HOMEWORK DAY 21 – Sequences §11.1

- 1. (a) What is a sequence?
 - (b) What does it mean to say that $\lim_{n\to\infty} a_n = 3$?
 - (c) What does it mean to say that $\lim_{n \to \infty} a_n = \infty$?
- 2. What are the following limits? Illustrate with a graph.
 - (a) $\lim_{n \to \infty} a_n$, where $a_n = \cos(n\pi)$

(b) $\lim_{n \to \infty} a_n$, where $a_n = \cos((n+1/2)\pi)$

3. List the first five terms of the sequence, $a_n = \frac{1}{3^{n+1}}, n = 1, 2, ...$

- 4. Find a formula for the general term a_n of the sequence, assuming the pattern for the first few terms continues
 - (a) $\{2, 4, 6, 8, \dots\}$

(b) $\{1, 3, 5, 7, \dots\}$

(c) $\{1, -1, 1, -1, \dots\}$

(d) $\{\frac{1}{2}, \frac{1}{4}, \frac{1}{6}, \frac{1}{8}, \dots\}$

(e) $\{4, -1, \frac{1}{4}, -\frac{1}{16}, \frac{1}{64}, -\frac{1}{256}, \dots\}$

5. \$11.1:25

6. Determine the limit of the following sequences or explain why it does not exist. Show all necessary work. Use the fact that if $\lim_{x\to\infty} f(x) = L$, then $\lim_{n\to\infty} f(n) = L$ (where n is restricted to integers).

(a)
$$a_n = \frac{1}{2^n}$$

(b)
$$a_n = \frac{n-2}{n^2}$$

(c)
$$a_n = \frac{\sin(n)}{n}$$

(d)
$$a_n = \frac{n}{n+1}$$

(e)
$$a_n = (-1)^n \frac{n}{n+1}$$

(f)
$$a_n = n^{1/n}$$

7. Give an example showing that if $\lim_{n \to \infty} f(n) = L$ (where *n* is restricted to integers), it is not necessarily true that $\lim_{x \to \infty} f(x) = L$ (where *x* is a continuous real variable).

8. (a) What does it mean to state that $\sum_{k=1}^{\infty} a_k = 5$?

(b) Assume
$$\sum_{k=1}^{\infty} a_k = 5$$
. What is $\lim_{k \to \infty} a_k$?

What is
$$\lim_{n \to \infty} s_n$$
, where $s_n = \sum_{k=1}^n a_k$?

(c) Find the value of the series
$$\sum_{k=1}^{\infty} a_k$$
 if its partial sums are given by $s_n = \frac{n^2 - 1}{4n^2 + 1}$.

(d) Find
$$\sum_{n=1}^{\infty} \cos n$$
 or determine it does not converge.

(e) Find
$$\sum_{n=1}^{\infty} \cos(n\pi)$$
 or determine it does not converge.

9. Fill in the blanks using either may or must.

- (a) A series $\sum_{n=1}^{\infty} a_n$ whose terms a_n tend to 0 as $n \to \infty$ _____ converge.
- (b) A series $\sum_{n=1}^{\infty} a_n$ that converges _____ have terms a_n that tend to 0 as $n \to \infty$.
- (c) If a series $\sum_{n=1}^{\infty} a_n$ diverges, then the terms a_n _____ not tend to 0 as $n \to 0$.
- (d) If a series diverges, then the Divergence Test ______ succeed in proving the divergence.
- (e) If $\sum_{n=10}^{\infty} a_n$ diverges, then $\sum_{n=1000}^{\infty} a_n$ _____ diverge.

10. Evaluate the following series or determine that they diverge (with very brief explanation).

(a)
$$\sum_{n=0}^{\infty} \left(\frac{2}{3}\right)^n$$

(b)
$$\sum_{n=2}^{\infty} 0.4^n$$

(c)
$$\sum_{n=-3}^{\infty} \frac{1}{(-5)^n}$$

(d)
$$1 + 0.4 + 0.16 + 0.064 + \dots$$

11. Evaluate the following series or determine that they diverge (with very brief explanation).

(a) §11.2: 32

(b) §11.2: 36

(c) §11.2: 38

(d) §11.2: 44

(e)
$$\sum_{n=3}^{\infty} (5^{-n} + 2 \cdot 3^{-n})$$

(f)
$$\sum_{n=1}^{\infty} \frac{7^{n-1}}{(-9)^n}$$

(g)
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$

(h)
$$\sum_{n=1}^{\infty} (\tan^{-1}(n+2) - \tan^{-1}n)$$