0.1040

r22 Tukey Algorithm Tukey Algorithm
n1 0.0564 0.0444 0.1028 0.0900
n2 0.0564 0.0508 0.1008 0.0948
n3 0.0332 0.0496 0.0616 0.0936
n4 0.0240 0.0584 0.0428 0.0860

r23 Tukey Algorithm Tukey Algorithm
n1 0.0476 0.0412 0.0944 0.0880
n2 0.0544 0.0476 0.0996 0.0972
n3 0.0680 0.0484 0.1220 0.0916
n4 0.0792 0.0472 0.1512 0.1088

r24 Tukey Algorithm Tukey Algorithm
n1 0.0580 0.0480 0.1008 0.0952
n2 0.0564 0.0476 0.1008 0.0984
n3 0.0340 0.0536 0.0732 0.0976
n4 0.0224 0.0472 0.0520 0.1004

r25 Tukey Algorithm Tukey Algorithm
n1 0.0524 0.0496 0.1004 0.0980
n2 0.0496 0.0536 0.0980 0.0968
n3 0.0448 0.0520 0.0800 0.0940
n4 0.0292 0.0444 0.0656 0.0956

r26 Tukey Algorithm Tukey Algorithm
n1 0.0736 0.0544 0.1100 0.0912
n2 0.0612 0.0508 0.1084 0.0956
n3 0.0276 0.0480 0.0616 0.0968
n4 0.0180 0.0508 0.0368 0.1000
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for r23, the F-test rejects the null hypothesis more often than expected when we also have (pro-
nounced) unbalanced data. In this case, the F-statistic is artificially large due to the pooled vari-
ance estimate being artificially small. Again, this is true for n4, where the largest group size has a
smaller variance. This is not as pronounced for n3; although this group has unequal sample sizes
they are closer together than for n4: These trends appear to be true both for a ¼ 0:05 and a ¼
0:1: In these cases where the F-test is either too conservative or too liberal, the algorithm still
appears to give satisfactory results, rejecting the null hypothesis with a proportion close to the
nominal level a.

The simulation results for testing the BC (and ABC) interaction were similar to those for test-
ing the ABC interaction. Again, under equal variances and equal sample sizes, the F-test and the
algorithm perform similarly, with overall p-values near the nominal level. However, for the other
simulated (unequal) variances, the F-test begins to over-reject or under-reject the null hypothesis
for those sample sizes with unbalanced data (n3 and n4). For r22, r24, r

2
5, and r26, the F-test

rejects the null hypothesis less often than would be expected when we have unbalanced data.
Also similar to the results for testing the three-way interaction, for r23, the F-test rejects the null
hypothesis more often than expected when we also have (pronounced) unbalanced data, both for
a ¼ 0:05 and a ¼ 0:1: Again, in all simulated cases, the proportion rejected using the algorithm
was fairly close to the nominal level. The results shown in Tables 3 and 4, with the F-test reject-
ing more or less often than the nominal level in cases with both unequal variances and unbal-
anced data, while the algorithm performs satisfactorily in each case, are similar to results of the

Table 6. Results of simulations for testing multiple comparisons for levels of AB.Numbers in the table are simulated p-values.
We consider four different sizes and six different variance vectors as shown in Section 4.3, with the two different a lev-
els shown.

a ¼ 0:05 a ¼ 0:1

r21 Tukey Algorithm Tukey Algorithm
n1 0.0476 0.0368 0.0972 0.0888
n2 0.0524 0.0452 0.0940 0.0932
n3 0.0456 0.0432 0.1008 0.0784
n4 0.0452 0.0444 0.1092 0.1044

r22 Tukey Algorithm Tukey Algorithm
n1 0.0768 0.0420 0.1376 0.0920
n2 0.0892 0.0500 0.1472 0.1020
n3 0.0552 0.0408 0.0988 0.0888
n4 0.0416 0.0508 0.0732 0.0944

