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Abstract In this paper, we develop a fast algorithm for a smoothing spline estimator
in multivariate regression. To accomplish this, we employ general concepts associ-
ated with roughness penalty methods in conjunction with the theory of radial basis
functions and reproducing kernel Hilbert spaces. It is shown that through the use of
compactly supported radial basis functions it becomes possible to recover the band
structured matrix feature of univariate spline smoothing and thereby obtain a fast com-
putational algorithm. Given n data points in R2, the new algorithm has complexity
O(n2) compared to O(n3), the order for the thin plate multivariate smoothing splines.

Keywords Computational complexity · Fourier transform · Generalized cross
validation · Nonparametric regression · Reproducing kernel Hilbert space

1 Introduction

Spline smoothing is an important statistical tool for nonparametric function estima-
tion. Whittaker (1923) first used smoothing splines for graduating data. Subsequently,
there have been numerous papers and books on splines, many of them focusing on
numerical computation rather than statistical properties (Ahlberg et al. 1967 and De
Boor 1978). The recognition of spline smoothing as a statistical tool is largely from
Wahba’s efforts in the late 1980’s: Wahba and Wendelberger (1980); Wahba (1981);
Villalobos and Wahba (1983, 1987). Books on the spline smoothing include those by
Eubank (1988), Wahba (1990), Green and Silverman (1994) and Gu (2002).

The statistical properties of splines are now fairly well understood and we have seen
enormous applications of smoothing splines in myriad different disciplines during the
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past twenty years. Smoothing splines have many attractive properties when compared
with other nonparametric function estimation methods. In particular, smoothing
splines are the most efficient method from a computational perspective. This property
is a consequence of the band matrices that arise in the normal equation system for
the smoother. Anselone and Laurent (1968), Reinsch (1971), Lyche and Schumaker
(1973) and De Boor (1978) developed some different but equivalent (from a fit per-
spective) formulations that produce and lead to some fast algorithms for evaluation of
smoothing spline fits.

There have been many attempts to extend smoothing splines into higher dimen-
sional settings (Chui 1988, Berlinet and Thomas-Agnan 2004). Thin plate smoothing
splines (see Duchon 1977 and Wahba and Wendelberger 1980) are arguably the most
popular such method. However, the currently popular generalized smoothing splines
including thin plate splines that are used in high dimensional settings have complexity
O(n3) for samples of size n, which makes them computationally slow and difficult to
use with large data sets. The research reported in this paper is to obtain a smoothing
spline for use in higher dimensional settings with comparable estimation accuracy
while being more computationally efficient.

Our solution to the multivariate computation problem relies on introducing band
structure back into the normal equations for smoothing spline estimators. This feature
is missing from the thin plate spline formulation because the associated basis func-
tions have global support. Consequently, we propose an alternative formulation for the
smoothing problem using a different penalty that leads to basis functions having local
support. The resulting basis functions are the compactly supported, positive definite,
radial basis functions that give rise to the title.

This paper is organized as follows. In Sects. 2 and 3, we review compactly sup-
ported, positive definite, radial basis functions, their reproducing kernel Hilbert spaces
(RKHS) and multivariate smoothing splines using compactly supported, positive defi-
nite, radial basis functions. A corresponding fast computational algorithm is proposed
in Sect. 4 and results from two computational studies are reported in Sect. 5. Finally,
Sect. 6 gives the conclusion and future research.

2 Compactly supported, positive definite, radial basis functions
and their reproducing kernel Hilbert space

In general, a function Φ : Rd → R is said to be radial if there exists a function
ψ : [0,∞) → R such that Φ(t) = ψ(||t||) for all t ∈ Rd with || · || the Euclidian
norm on Rd . The most important properties associated with our problem concern
whether radial functions are positive definite and compactly supported. In this latter
regard, a function is compactly supported if it vanishes outside of some compact subset
of Rd .

