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Complex numbers as points in
the Argand plane

. z=a+bi
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A complex number can be represented by an expression of the form a + bi, where a and
b are real numbers and i is a symbol with the property that i* = —1. The complex num-
ber a + bi can also be represented by the ordered pair (a, b) and plotted as a point in a
plane (called the Argand plane) as in Figure 1. Thus the complex number i = 0 + 1 -iis

identified with the point (0, 1).
The real part of the complex number a + bi is the real number a and the imaginary

part is the real number b. Thus the real part of 4 — 3i is 4 and the imaginary part is —3.
Two complex numbers @ + bi and ¢ + di are equal if a = ¢ and b = d, that is, their real
parts are equal and their imaginary parts are equal. In the Argand plane the horizontal axis

is called the real axis and the vertical axis is called the imaginary axis.
The sum and difference of two complex numbers are defined by adding or subtracting

their real parts and their imaginary parts:
(@a+bi)+ (c+di)=(@+c)+ (b+d)
(@a+bi)—(c+di)=(@—c)+ ©b—d)i
For instance,
1-)+@+7)=01+4)+(-1+7i=5+6i
The product of complex numbers is defined so that the usual commutative and distributive

laws hold:
(a + bi)(c + di) = alc + di) + (bi)(c + di)

= ac + adi + bci + bdi*
Since i* = —1, this becomes
(a + bi)(c + di) = (ac — bd) + (ad + be)i
[ EXAMPLE 1
(=1 + 3i)(2 = 5i) = (1) — 5i) + 3i(2 — 5i)
=—-2+5i+6i—15(—1)=13 + 11i Em

Division of complex numbers is much like rationalizing the denominator of a rational
expression. For the complex number z = a + bi, we define its complex conjugate to be
Z =g — bi. To find the quotient of two complex numbers we multiply numerator and
denominator by the complex conjugate of the denominator.

430
FTIETF] Express the number—iﬁ in the form a + bi.
1

SOLUTION We multiply numerator and denominator by the complex conjugate of 2 + Si,
namely 2 — 5i, and we take advantage of the result of Example 1:
o hin L el b T l3+lli_l_3+ 1.
251 -5 RS 2—5]4 2245 29 ' 29

The geometric interpretation of the complex conjugate is shown in Figure 2: z is the
reflection of z in the real axis. We list some of the properties of the complex conjugate in
the following box. The proofs follow from the definition and are requested in Exercise 18.
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L | The modulus, or absolute value, |z| of a complex rpnnhcr - = a + bi is its distance
| I from the origin. From Figure 3 we see that if z = a + bi, then
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FIGURE 3 2z = (a + bi)la — bi) = a® + abi — abi — bit=a*+ b°

and so L/;_,4

ns why the division procedure in Example 2 works in general:

This explai
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Since i2 = — 1. we can think of i as a square root of —1. But notice that we also have
(—i)*=i?>= —1 and so —i is also a square root of —1. We say that i is the principal

1 = i. In general, if ¢ is any positive number, we write

square root of —1 and write v/ —
NG \/;i

With this convention, the usual derivation and formula for the roots of the quadratic equa-
tion ax> + bx + ¢ = 0 are valid even when b*> — 4ac < 0:

—b * /b* — dac

2a

D, Mo

[E7YZEE] Find the roots of the equation x* + x + 1 = 0.
SOLUTION Using the quadratic formula, we have

=1 2SR, GsliEl/~8 1 ®4Bi
2 % 5 =

2 2 2)

We observe that the solutions of the equation in Example 3 are complex conjugates of
each other. In general, the solutions of any quadratic equation ax*> + bx + ¢ = 0 \:ith real
coefficients a, b, and ¢ are always complex conjugates. (If z is real, z = z, s0 z is its OWN
conjugate.) Al

We have seen that if we allow complex numbers as solutions, then every quadratic
equation has a solution. More generally, it is true that every polynon‘nial equation