r23 Tukey Algorithm Tukey Algorithm
n1 0.0456 0.0372 0.1012 0.0900
n2 0.0592 0.0504 0.1004 0.0920
n3 0.0696 0.0376 0.1308 0.0804
n4 0.1028 0.0420 0.1624 0.0900

r24 Tukey Algorithm Tukey Algorithm
n1 0.0792 0.0460 0.1192 0.0936
n2 0.0724 0.0456 0.1228 0.0820
n3 0.0484 0.0388 0.0852 0.0896
n4 0.0236 0.0488 0.0540 0.0936

r25 Tukey Algorithm Tukey Algorithm
n1 0.0660 0.0468 0.1232 0.0980
n2 0.0736 0.0560 0.1052 0.0952
n3 0.0516 0.0456 0.0844 0.0796
n4 0.0368 0.0500 0.0752 0.0976

r26 Tukey Algorithm Tukey Algorithm
n1 0.1148 0.0400 0.1500 0.0856
n2 0.0936 0.0464 0.1680 0.0996
n3 0.0572 0.0384 0.0852 0.1012
n4 0.0368 0.0448 0.0564 0.0920
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simulations shown in Tables 1 and 2. While we illustrated this method with a three-way ANOVA
model, the test statistic ~SI for each term in the model takes on the same form. Thus, we expect
higher-way models to follow the same pattern, though interpretation becomes more complicated
with additional factors.

Table 5 shows the results for comparing our MCP PB method (Algorithm 5 - pairwise
comparisons of the levels of factor A) to Tukey’s test. As with the other simulations, the simu-
lated p-values are near the specified a level for both methods when we have homoscedasticity
and balanced data (r21 and n1 or n2). However, in cases with both unequal variances and unbal-
anced data, the simulated p-values for the algorithm are generally near the specified a level,
whereas those for Tukey’s test tend to be too conservative. An exception to this is with r23 and
n4, where Tukey’s test rejected H0 more often than the nominal level. Similarly to our compari-
sons between Algorithms 1-4 and the F-test, for r23 and n4, smaller variances correspond to larger
sample sizes, so the pooled variance estimate used for Tukey’s test becomes artificially small, and
thus the test statistic artificially large. Table 6 shows the results for comparing our MCP PB
method (Algorithm 6 - pairwise comparisons of the levels of the AB interaction term) to the
analogous version of Tukey’s test. These results are very similar to the results shown in Table 5,
the multiple comparisons of the levels of A.

In this research, we looked at the three-factor heteANOVA problem with unbalanced data,
including MCP’s analogous to Tukey’s test from a parametric bootstrap view and proposed
applicable PB tests. Simulation results show that traditional tests and the PB tests give acceptable
results under the equal variance assumption. Additionally, when data are balanced, the classical
F-tests and MCP’s perform satisfactorily in most heteroscedastic cases. However, for heteANOVA
problems when the equal variance assumption is violated and data are unbalanced, the traditional
tests no longer provide reasonable nominal levels, while the proposed PB methods works well
and is easy to implement.

Some limitations of the proposed PB methods are that they still require the normality assump-
tion, so if a particular dataset violates both the normality and homoscedasticity assumptions, a
transformation may still be needed. Additionally, as discussed in the introduction and in
(Christensen 2016), we may need to exercise caution when making practical decisions based on
differences in means between groups with unequal variances, carefully considering implications
for the practical issue being studied. In this study, we only examined two levels for each factor in
our simulations for Algorithms 1-4, for simplicity, so further simulations with additional levels
may be warranted. Despite these limitations, the proposed PB tests provide viable methods for
dealing with multi-factor heteANOVA problems and MCP. Further areas for research may
include extending the procedures to more complicated models, such as additional factors/levels or
more complex designed experiments.

Disclosure statement

No potential conflict of interest was reported by the authors.