A function Φ : Rd → R is called positive definite if for all n ∈ N , the set of
all natural numbers, all sets of pairwise distinct centers {t1, . . . , tn} ⊂ Rd and all
α ∈ Rn \ {0}, the quadratic form

∑n
j=1

∑n
k=1 α jαkΦ(t j − tk) is positive. We also call

a univariate function ψ : [0,∞) → R positive definite on Rd if the corresponding
multivariate function Φ(t) = ψ(||t||) for all t ∈ Rd , is positive definite.
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Smoothing splines 575

In the case of a radial function Φ(·) = ψ(|| · ||), positive definiteness has the con-
sequence that the interpolation matrix K = {Φ(t j − tk)}1≤ j, k≤n is positive definite
if the function Φ is positive definite. Furthermore, if we choose a set of pairwise
distinct centers {t1, . . . , tn} ⊂ Rd , we will have a set of functions {Φ(· − t1),Φ(· −
t2), . . . , Φ(· − tn)} which are linearly independent with dimension n.

Some useful lemmas concerning radial functions are provided by the following.
Lemma 1 can be found in Cressie (1993). Lemma 2 can be found in Schoenberg
(1938). Lemma 3 can be found in Thomas-Agnan (1991) as a special case.

Lemma 1 If the function Φ is positive definite on Rd , it is also positive definite on
Rk with k ≤ d.

Lemma 2 If the functionΦ is positive definite in all dimensions, it must be completely
monotonic and, hence, nonvanishing.

We are most interested in functions that are compactly supported, positive definite
and radial for Rd . Such functions do, in fact, exist and a framework for producing com-
pactly supported radial basis functions has been developed by Wu (1995), Wendland
(1995) and Buhmann (1998, 2000). In this paper we focus on Wendland functions.

Wendland (2002) shows how to obtain compactly supported, positive definite, radial
basis functions ψd,k that are of minimal degree k with respect to a given dimension d.
He shows the functions ψd,k are positive definite on Rd and are of the form

ψd,k(r) =
{

pd,k(r), if 0 ≤ r ≤ 1,
0, if 1 < r,

(1)

with a univariate polynomial pd,k of degree � d
2 � + 3k + 1, where �.� is the largest

integer function. If we write pd,k(r) = ∑l+2k
j=0 d(l)j,kr j with l = � d

2 � + k + 1, the
coefficients can be computed recursively for 0 ≤ s ≤ k − 1 via

d(l)j,0 = (−1) j , 0 ≤ j ≤ l,

d(l)0,s+1 =
l+2s∑

j=0

d(l)j,s

j + 2
, d(l)=0

1,s+1s ≥ 0,

d(l)j,s+1 = −d(l)j−2,s

j
s ≥ 0, 2 ≤ j ≤ l + 2s + 2.

Wendland (2002) shows that Φd,k(t) = ψd,k(||t||) has strictly positive Fourier
transform except when d = 1 and k = 0, in which case the Fourier transform is
nonnegative and not identically zero. This property has the following consequence:

Lemma 3 Let Φ be a radial basis function with strictly positive Fourier transform,
then there is an associated reproducing kernel Hilbert space with the inner product
( f, g) = J ( f, g) = ∫

Rd W (|k|)2 f̂ (k)ĝ(k)dk, where f̂ (k), ĝ(k) and Φ̂d,k are the

Fourier transform of f , g and Φd,k respectively and W (|k|)2 = 1/Φ̂d,k(k).
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3 Smoothing splines in higher dimensions

Consider the multivariate regression model

yi = μ(ti )+ εi , i = 1, 2, . . . , n, (2)

where {εi } is a sequence of uncorrelated random variables with E(εi ) = 0 and E(ε2
i ) =

σ 2,μ(·) is an unknown, smooth, regression curve and ti ∈ Rd for all i . Data was fitted
with a variant of the spline smoothing paradigm that results in an estimator of the form

μλ(t) =
n∑

i=1

ciψ(||t − ti ||), (3)

where ψ(r) is a compactly supported, positive definite, radial basis function. Specifi-
cally, Wendland’s functions discussed in Sect. 2 have the requisite properties and are
the ones we employ in our numerical work.

LetΦ be a radial basis function with strictly positive Fourier transform, the smooth-
ing spline in (3) is obtained by minimizing

1

n

n∑

i=1

(yi − f (ti ))
2 + λ

∫

Rd

W (|k|)2| f̂ (k)|2dk (4)

over all function f in the reproducing kernel Hilbert space generated by Φ from
Lemma 3. The first term in (4) is the residual sum of squares which is a standard mea-
sure of goodness-of-fit for the data. The second term in (4) is a measure of smoothness
as discussed in Sect. 2.