N =1
QX FoapyX + - tax+ a =0

of degree at least one has a solution among the complex numbers. This fact is known as
the Fundamental Theorem of Algebra and was proved by Gauss ¥ : ¢ ¥
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B Polar Form

We know :
ol lhflt any complex number z = ¢ + bi can be considered as a point (a, b) and that
point can be represented by polar coordinates (r, ) with r = 0. In fact,

a=rcosf b= rsinf

as in Figure 4. Therefore we have

z=a+ bi = (rcos6) + (rsin0)i

Thus we can write any complex number z in the form

z = r(cos @ + isin6)

where r=|z| = va? + b? and tan 0 =

L)
a

The angle @ is called the argument of z and we write = arg(z). Note that arg(z) is not
unique; any two arguments of z differ by an integer multiple of 277.

Write the following numbers in polar form.
(@ z=1+i (b) w=+3 —i

SOLUTION
(a) We have r = |z]| = V12 + 12 = /2 and tan 6 = 1, so we can take 0= m/4.
Therefore the polar form is

4

z= ﬁ(cos% + isin1>

(b) Here we have r = |w| = J3+1=2andtan 6= —1/4/3. Since w lies in the
fourth quadrant, we take 6 = — /6 and

o) + (7))

The numbers z and w are shown in Figure 5. [

The polar form of complex num ives insight into multiplj atk%division. Let
2z, = n(cos 8 + isin6) ' D, + isin6,)

bers written in polar form.

be two complex n

212255 rira(cos 0 + 1 i

= ryr[(cos 6, cos 0;

Therefore, usin
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The six sixth roots of z=—8
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— ,.0/n
Notice that each of the nth roots of z has modulus | wy | S Thus all the nfth roots of
- lie on the circle of radius /" in the complex plane. AISO. since the argument of each suc-
cessive nth root exceeds the argument of the_previous root by 27/n, we see that the
nth roots of z are equally spaced on this circle.

IETYTEA Find the six sixth roots of z

plane.

— —8 and graphtkese roots inthe complex

; = 8(cos 7 + isin ). Applyihg Bquation 3 with

)

Q_ 3, 4,5 in this formula:

SOLUTION In trigonometric fONQ,

n = 6, we get
7+ 2k

6

T e oty s
w, = 8'¢{ cos + isin

We get the six sixth roots of —8 by taking k = O/1,

3 |
T .. P V3 ,
wo=8'/"<cos—6—+181 o =\/2—<2 +21
S“’g‘ w, = 8L cos +1sm—2£>=\/fi
(o5
Q
¥a - e
\(,5 wy = $°| cos —— I{sin —~ =2 _T+§l
4 AL 3 il
w3=8l/6<cos—61+ ism? 2 (——2— — —2—,>
3
wy = 8'/"<cos3—w + isin—ﬂ-—) =—J2i
2 2
117 .1l 3 1%
w5=8l/o(cos——6 + isin - >=\/2_<T_E'>

All these points lie on the circle of radius V2 as shown in Figure 9.

I Complex Exponentials

We also need to give a meaning to the expression e” when z = x + iy is a complex num-
ber. The theory of infinite series as developed in Chapter 11 can be extended to the case
where the terms are complex numbers. Using the Taylor series for e* (11.10.11) as our guide,
we define

[4]

® _n 2. )
Z V4 Z°
—=1l4+z4+—+—+ ...
=0 1! 2! 2 3! Y

and it turns out that this complex exponential function has the same properties as the real
exponential function. In particular, it is true that

[5]

If we put z = iy, where y is a real number, in Equation 4, and use the facts that

atn

e = eZ|e::

*2

5 i . 5
it=-1, *=iYi=—i i




We could write the result of Example 8(a) as
e"+1=0

This equation relates the five most famous num-
bers in all of mathematics: 0, 1, e, i, and 7.

