Math 1522 - Exam 2 Review - Fall 2024

Exam 2 covers §7.1-7.4, 7.7-7.8 (unless told otherwise by your instructor)

Topics:

- 1. **Methods of Integration**: Substitution, integration by parts, trigonometric integrals, trigonometric substitution, partial fractions.
- 2. Approximation of Definite Integrals: Riemann sum approximations L_n , R_n , M_n (using left end points, right end points, or mid points); trapezoid rule T_n .
- 3. **Improper Integrals**: Recognize improper integrals with unbounded domains or unbounded integrands. Rewrite as a limit or a sum of limits as appropriate. Evaluate the limits to determine whether the improper integral converges or diverges.

Sample Problems:

1. Evaluate the following integrals.

(a)
$$\int \frac{a}{x^2 - bx} dx$$
 (g) $\int \frac{x^3 + 4}{x^2 + 4} dx$ (m) $\int_0^a x^2 \sqrt{a^2 - x^2} dx$ (b) $\int \frac{x^3 - 2x^2 - 4}{x^3 - 2x^2} dx$ (h) $\int \frac{1}{16 + t^2} dt$ (n) $\int_0^t (t - s)^2 ds$ (c) $\int \sin^2(3x) dx$ (i) $\int \frac{1}{1 + 2r} dr$ (o) $\int_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx$ (d) $\int \frac{1}{9 - x^2} dx$ (j) $\int \sin^3 \theta \cos^2 \theta d\theta$ (p) $\int_1^2 \frac{(x + 1)^2}{x} dx$ (e) $\int \frac{\sqrt{x^2 - 9}}{x} dx$ (k) $\int x^5 \ln x dx$ (q) $\int_1^2 \frac{x}{(x + 1)^2} dx$ (f) $\int \frac{1}{2t^2 + 3t + 1} dt$ (l) $\int_{1/\sqrt{3}}^{\sqrt{3}} \frac{x^3}{\sqrt{x^2 + 4}} dx$ (r) $\int_0^1 \frac{e^x}{1 + e^{2x}} dx$

- 2. (a) Find the approximation T_4 (trapezoid rule using 4 subintervals) of the integral $I = \int_0^1 e^x dx$.
 - (b) Sketch a graph of $f(x) = e^x$ and the area given by the approximation T_4 from part (a). Use your sketch to determine whether T_4 is an overestimate or underestimate.
- 3. For which values of p does $\int_a^\infty \frac{1}{x^p} dx$ converge? For which values of p does the integral diverge?
- 4. Determine if the following integrals converge or diverge. If they converge, compute their value. Use correct notation throughout.

(a)
$$\int_{-\infty}^{\infty} \cos(\pi t) dt$$
 (d) $\int_{3}^{\infty} \ln x dx$ (g) $\int_{0}^{1} \frac{2}{1 - 3s} ds$ (b) $\int_{0}^{1} \frac{x - 1}{\sqrt{x}} dx$ (e) $\int_{-\infty}^{\infty} \frac{x^{2}}{9 + x^{6}} dx$ (h) $\int_{-\infty}^{\infty} y e^{-3y} dy$ (c) $\int_{0}^{3} \ln x dx$ (f) $\int_{3}^{6} \frac{1}{\sqrt{x - 3}} dx$ (i) $\int_{0}^{\infty} e^{-as} ds, a > 0$

- 5. §7.8 Problem 74 (average speed of molecules in ideal gas) Hint: begin by setting a = M/(2RT), thus simplifying the integrand.
- 6. Chapter 7 Review, page 593, Problem 87 (evaluate $\int_0^\infty f'(x) dx$ if $\lim_{x\to\infty} f(x) = 0$)