The following result characterizes the form of the minimizer of (4). Its proof can
be obtained by arguments similar to those in Wahba (1990) or found in Berlinet and
Thomas-Agnan (2004).

Let K = {Φ(t j − tk)}1≤ j,k≤n = {ψ(||t j − tk ||)}1≤ j,k≤n . The unique minimizer of
(4) is of the form (3) with c = (c1, . . . , cn)

T being the unique solution of the following
system

(K + λI)d = y, (5)

where y = (y1, . . . , yn) is the response vector and I is the identity matrix. The
smoothing spline fitted values at the t ordinates are

μλ = K(K + λI)−1y. (6)

4 A fast computational algorithm

In this section, we discuss how the compact support property of radial basis functions
such as those developed by Wendland (2002) can be exploited to develop an efficient

123



Smoothing splines 577

method for solving (5). Thus, we assume in what follows that ψ(r) = 0 if |r | > D
for some constant D.

4.1 Ordered knots and band structure

In the univariate case it is trivial to order the {ti }n
i=1 when they are distinct. However,

in higher dimensional settings this step could be complicated. The goal of ordering is
to organize the t ordinates in such a way that the interpolation matrix is banded. The
approach we take is motivated by the work of Baxter et al. (1994). Alternative formu-
lations are possible using results from sparse matrix theory by Gibbs et al. (1976).

Theorem 1 Consider n points (xi1,i2,...,id ) on a grid in Rd , where i1, i2, . . . , id =
1, 2, . . . , ñ with n = ñd . Now take (tk)

n
k=1 to be the set of ordered points in Rd defined

by

t1 = x1,1,...,1, t2 = x1,1,...,2, . . . , tñ = x1,1,...,ñ,

tñ+1 = x1,1,...,2,1, tñ+2 = x1,1,...,2,2, . . . , t2ñ = x1,1,...,2,ñ,

. . .

t(ñ−1)∗ñ+1 = x1,1,...,ñ,1, t(ñ−1)∗ñ+2 = x1,1,...,ñ,2, . . . , tñ∗ñ = x1,1,...,ñ,ñ,

tñ∗ñ+1 = x1,1,...,2,1,1, tñ∗ñ+2 = x1,1,...,2,1,2, . . . , tñ∗ñ+ñ = x1,1,...,2,1,ñ,

. . .

tñ∗(ñd−1−1)+1 = xñ,ñ,...,ñ,1, tñ∗(ñd−1−1)+2 = xñ,ñ,...,ñ,2, . . . , tñd = xñ,ñ,...,ñ,ñ .

Then, (tk)
n
k=1 is ordered in such a way that K = (

Φ(ti − t j )
)n

i, j=1 is a banded,
positive definite, symmetric matrix if Φ is a positive definite function with compact
support. Let C = �D�, i be an integer and 0 ≤ i < ñ. Then the bandwidth is
2 ∗ (C ∗ ñd−1 + i ∗ ñd−2)+ 1, if

√
C2 + i2 ≤ D <

√
C2 + (i + 1)2 with C = �D�.

Proof Consider the two dimensional case. Given (xi j )
ñ
i, j=1 in R2 with xi j =

(i, j) for all i, j = 1, 2, . . . , ñ, let n = (ñ)2 and (tk)
n
k=1 be the set of ordered points

in R2 defined by

t1 = x11, t2 = x12, . . . , tñ = x1ñ;
tñ+1 = x21, tñ+2 = x22, . . . , t2ñ = x2ñ;

. . .

t(ñ−1)∗ñ+1 = xñ1, t(ñ−1)∗ñ+2 = xñ2, . . . , tñ∗ñ = xññ .

If Φ is a positive definite function with compact support, K = (
Φ(ti − t j )

)n
i, j=1 is

a banded, positive definite and symmetric matrix. The bandwidth is 2 ∗ (C ∗ ñ +
i)+ 1, if

√
C2 + i2 ≤ D <

√
C2 + (i + 1)2, where i is an integer, 0 ≤ i < ñ and

C = �D�.
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Fig. 1 Compact support in R2 with equally spaced grid

In terms of the above formulation we have points

t( j−1)∗ñ+k = ( j, k) for j = 1, . . . , ñ; k = 1, . . . , ñ.