“ Exercises

APPENDIXH COMPLEX NUMBERS A61

I
e
7
|
|
|
B
|
+
|
4

I
e
|
I\Jl<
£ »
-hlv
3] -
|
O\l"d_
— >
+
P
+
/2\
pe 4
|
@ |
+
@<
|
¥‘/

=cosy +isiny

Here we have used the Taylor series for cos y and sin y (Equations 11.10.16 and 11.10.15).
The result is a famous formula called Euler’s formula:

(6] e”=cosy +isiny

Combining Euler’s formula with Equation 5, we get
et = ¢*e” = e*(cos y + isiny)

STET] Evaluate: (a) e™ () B mk

SOLUTION
(a) From Euler’s equation [6] we have

e"=cosm+isinmT=—1+i0)=—1

(b) Using Equation 7 we get

i :
e 2 = o1 cos = + isin— | = —[0+i(D)] = < =
2 2 e e

Finally, we note that Euler’s equation provides us with an easier method of proving
De Moivre’s Theorem:

[r(cos 0 + isin0)]" = (re")" = r"e™” = r"(cos n6 + i sin no)

1-14 Evaluate the expression and write your answer in the 13. V=25 1. /-3/-12
form a + bi.
; 55 ; :
1. (5 — 6i) + (3 + 2i) 2 (4- %l) -9+ :’) 15-17 Find the complex conjugate and the modulus of the
32+ 5i)@4 i) 41206 = 30 o
e 15. 12 — 5i 16. —1 + 22
5. 12+ 7i Gt X 17. —4i
! 3+ 2i
1. —li"'—l. : 1 —4i : b
3+ 2i 18. Prove the following properties of complex numbers.
i 3 @ztw=z+uw O zw=zw
9 10. — 3 (c) T = 2", where n is ¢ Sfiva srte
S 4 i " =2" n is a positive integer
: 12, i [Hint: Write z = a + bi,w = ¢ + di.)
1.0 g
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19-24 Find all solutions of the equation.

19. 4x2+ 9 =0 20. x¥=1
2. x2+2x+5=0 2 2x*—-2x+1=0

B.22+z24+2=0

2 2+iz4+431=0

25-28 Write the number in polar form with argument between 0
and 277

%. 1-.3i

28. 8i

5 =3 3

2]. 3+ 4i

29-32 Find polar forms for zw, z/w, and 1/z by first putting z and w
into polar form.

2. :=3+i, w=1+3i
30, - =43 —4i, w=38i
N.:=2J3-2i, w=-1+1i

32 :=43 +i), w=-3-3i

33-36 Find the indicated power using De Moivre's Theorem.

u (1-3i)

3%. (1 -i)®

3. (1 +i)°

35. (23 + 2i)’

37-40 Find the indicated roots. Sketch the roots in the complex
plane.

37. The eighth roots of 1 38. The fifth roots of 32

39. The cube roots of i 40. The cube roots of 1 + i

41-46 Write the number in the form a + bi.

M. o 4.
43. e’"/‘ 4. "
45. ¢*t'" 4. ™"

47. Use De Moivre’s Theorem with n = 3 to express cos 360 and
sin 36 in terms of cos 0 and sin 6.

48. Use Euler’s formula to prove the following formulas for cos x

and sin x:
C’“ ks 07,\ ] eu s e—it
R =" 5 smx = .
2 2i

29, If u(x) = f(x) + ig(x) isa complex-valued function of a real
variable x and the real and imaginary parts f(x) and g(x) are
differentiable functions of x, then the derivative of u is defined
to be u'(x) = f'(x) + ig'(x). Use this together with Equation 7
to prove that if F(x) = e, then F'(x) = re” whenr=a + bi
is a complex number.

50. (a) If u is a complex-valued function of a real variable, its

indefinite integral _|' u(x) dx is an antiderivative of u.
Evaluate

| e(l»ihdx

(b) By considering the real and imaginary parts of the integral
in part (a), evaluate the real integrals
J e* cos x dx and ~].e‘sinxdx

(c) Compare with the method used in Example 4 in Sec-
tion 7.1.