Appendix-R code for Algorithms 1–6

#Algorithm 1
alg.ABC <- function(ns, ybars, s2, a, b, c, L){
S <- diag(s2/ns) ##make S matrix

##make terms for X matrix
J.abc <- rep(1, a�b�c)
I.a <- diag(a)
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I.b <- diag(b)
I.c <- diag(c)
J.bc <- rep(1, b�c)
J.a <- rep(1, a)
J.b <- rep(1,b)
J.c <- rep(1,c)
I.ab <- diag(a�b)
I.bc <- diag(b�c)
X <- as.matrix(cbind(
J.abc, kronecker(I.a, J.bc), kronecker(J.a, kronecker(I.b, J.c)), kronecker(J.
a, kronecker(J.b, I.c)),
kronecker(I.ab, J.c), kronecker(I.a, kronecker(J.b, I.c)), kronecker(J.a, I.
bc)))

#test statistic
library(MASS)
SI <- t(ybars)%�%solve(S)%�%ybars -
t(ybars)%�%solve(S)%�%X%�%ginv(t(X)%�%solve(S)%�%X)%�%t(X)%�%solve
(S)%�%ybars

##Q, counts how many times test stat is less than PB pivot variable
Q <- NULL
for(j in 1:L) {
ybar.B <- NULL
S2B <-NULL
for (i in 1:length(ybars)) {
ybar.B[i]<-rnorm(1,mean=0, sd=sqrt(s2/ns)[i])##create bootstrap mean vector
S2B[i] <- rchisq(1, df=(ns[i]-1)) � s2[i]/(ns[i]-1) ##create bootstrap var-
iances vector
}
SB <- diag(S2B/ns)

##PB variable:
SIB <- t(ybar.B)%�%solve(SB)%�%ybar.B -
t(ybar.B)%�%solve(SB)%�%X%�%ginv(t(X)%�%solve(SB)%�%X)%�%t(X)%�%solve
(SB)%�%ybar.B
Q[j] <- ifelse(SIB>SI, 1, 0)
}
return(sum(Q)/length(Q)) ##p-value
}

############################
#Algorithm 2
alg.BC <- function(ns, ybars, s2, a, b, c, L){
S <- diag(s2/ns) ##make S matrix

##make terms for X matrix
J.abc <- rep(1, a�b�c)
I.a <- diag(a)
I.b <- diag(b)
I.c <- diag(c)
J.bc <- rep(1, b�c)
J.a <- rep(1, a)
J.b <- rep(1,b)
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J.c <- rep(1,c)
I.ab <- diag(a�b)
I.bc <- diag(b�c)

X <- as.matrix(cbind(
J.abc, kronecker(I.a, J.bc), kronecker(J.a, kronecker(I.b, J.c)), kronecker(J.
a, kronecker(J.b, I.c)),
kronecker(I.ab, J.c), kronecker(I.a, kronecker(J.b, I.c))))

#test statistic
library(MASS)
SI <- t(ybars)%�%solve(S)%�%ybars -
t(ybars)%�%solve(S)%�%X%�%ginv(t(X)%�%solve(S)%�%X)%�%t(X)%�%solve
(S)%�%ybars

##Q, counts how many times test stat is less than PB pivot variable
Q <- NULL
for(j in 1:L) {
ybar.B <- NULL
S2B <-NULL
for (i in 1:length(ybars)) {
ybar.B[i]<-rnorm(1,mean=0, sd=sqrt(s2/ns)[i])##create bootstrap mean vector
S2B[i] <- rchisq(1, df=(ns[i]-1)) � s2[i]/(ns[i]-1) ##create bootstrap var-
iances vector
}
SB <- diag(S2B/ns)

##PB variable:
SIB <- t(ybar.B)%�%solve(SB)%�%ybar.B -
t(ybar.B)%�%solve(SB)%�%X%�%ginv(t(X)%�%solve(SB)%�%X)%�%t(X)%�%solve
(SB)%�%ybar.B
Q[j] <- ifelse(SIB>SI, 1, 0)
}
return(sum(Q)/length(Q)) ##p-value
}