So, Φ(t( j−1)∗ñ+k − t( j ′−1)∗ñ+k′) will vanish if

( j − j ′)2 + (k − k′)2 > D2.

Figure 1 illustrates the general situation. For the fixed center t( j−1)∗ñ+k = ( j, k),
t( j−1+C)∗ñ+k = ( j + C, k) is within the support and t( j+C)∗ñ+k = ( j + C + 1, k) is
not within the support because C ≤ D < C + 1. If the support radius is bounded by
C2 + i2 ≤ D2 < C2 + (i + 1)2, t( j−1+C)∗ñ+k+i = ( j + C, k + i) is within the sup-
port and t( j−1+C)∗ñ+k+i+1 = ( j + C, k + i + 1) is outside the support. Furthermore,
Φ(t( j−1)∗ñ+k − tl) = 0 for all l > ( j − 1 + C) ∗ ñ + k + i . There are C ∗ ñ + i + 1
points from the fixed center t( j−1)∗ñ+k = ( j, k) up to and including t( j−1+C)∗ñ+k+i =
( j + C, k + i) and symmetry gives the bandwidth of the interpolation matrix as
2 ∗ (C ∗ ñ + i)+ 1.

Proof of Theorem 1 can be obtained similarly. �

4.2 Fast algorithm for solving c and selecting λ

The band structured matrix feature derived in Theorem 1 leads to a fast algorithm for
solving c and selecting smoothing parameter λ. We use a banded cholesky to solve (5)
and Generalized cross validation method (GCV) to select λ.
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The GCV was first proposed by Craven and Wahba (1979) for use in the context of
nonparametric regression. In the 1980s there were numerous theoretical and practical
studies which demonstrated that GCV had a variety of statistical applications (Wahba
1990). The GCV criterion can be viewed as a weighted version of the cross validation
method. It can be shown that in our case the generalized cross validation criterion may
be expressed as

GCV(λ) = n
∑i=n

i=1 c2
i

(
∑i=n

i=1 hii )2
, (7)

where hii is the i th diagonal element of (K + λI)−1 and ci is the i th coefficient of the
estimator. Formula (7) shows that GCV (λ) relies on ci ’s and the diagonal elements
of (K + λI)−1. The fast algorithm we use for obtaining hii ’s is from Hutchinson and
deHoog (1985).

Now, we discuss the computational complexity of our algorithm. If the bandwidth
k is fixed, the matrix is banded and we have the banded cholesky factorization, to
solve (5), we only need O(n) operations; to solve hii ’s, we need O(n) operations
(Hutchinson and deHoog 1985). Note, in our case, if the t ordinates are on an ñd grid
(or approximately so), the bandwidth is a function of n(d−1)/d , hence the computation
is in O(n3−2/d) operations. For the R2 case we only need O(n2) operations compared
to O(n3), the order for the thin plate multivariate smoothing splines.

5 Numerical study

In this section, we provide two computational studies from which we are able to draw
some limited conclusions regarding the performance of our estimator and algorithm.
The first study concerns run time comparisons in which we want to evaluate the speed
of our algorithm relative to thin plate splines. The second experiment assesses the
effectiveness of our estimator. We will evaluate how it performs using different sizes
of compact supports and noise to signal ratios. The algorithm is implemented in C++
in both serial and parallel computing environments. Source code is available from the
author upon request. R is used to generate all the figures. The test function used and
reported is from Hickernell and Hon (1999). Other test functions or other radial basis
functions can be implemented using similar code. The author tried a couple of other
test functions and several radial basis functions but didn’t find significant difference
from the simulation study.

5.1 Run time comparisons

To obtain some insight into the computational gains that can be realized from exploiting
band structure we want to considered two types of estimators:

– New splines proposed in this paper (NS): Splines on R2 using positive definite,
compactly supported, radial basis functions

– Thin plate splines (TPS) on R2
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Fig. 2 Elapsed times of three estimators; solid line for TPS, dotted line for NS(25) and dashed line for
NS(100)

To accomplish this we proceed as follows. We compute our estimator using Wendland’s
compactly supported, positive definite, radial basis function

ψ(r) =
{
(1 − r)4(4r + 1), if 0 ≤ r ≤ 1,
0, if 1 < r.