############################
#Algorithm 3
alg.C <- function(ns, ybars, s2, a, b, c, L){
S <- diag(s2/ns) ##make S matrix

##make terms for X matrix
J.abc <- rep(1, a�b�c)
I.a <- diag(a)
I.b <- diag(b)
I.c <- diag(c)
J.bc <- rep(1, b�c)
J.a <- rep(1, a)
J.b <- rep(1,b)
J.c <- rep(1,c)
I.ab <- diag(a�b)
I.bc <- diag(b�c)
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X <- as.matrix(cbind (J.abc, kronecker(I.a, J.bc), kronecker(J.a, kronecker(I.
b, J.c))))

#test statistic
library(MASS)
SI <- t(ybars)%�%solve(S)%�%ybars -
t(ybars)%�%solve(S)%�%X%�%ginv(t(X)%�%solve(S)%�%X)%�%t(X)%�%solve
(S)%�%ybars

##Q, counts how many times test stat is less than PB pivot variable
Q <- NULL
for(j in 1:L) {
ybar.B <- NULL
S2B <-NULL
for (i in 1:length(ybars)) {
ybar.B[i]<-rnorm(1,mean=0,sd=sqrt(s2/ns)[i])##createbootstrapmeanvector
S2B[i] <- rchisq(1, df=(ns[i]-1)) � s2[i]/(ns[i]-1) ##create bootstrap var-
iances vector
}
SB <- diag(S2B/ns)

##PB variable:
SIB <- t(ybar.B)%�%solve(SB)%�%ybar.B -
t(ybar.B)%�%solve(SB)%�%X%�%ginv(t(X)%�%solve(SB)%�%X)%�%t(X)%�%solve
(SB)%�%ybar.B

Q[j] <- ifelse(SIB>SI, 1, 0)
}
return(sum(Q)/length(Q)) ##p-value
}

############################
#Algorithm 4
alg.C.AB <- function(ns, ybars, s2, a, b, c, L){
S <- diag(s2/ns) ##make S matrix

##make terms for X matrix
J.abc <- rep(1, a�b�c)
I.a <- diag(a)
I.b <- diag(b)
I.c <- diag(c)
J.bc <- rep(1, b�c)
J.a <- rep(1, a)
J.b <- rep(1,b)
J.c <- rep(1,c)
I.ab <- diag(a�b)
I.bc <- diag(b�c)

X <- as.matrix(cbind (J.abc, kronecker(I.a, J.bc), kronecker(J.a, kronecker(I.
b, J.c)), kronecker(I.ab, J.c)) )

#test statistic
library(MASS)
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SI <- t(ybars)%�%solve(S)%�%ybars -
t(ybars)%�%solve(S)%�%X%�%ginv(t(X)%�%solve(S)%�%X)%�%t(X)%�%solve
(S)%�%ybars

##Q, counts how many times test stat is less than PB pivot variable
Q <- NULL
for(j in 1:L) {
ybar.B <- NULL
S2B <-NULL
for (i in 1:length(ybars)) {
ybar.B[i]<-rnorm(1,mean=0,sd=sqrt(s2/ns)[i])##createbootstrapmeanvector
S2B[i] <- rchisq(1, df=(ns[i]-1)) � s2[i]/(ns[i]-1) ##create bootstrap var-
iances vector
}
SB <- diag(S2B/ns)

##PB variable:
SIB <- t(ybar.B)%�%solve(SB)%�%ybar.B -
t(ybar.B)%�%solve(SB)%�%X%�%ginv(t(X)%�%solve(SB)%�%X)%�%t(X)%�%solve
(SB)%�%ybar.B

Q[j] <- ifelse(SIB>SI, 1, 0)
}
return(sum(Q)/length(Q)) ##p-value
}

############################
#Algorithm 5
Q.test.dist <- function(L = 5000, ns, means, s2, alpha = 0.05, a, b, c){
##Calculate weights for actual test stat and the PB pivot variable
library(plyr)
ns.ind <- arrange(expand.grid(A = 1:a, B = 1:b, C = 1:c), A,B)
n.grp <- array(0, c(a,b,c))
for(i in 1:a){
for(j in 1:b){
for(k in 1:c)
n.grp[i,j,k] = ns[which(ns.ind$A==i & ns.ind$B==j & ns.ind$C==k)]
}
}
v.weight <- matrix(0, b, c)
for(j in 1:b){
for(k in 1:c){
v.weight[j,k] <- sum(n.grp[,j,k])
}
}
vjk <- as.vector(t(v.weight/sum(ns))) ##the weights in order of the j,k index

#calculate factor level estimated means (using the weights) for the test
statistic
ybari <- rep(0,a)
ni <- rep(0,a)
var.YA <- rep(0, a)
ni[1] <- sum(ns[1:(b�c)])
ybari[1] <- sum(vjk�means[1:(b�c)])
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var.YA[1] <- sum(vjk^2 � (s2/ns)[1:(b�c)])
for(i in 2:a){
ybari[i] <- sum(vjk�means[(b�c�(i-1)1):(i�b�c)])
ni[i] <- sum(ns[(b�c�(i-1)1):(i�b�c)])
var.YA[i] <- sum(vjk^2 � (s2/ns)[(b�c�(i-1)1):(i�b�c)])
}

Qtest.mat <- matrix(0,a,a)
#we just fill in upper triangular part
for (r in 1: (a -1))
for (s in (r 1):(a)){
Qtest.mat[r,s]<- abs(ybari[r] - ybari[s])/sqrt(var.YA[r] + var.YA[s])
}

Q.test <- max(Qtest.mat)

##calculate the parts of the PB pivot variable
Q <- rep(0, L)
for(i in 1:L) {##calculate the bootstrap means and sample variances

y.B <- rep(0, length(means))
s2.B <- rep(0, length(s2))

for (j in 1:length(means)){
y.B[j]<- rnorm(1, 0, sqrt(s2[j]/ns[j]))
s2.B[j] <- rchisq(1, df=(ns[j]-1))�s2[j]/(ns[j]-1)
}#end the j loop

#now Q will be the PB analogy of the Q.test above. we use the same ni’s
yB.bari <- rep(0,a)
var.YBA <- rep(0, a)
yB.bari[1] <- sum(vjk�y.B[1:(b�c)])
var.YBA[1] <- sum(vjk^2 � (s2.B/ns)[1:(b�c)])
for(m in 2:a){
yB.bari[m] <- sum(vjk�y.B[(b�c�(m-1)+1):(m�b�c)])
var.YBA[m] <- sum(vjk^2 � (s2.B/ns)[(b�c�(m-1)+1):(m�b�c)])
} #end m loop

Qmat <- matrix(0,a,a)
#we just fill in upper triangular part
for (r in 1: (a -1))
for (s in (r + 1):a){
Qmat[r,s]<- abs(yB.bari[r] - yB.bari[s])/sqrt(var.YBA[r] + var.YBA[s])
}

Q[i] <- max(Qmat)
} #end i loop that has L reps
Q.crit <-quantile(Q, 1-alpha)
list(Q.crit=Q.crit, Q.test=Q.test)
}