The support radius is chosen in such a way that there are approximately 100 observa-
tions within the support of the radial basis function. The simulation study in Sect. 5.2
shows that 100 observations are needed to obtain comparable estimation accuracy
when using Wendland’s function. From our experience with univariate cubic smooth-
ing splines where five observations are within the support of the B-spline basis func-
tions, we might guess that 52 observations within the support could be a satisfactory
choice in R2. So we also investigate the case with 25 observations within the support of
the radial basis function. We use NS(100) and NS(25) to denote our estimators using
different sizes of support. The elapsed time is measured in cpu seconds at various
numbers of observations (equally spaced design within a square domain). Figure 2
explains the computational gains of our estimators compared to thin plate splines
quite well.

5.2 Performance of the smoother

To evaluate the effectiveness of the estimators in a particular case we considered the
following test function on R2 that was used by Hickernell and Hon (1999):

μ(t) = exp(−15|t − (0.5, 0)|2)+ 0.5 ∗ exp(−20|t − (−0.5, 0.25)|2)
−0.75 ∗ exp(−8|t − (−0.5,−0.5)|2). (8)
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Fig. 3 Test function
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Fig. 4 Simulated Data using the test function (8) with NSR = 0.1 and 625 observations

The function is plotted in Fig. 3 on the square [−1, 1] × [−1, 1]. We employed
this function in some small scale empirical experiments described below. Note that
our theory has been developed for an arbitrary positive definite, radial basis function.
But when we implement this algorithm, we must make a choice for the support of
the basis function. In this regard, we must be careful about the size of the support
because a small support will produce an estimator with minimal smoothness regard-
less of the choice of λ. Another important factor that will affect the performance of
the smoother is the level of noise. In this regard, we define the noise to signal ratio
(NSR) as NSR = σ/A, where A is the maximum value of the true function and σ
is the standard deviation of the random error terms that are added to the regression
function to produce our data. Figure 4 is the picture of a simulated data set using the
test function (8) with NSR = 0.1. This simulated data has 625 observations and the
domain is square shaped. Figure 5 shows the new spline using Wendland’s function
and support radius 0.5 that was fitted to the data in Fig. 4 with λ selected via GCV.

To measure the performance of the smoothers, we calculated the squared error loss
in estimating μ by

L(λ) =
∑n

i=1(μ(ti )− μλ(ti ))
2

n
.
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Fig. 5 Smoothing spline fit for data in Fig. 4
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Fig. 6 Boxplot of losses (class 1–6 for NSR = 1, class 7–12 for NSR = 0.5, class 13–18 for NSR = 0.1,
class 1, 7, 13 are losses of TPS, others are losses of NS estimators)

We generate 100 replicate random samples of size 625 for each of three NSR levels:
1, 0.5, 0.1. For each sample, we then apply a thin plate spline and a new spline with
supports D = 0.24, 0.4, 0.5, 0.6 and 0.7 respectively. Figure 6 gives a boxplot of the
losses. Class 1 to 6 are for NSR = 1, class 7 to 12 are for NSR = 0.5, class 13 to
18 are for NSR = 0.1. Class 1, 7 and 13 are losses for the thin plate spline and the
others are losses for the new spline estimators. From the plot, we see that class 1 and 4,
class 7 and 10 and class 13 and 16 perform similarly. Notice, class 4, 7 and 16 are for
D = 0.5, where the number of observations are around 100. Also notice that as the
support radius D increases, the average and sample standard deviation of the loss of
new spline estimators decreases toward the levels of those of thin plate splines. This
gives us some idea that the new spline could do as well from an estimation perspective
as a thin plate spline. As expected, the bigger the NSR, the bigger the variation of
losses. It is interesting to observe that for any NSR level the loss is very big when
D = 0.24 (class 2, 8, 14) compared with all other cases. We believe this is the situation
we mentioned previously when the support has become too small for the estimator to
actually provide a smooth fit to the data.
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Smoothing splines 583

6 Conclusions

In this paper, we develop a fast algorithm for a smoothing spline estimator in multivar-
iate regression. Given n data points in R2, the new algorithm has complexity O(n2)

compared to O(n3), the order for the thin plate multivariate smoothing splines. Two
simulation studies show that our estimator is as good as thin plate splines. Future
research may consider a complete study of the effect of different type of test func-
tions together with different type of radial basis functions on the performance of the
estimator and algorithm.
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