############################
#Algorithm 6
Q.ABmc <- function(L = 5000, ns, means, s2, alpha = 0.05, a, b, c){
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##get the ns, means and s2 in an array so we can identify the indices
library(plyr)
ns.ind <- arrange(expand.grid(A = 1:a, B = 1:b, C = 1:c), A,B)
n.grp <- array(0, c(a,b,c))
s2.grp <- array(0, c(a,b,c))
means.grp <- array(0, c(a,b,c))
for(i in 1:a){

for(j in 1:b){
for(k in 1:c){

n.grp[i,j,k] = ns[which(ns.ind$A==i & ns.ind$B==j & ns.ind$C==k)]
s2.grp[i,j,k] = s2[which(ns.ind$A==i & ns.ind$B==j & ns.ind$C==k)]
means.grp[i,j,k]=means[which(ns.ind$A==i&ns.ind$B==j&ns.ind$C==k)]

}
}

}

##Calculate weights vk for actual test stat and the PB pivot variable
vk <- rep(0, c)
for(k in 1:c){

vk[k] <- sum(n.grp[,,k])
}
v.wt.k <- vk/sum(ns) ##the weights in order of the k index
#calculate estimated means (using the weights) for each level of AB for the test
statistic
ybarij <- matrix(0, a, b)
var.YAB <- matrix(0, a, b)
for(i in 1:a){

for(j in 1:b){
ybarij[i,j] <- sum(v.wt.k�means.grp[i,j,])
var.YAB[i,j] <- sum(v.wt.k^2 � s2.grp[i,j,]/n.grp[i,j,])

}
}

ybarijVect <- as.vector(ybarij)
var.YABvect <- as.vector(var.YAB)

Qtest.mat <- matrix(0,a�b,a�b)
#we just fill in upper triangular part
for (r in 1: ((a�b) -1))
for (s in (r + 1):(a�b)){
Qtest.mat[r,s]<- abs(ybarijVect[r] - ybarijVect[s])/sqrt(var.YABvect[r] +
var.YABvect[s])
}

Q.test <- max(Qtest.mat)

##calculate the parts of the PB pivot variable
Q <- rep(0, L)
for(l in 1:L) {##calculate the bootstrap means and sample variances

y.B <- rep(0, length(means))
s2.B <- rep(0, length(s2))

for (j in 1:length(means)){
y.B[j]<- rnorm(1, 0, sqrt(s2[j]/ns[j]))
s2.B[j] <- rchisq(1, df=(ns[j]-1))�s2[j]/(ns[j]-1)
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}#end the j loop

#put the bootstrap means and s2’s in indexed arrays
s2B.grp <- array(0, c(a,b,c))
meansB.grp <- array(0, c(a,b,c))
for(i in 1:a){

for(j in 1:b){
for(k in 1:c){

s2B.grp[i,j,k]=s2.B[which(ns.ind$A==i& ns.ind$B==j& ns.ind$C==k)]
meansB.grp[i,j,k]=y.B[which(ns.ind$A==i&ns.ind$B==j&ns.ind$C==k)]
n.grp[i,j,k] = ns[which(ns.ind$A==i & ns.ind$B==j & ns.ind$C==k)]

}
}

}
#now Q will be the PB analogy of the Q.test above, use same weights
yB.barij <- matrix(0, a, b)
varB.YAB <- matrix(0, a, b)

for(i in 1:a){
for(j in 1:b){

yB.barij[i,j] <- sum(v.wt.k�meansB.grp[i,j,])
varB.YAB[i,j] <- sum(v.wt.k^2 � s2B.grp[i,j,]/n.grp[i,j,])

}
}

yB.barijVect <- as.vector(yB.barij)
varB.YABvect <- as.vector(varB.YAB)

Qmat <- matrix(0,a�b,a�b)
#we just fill in upper triangular part
for (r in 1: ((a�b) -1))
for (s in (r + 1):(a�b)){
Qmat[r,s]<- abs(yB.barijVect[r] - yB.barijVect[s])/sqrt(varB.YABvect[r] +
varB.YABvect[s])
}

Q[l] <- max(Qmat)
} #end l loop that has L reps

Q.crit <-quantile(Q, 1-alpha)
list(Q.crit=Q.crit, Q.test=Q.test)

}
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